Vol. 44 No. 5 (2023)

A Study On Fuzzy Topological Algebraic System

M. Srividya

Department of Mathematics

Vels Institute of Science, Technology and advanced studies (VISTAS), Chennai, Tamil Nadu, India. srividyamohan38@gmail.com

G. Jayalalitha

Department of Mathematics

Vels Institute of Science, Technology and advanced studies (VISTAS), Chennai, Tamil Nadu, India. g.jayalalithamaths.sbs@velsuniv.ac.in

Abstract-This paper is aimed at introducing Fuzzy topological algebraic system by considering TM algebra on a fuzzy topological system. Some properties of fuzzy topological algebraic system are investigated.

Keywords-Fuzzy topological algebraic system, t-transition, transition group, TM algebra, balanced.

I. INTRODUCTION

The fuzzy counterpart of basic topology was commenced by Chang [3]. The fuzzy TM algebra was proposed by Tamilarasi and Megalai [2]. They studied the relation between TM algebra and other algebras. A classical dynamical system and the Fuzzy topological group was introduced by Wieslaw szlenk in 1984 [1]. An algebraic system is a structure (ζ, G, X) , where G is a fuzzy topological group, X is a fuzzy TM algebra and topological space and ζ is a continuous function from $G \times X \to X$.

II. PRELIMINERIES

DEFINITION 2.1 [2]

A TM algebra (X, *, 0) is a non-empty set X with constant 0 and a binary operation * satisfying the following axioms

i.
$$x * 0 = x = 0 * x$$

ii.
$$(x * y) * (x * z) = z * y$$

DEFINITION 2.2 [1]

Let X be a fuzzy topological space; G be a fuzzy topological group. If $\pi: G \times X \to X$ satisfies the following:

i)
$$\pi(0,x)=x$$

ii)
$$\pi(s,(t,x)) = \pi(s+t,x)$$

iii) π is fuzzy continuous

Then (π, G, X) is called a fuzzy topological dynamical system.

III. FUZZY TOPOLOGICAL ALGEBRAIC SYSTEM

DEFINITION 3.1

Let X be a TM algebra and fuzzy topological space and let G be a fuzzy topological group. If $\zeta: G \times X \to X$ satisfies the following properties:

- i) $\zeta(o,x)=x$
- ii) $\zeta(s,(t,x)) = \zeta(s+t,x)$
- iii) ζ is fuzzy continuous.

Then (ζ, G, X) is called a fuzzy topological algebraic system.

Throughout this system X will denote fuzzy topological algebraic system.

DEFINITION 3.2

The t-transition of (ζ, G, X) denoted by ζ^t for any $t \in G$, is the mapping $\zeta^t : X \to X$ such that $\zeta^t(x) = \zeta(t, x)$

RESULT 3.3

- i) ζ^0 is the identity mapping of X
- ii) $\zeta^s \zeta^t = \zeta^{s+t}$ for $s, t \in G$
- iii) ζ^t is 1-1 mapping of X onto X and $-(\zeta^t) = \zeta^{-t}$
- iv) ζ^t is a fuzzy homeomorphism of X onto X for $t \in G$.

DEFINITION 3.4

The transition group of (ζ, G, X) is the set $G^t = (\zeta^t : t \in G)$. The transition projection of (ζ, G, X) is the mapping $\psi : G \to G^t$ defined as $\psi(t) = \zeta^t$.

DEFINITION 3.5

 (ζ, G, X) is said to be effective if $t \in G$ with $t \neq 0$ then $\zeta'(x) \neq x$ for some x.

RESULT 3.6

- i) G^t is a group homeomorphism of X onto X.
- ii) ψ is a group homeomorphism of G onto G^t .
- iii) ψ is 1-1 if and only if (ζ, G, X) is effective.

DEFINITION 3.7

The X-motion of (ζ, G, X) is the mapping $\zeta_x : G \to X$ such that $\zeta_x(t) = \zeta(t, x)$ for any $x \in X$.

RESULT 3.8:

 ζ_x is a fuzzy continuous mapping of G into X.

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

NOTATION

We will denote $\zeta(\alpha \times \beta)$ by $\alpha\beta$.

RESULT 3.9

- i) For $t \in G$ and a fuzzy subset β of X, $cl \ \zeta(t \times \beta) = \zeta(t \times cl \ \beta)$
- ii) Let G and X be product related, the for a fuzzy subset α of G and a fuzzy subset β of X, $\zeta(cl \ \alpha \times cl \ \beta) \subseteq cl \ \zeta(\alpha \times \beta)$ and $cl \ \zeta(cl \ \alpha \times \beta) = cl \ \zeta(\alpha \times cl \ \beta) = cl \ \zeta(\alpha \times \beta)$
- iii) $\zeta^t \beta = \beta \alpha^{-1}$ for any $t \in G$.
- iv) $\zeta^t \beta^c = 1 \alpha^t \beta$.
- v) If $\beta \in I^x$ is a fuzzy open (closed), then $t\beta$ is fuzzy open (closed).

RESULT 3.10

Let λ be a constant fuzzy subset of G and $\beta \in I^X$ be fuzzy open. Then $\zeta(\lambda \times \beta)$ is fuzzy open. PROOF:

We have for any $\alpha \in X$,

$$\zeta(\lambda \times \beta)(a) = \sup\{(\lambda \times \beta)(t, x) : \zeta(t, x) = a\}$$

$$= \sup\{(\lambda(t) \wedge \beta(x) : \zeta(t, x) = a\}$$

$$= \sup\{(\lambda \wedge \beta(x) : \zeta(t, x) = a\}$$

$$= \lambda \wedge \sup\{\beta(x) : \zeta^{t}(x) = a\}$$

$$= \lambda \wedge \sup\{\beta(\zeta^{-t}(a)) : \zeta^{-t}(a) = x\}$$

$$= \lambda \wedge \sup\{\zeta^{t}\beta(a) : \zeta^{-t}(a) = x\}, \quad \because \beta\zeta^{-t} = \zeta^{t}\beta$$

$$= \{\lambda \wedge \{ \lor (\zeta^{t}\beta) \}\}(a), \text{ where } \zeta^{-t}(a) = x$$

Thus $\zeta(\lambda \times \beta) = \lambda \wedge \{ V(\zeta^t \beta) \}$. Now each ζ^t is open and β is open so $\zeta^t \beta$ is open. Also, by definition of fuzzy topology, λ is open. Consequently $\lambda \wedge \{ V(\zeta^t \beta) \}$ is open. Hence $\zeta(\lambda \times \beta)$ is open.

COROLLARY 3.11

Let β be a fuzzy open subset of X, then for any fuzzy point t_{λ} of G, $\zeta(t_{\lambda} \times \beta)$ is fuzzy open.

COROLLARY 3.12

Let α be any fuzzy subset of G and $\beta \in I^{\times}$ be fuzzy open, then $\zeta(\lambda \times \beta)$ is fuzzy open.

CORROLLARY 3.13

Let $t \in G$ and $\beta \in I^x$ be a fuzzy neighbourhood of X, for some $x \in X$. Then $\zeta(t_\lambda \times \beta)$ is a fuzzy neighbourhood of $\zeta(t_\lambda \times \beta)$.

RESULT 3.14

Let β be a fuzzy closed subset of X then for any fuzzy point t_{λ} of $G, \zeta(t_{\lambda} \times \beta)$ is fuzzy closed.

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

PROOF:

$$\zeta(t_{\lambda} \times \beta)(a) = \sup\{t_{\lambda} \times \beta\}(s, x) : \zeta(s, x) = a \}$$

$$= \sup\{t_{\lambda}(s) \wedge \beta(x)\} : \zeta(s, x) = a \}$$

$$= \lambda \wedge \beta(x) : \zeta(t, x) = a$$

$$= \lambda \wedge \beta(x) : \zeta^{t}(x) = a$$

$$= \lambda \wedge \beta(\zeta^{-t}(a))$$

$$= \lambda \wedge \zeta^{t}\beta(a) \quad \because \beta\zeta^{-t} = \zeta^{t}\beta$$

$$= (\lambda \wedge \zeta^{t}\beta)(a), \text{ considering } \lambda \text{ as a constant fuzzy subset of } X.$$

Thus $\zeta(t_{\lambda} \times \beta) = \lambda \wedge \zeta^{t} \beta$. Now ζ^{t} is closed and β is closed so $\zeta^{t} \beta$ is closed. Also λ is closed. Consequently $\lambda \wedge \zeta^{t} \beta$ is fuzzy closed. Hence $\zeta(t_{\lambda} \times \beta)$ is closed.

COROLLARY 3.15

Let α be any fuzzy subset of G and $\beta \in I^X$ be fuzzy closed. If $\sup \alpha$ is finite, then $\zeta(\alpha \times \beta)$ is fuzzy closed.

PROOF:

We have
$$\alpha = \forall t_{\lambda}$$
, where $\lambda = \alpha(x)$. So, $\zeta(\alpha \times \beta) = \zeta(\forall t_{\lambda} \times \beta) = \forall \zeta(t_{\lambda} \times \beta)$.

Since each $\zeta(t_{\lambda} \times \beta)$ is closed and $\sup \alpha$ is finite, the union is over finite number of closed fuzzy subsets. Hence $\zeta(\alpha \times \beta)$ is closed.

RESULT 3.16

Let β be a neighbourhood of $b = \zeta(t, x)$ in X. Then for each real number χ with $0 < \chi < \beta(b)$ there exists open neighbourhoods β_1, β_2 of the points t, x respectively such that $\zeta(\beta_1 \times \beta_2) \subseteq \beta$ and $\min \{\beta_1(t), \beta_2(t)\} > \chi$.

PROOF:

We assume that β is open without loss of generality. Since the map $\zeta: G \times X \to X$ is continuous, the fuzzy set $\zeta^{-1}(\beta)$ is open in $G \times X$.

Since, $\zeta^{-1}(\beta)(t,x) = \beta(b) > \chi$ there exist open fuzzy sets β_1, β_2 in G and X respectively with $\beta_1 \times \beta_2 \le \zeta^{-1}(\beta)$ and $(\beta_1 \times \beta_2)(t,x) > \chi$.

Clearly β_1, β_2 are open neighbourhood of t, x respectively and $\zeta(\beta_1 \times \beta_2) \subseteq \beta$.

REMARK 3.17

Let (ζ, G, X) be a fuzzy topological algebraic system. Then for any $\beta \in I^X$, $\zeta(s, \zeta(t, \beta)) = \zeta(s+t, \beta)$, for $s, t \in G$,

$$\zeta(s,(t,\beta))(x) = \sup \{(s,\zeta(t,\beta))(r,a); \zeta(r,a) = x\}$$
$$= \sup \{\zeta(t,\beta)(a); \zeta(s,a) = x\}$$

Vol. 44 No. 5 (2023)

$$= \sup[\sup\{(t,\beta)(p,y): \zeta(p,y) = a\}: \zeta(s,a) = x]$$

$$= \sup[\sup\{\beta(y): \zeta(t,y) = a\}: \zeta(s,a) = x]$$

$$= \sup[\sup\{\beta(y): \zeta(s,\zeta(t,y)) = x\}]$$

$$= \sup[\sup\{\beta(y): \zeta(s+t,y) = x\}]$$

$$= \zeta(s+t,\beta)(x).$$

RESULT 3.18

Let X be a fuzzy topological algebraic system, $h \in X$ and β a neighborhood of h. Then for each $0 < \psi < \beta(h)$ there exist an open neighborhood of zero in δ such that $\lambda(0) > \psi$ and $\lambda(t) \le \beta \zeta(t,h)$ for all $t \in \delta$.

PROOF:

We have $\zeta \colon \mathcal{S} \times X \to X$ is continuous. Since $\zeta(0,h) = h, \zeta^{-1}(\beta)$ is a neighborhood of (0,h) in $\mathcal{S} \times X$. Hence there exist an open neighborhood λ_1 of zero in \mathcal{S} and an open neighborhood β_1 of h in X such that $\lambda_1 \times \beta_1 \leq \zeta^{-1}(\beta)$ and $\min \{\lambda_1(0), \beta_1(h) > \psi \}$. Choose a real number ψ_1 such that $\psi < \psi_1 < \min \{\lambda_1(0), \beta_1(h)\}$.

The set $H = \{t \in \mathcal{S}: \lambda_1(t)\} > \psi_1$ is an open subset of \mathcal{S} for the usual topology of \mathcal{S} . Since $0 \in H$, there exist $\varepsilon > 0$ such that $\{t: |t| < \varepsilon\} \subset H$.

Let $\lambda: \mathcal{S} \to I$ be a continuous function, $0 \le \lambda \le \psi_1$, $\lambda(0) = \psi_1$, $\lambda(t) = 0$ if $|t| \ge \varepsilon$. We will show that $\lambda(t) \le \beta(th)$ for all $t \in \mathcal{S}$. In fact, if $|t| \ge \varepsilon$, then $\lambda(t) = 0$. For $|t| < \varepsilon$ we have $\lambda_1(t) > \psi_1$ and hence,

$$\begin{split} \beta(th) &= \beta\big(\zeta(t,h)\big) = \zeta^{-1}(\beta)(t,h) \geq \\ \min \left\{\lambda_1(t),\beta_1(h)\right\} &> \psi_1 \\ &\geq \lambda(t). \end{split}$$

COROLLARY 3.19

Given a neighbourhood β of h in a fuzzy topological algebraic system X and $0 < \psi < \beta(h)$, there exists $\varepsilon > 0$ such that $\beta(th) > \psi$ if $|t| \le \varepsilon$.

PROOF:

By the previous result, there exists an open neighbourhood λ of zero in \mathcal{S} such that $\lambda(0) > \psi$ and $\lambda(t) \leq \beta(tx)$ for all $t \in \mathcal{S}$. Since the set $H = \{t \in \mathcal{S} : \lambda(t) > \psi\}$ is open and contains 0, there exists $\epsilon > 0$ such that $t \in H$ whenever $|t| \leq \epsilon$.

Therefore, $\beta(th) > \psi$ if $|t| \leq \varepsilon$.

RESULT 3.20

Let X be a fuzzy topological algebraic system and β a neighborhood of h. Then, for each real number ψ with $0 < \psi < \beta(h)$ there exists an open neighborhood γ of $h \in X$, with $\gamma \leq \beta$ and $\gamma(h) > \psi$ and a positive real number such that $\zeta(t, \gamma) \leq \beta$ foe each $t \in S$ with $|t| \leq \varepsilon$.

PROOF:

We may assume that β is zero. The function $\zeta: \mathcal{S} \times X \to X$ is continuous. Since $\zeta^{-1}(\beta)(0,h) = \beta(h) > \psi$, there exists an open neighbourhood of zero in \mathcal{S} and an open neighbourhood β_1 of h in X such that $\min \{\lambda(0), \beta_1(h)\} > \psi$ and $\lambda \times \beta_1 \leq \zeta^{-1}(\beta)$. Let $\psi < \psi_1 < \lambda(0)$ and set $\gamma = \psi_1 \wedge \beta_1 \wedge \beta$. Then γ is open, $\gamma \subseteq \beta$ and $\gamma(h) > \psi$. Since λ is a lower semi-continuous function on \mathcal{S} when \mathcal{S} has its usual topology, there exists a positive number ε such that $\{t \in \mathcal{S}: |t| \leq \varepsilon\} \subset \{t: \lambda(t) > \psi_1\}$. Now let $|t| \leq \varepsilon$. For each $x \in X$ we have, $\beta(tx) = \beta(\zeta(t,x)) = \zeta^{-1}(\beta)(t,x) \geq (\lambda \times \beta_1)(t,x)$

$$\geq (\lambda \times \gamma)(t, x)$$
= min {\lambda(t), \gamma(x)}
= \gamma(x)

Since $\gamma(x) \le \psi_1 < \lambda(t)$ and since $\beta(\zeta(t,x)) \ge \gamma(x)$ for each $x \in X$, it follows that $\zeta(t \times \gamma) \le \beta$.

DEFINITION 3.21

Let (ζ, \mathcal{S}, X) be a fuzzy topological algebraic system. A fuzzy set β in X is called balanced if $\zeta(t, \beta) \leq \beta$ for each $t \in \mathcal{S}$ with $|t| \leq 1$.

RESULT 3.22

 β is balanced if and only if $\beta(tx) \geq \beta(x)$.

PROOF:

For any $r \in X$,

We have

Suppose $\beta(tx) \ge \beta(x)$ for each $t \in S$ with $|t| \le 1$.

That is $\beta(\zeta(t,x)) \ge \beta(x)$ for each $t \in S$ with $|t| \le 1$.

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

Then for any
$$r \in X$$
, $(t\beta)(r) = \sup\{\beta(x): \zeta(t,x) = r\}$ (From (1) $\leq \sup\{\beta(\zeta(t,x)): \zeta(t,x) = r\}$ (given) $= \beta(r)$.

Hence $t\beta \leq \beta$.

Consequently, let β be balanced. That is $\zeta(t,\beta) \leq \beta$ and $t\beta \leq \beta$ for each $t \in S$ with $|t| \leq 1$. We have $t\beta \leq \beta \Rightarrow \zeta(t,\beta) \leq \beta$

$$\Rightarrow \zeta(t,\beta)(r) \leq \beta(r) \text{ for all } r \in X \qquad \Rightarrow \sup \{\beta(\zeta(t,x)): \zeta(t,x) = r\} \leq \beta(r)$$

. (from (1))

$$\Rightarrow \beta(x) \leq \beta(r)$$
 for all $x: \zeta(t,x) = r \Rightarrow \beta(x) \leq \beta(\zeta(t,x))$
Hence $\beta(tx) \geq \beta(x)$.

REFERENCES

- [1] Tazid Ali, Fuzzy topological dynamical systems, Journal of mathematics Research, Vol. 1, No. 2, Sep 2009, 199-206.
- [2] M Annalakshmi, M. Chandramouleeswaran. Interior and closure of fuzzy open sets in a fuzzy topological TM-system, Global Journal of Pure and Applied Mathematics, ISSN 0973-1768 Volume 11, Number 5(2015), page 3157-3164.
- [3] C. L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl., 24(1968),182-190.
- [4] A.K. Katsaras and B.D. Liu. (1977), Fuzzy Vector spaces and fuzzy topological vector spaces, J. Math. Anal, Appl. 58, 135-146.
- [5] A.K. Katsaras. (1981), Fuzzy topological vector spaces, 6, 85-95.
- [6] L. A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353.
- [7] Topology, K. Kuratowski.