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Abstract 

The authors of this study provide a brand-new second-order sliding mode control that is based on fuzzy logic and 

a time-varying sliding surface. A potent approach for enhancing controller performance is sliding surfaces that 

vary over time. After factoring in mathematical model mistakes and environmental perturbations, we first build a 

sliding variable with a relative degree of 2. "Then, using a simple single-input single-output fuzzy logic inference 

system, a time-varying sliding surface is constructed to enhance the controlled system's tracking performance. 

The proposed controller ensures that the system will be accessible, stable, and resilient. In terms of development 

and implementation, the proposed controller is relatively simple. Theoretically, it has been shown that the resultant 

closed-loop system is globally finite-time stable. We investigate a nonlinear system using MATLAB/SIMULINK 

and contrast the suggested controller with a conventional, fixed-sliding-surface, second-order sliding mode 

controller. In terms of dynamic performance, the suggested controller performs better than a conventional second-

order sliding mode controller with a fixed sliding surface. 

 Keywords: Second-order sliding mode control, Sliding surface rotation, Fuzzy logic control, Error convergence, 

Tracking accuracy  

 

1. Introduction 

Dynamic uncertain systems have seen significant application of the sliding mode control strategy with 

considerable success. Sliding mode controls are so well-liked because they have several useful features, such as 

robustness against disturbances, parameter violations, and uncertainty. Sliding mode control employs a plain and 

easy-to-understand approach. The two steps of a sliding mode control layout are designing the appropriate sliding 

surface and then enforcing the sliding mode. Sliding mode controllers have traditionally made use of relay 

controllers or unit controllers. Chattering, a high-frequency oscillation resulting from switching and temporal 

delays in the system's dynamics, prevents the system trajectory from reaching the optimal sliding mode and is the 

fundamental problem with these control systems. Additionally, the normal sliding mode controller with a fixed 

sliding surface has the drawback that the tracking inaccuracy cannot be easily modified while the system states 

are in the reaching mode. 

In order to maintain resilience and tracking performance in the presence of uncertainties and disturbances, second-

order sliding mode (SOSM) control employs higher-order sliding modes. The aim of sliding-mode (SOSM) 
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control is to confine the dynamical development of the system to a sliding surface, a reduced-dimensional 

manifold. Performance of a second-order sliding mode controller is strongly influenced by the properties of the 

surface. Regarding the creation of a sliding surface, there are no unbending restrictions. This makes creating the 

ideal sliding surface a difficult challenge. Additionally, while in reaching mode, a second-order sliding mode 

controller with a fixed sliding surface is more susceptible to changes in the controller's settings. Reduce this 

sensitivity by cutting down on the time spent in reaching mode.  This paper thus proposes a sliding surface whose 

characteristics change over time. 

The idea behind time-varying sliding surfaces is to rotate the sliding region in the direction of better dynamic 

performance. You may monitor time-varying references or reject time-varying disturbances using the SOSM 

control approach with a time-varying sliding surface. It is common practise to use a Lyapunov function when 

developing the SOSM controller with a time-varying sliding surface to evaluate the departure from the sliding 

surface. Then, we create a control rule to move the system closer to the sliding surface using the gradient of the 

Lyapunov function. The SOSMC approach, which employs a sliding surface that changes over time, could prove 

to be an efficient way to control uncertain systems robustly and precisely. However, the controller's design may 

be difficult, requiring expertise in both the system's dynamics and the relevant control theory. Also, there is no 

strict and hard rules for rotation of the sliding surface in the direction of improved dynamic performance, only 

some approximate rules are available. 

Sliding mode control is an appropriate strategy for robust control because its decreased order dynamics offer 

desirable benefits like matching uncertainties and disturbances and sensitivity to parameter fluctuations.[1] 

Sliding mode controllers have been shown to be effective for stabilizing uncertain nonlinear systems that contain 

nonlinearities and uncertainties [2]. We provide a framework in [3] for realising high-performance control 

applications using a particular type of underactuated mechanical systems using reliable and smooth second-order 

sliding mode control. Particularly, external disturbances, parameter uncertainties, etc. affect practically all real 

systems inexorably, degrading the performance of many control schemes. Since un-actuated states are far more 

susceptible to shocks than actuated ones, stabilising such a system is a formidable challenge in general, and it is 

made much more so for underactuated systems.[4] 

Although it has the capacity to produce a closed-loop system that is highly robust to plant uncertainty and outside 

disturbances, sliding mode control has chattering issues. Second-order sliding mode control may effectively 

suppress obtrusive noises. The SOSM is an excellent technique for addressing the chattering problems of the first-

order SMC [5–9]. A continuous compensation term may be used to reduce the effects of uncertainty with the noise 

associated with the magnitude of the switching gain, which is chosen to be larger than the finite value of the 

uncertainty and disturbance.[10]  

The sliding surface can be reached in finite time under SMC due to the linear sliding variable design [11], but this 

is insufficient for the system to converge to the origin in finite time. The SOSM strategy may also be applicable 

in situations with asymmetric output limitations [12]. Using an SMC-based controller, [13] implements the buck 

converter circuit. In [14], a new sliding mode control strategy is suggested and used to nonlinear uncertain SISO 

systems of relative degree 2. The globally fixed-time control issue is investigated for a large class of uncertain 

nonlinear systems in [15]. 

Because of its flexibility in dealing with uncertainties and approximations, fuzzy logic has found widespread 

usage in a broad range of industrial applications, making it a popular control approach. [16-17] Particularly helpful 

for mathematically challenging control issues.  The difficulty of creating a fuzzy adaptive SOSM controller is 

described in [18], which focuses on a subset of nonlinear systems. A sliding mode control (SMC) method and 

fuzzy logic are used to create a fuzzy sliding mode controller (FSMC) in [19]. Uncertain dynamic systems are 

handled in [20] via a new fuzzy-based adaptive super-twisting sliding mode controller. 

Although traditional second-order sliding mode control schemes with fixed sliding surfaces reduce the chattering 

phenomenon of the classical first-order sliding mode controller and ensure higher accuracy in the presence of 

system flaws and uncertainties, this approach has the disadvantage that the performance of the system is highly 
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dependent on the sliding surface. Calculating the ideal slope for a sliding surface is a time-consuming and difficult 

operation. In [21], the author proposes using a super-twisting sliding mode to regulate a dynamically uncertain 

system whose sliding surface changes over time. An implementation of the Lyapunov-based SOSM algorithm 

from [22], which uses the saturation approach. When used to a time-varying sliding surface, the SOSMC approach 

may be an effective means of establishing robust and precise management of uncertain systems [23]. Using time-

varying sliding surfaces rather than continuous ones is an effective sliding surface design technique for enhancing 

controller performance. The authors of [24] suggest using a two-input, single-output fuzzy logic controller to 

implement a time-varying sliding surface correction for a ship steering model. 

In this study, we create a novel SISO (single-input, single-output) second-order sliding mode control system based 

on fuzzy logic control. Using the suggested control technique, the sliding surface may be dynamically modified 

online depending on the sliding variable values to provide the required performance. Additionally, the spinning 

surface may spin either clockwise or anticlockwise. It is possible to rapidly and simply determine the sliding 

surface change using a simple input and output fuzzy logic control system. Computational simulations 

demonstrate that the suggested control system outperforms the traditional second-order sliding mode controller 

with a fixed sliding surface. 

2. Design of Proposed SOSM Controller 

The SOSM control method offered here is a variant of the SOSM control algorithm described in [18]. The control 

design process has two steps. In the first stage, a customised SOSM controller is developed using iterative 

iterations of the SOSM technique [25], and a thorough mathematical analysis is performed too though. The second 

phase presents a comprehensive simulation strategy for the suggested SOSM algorithm.  

2.1 Brief Description of SOSM 

For instance, consider the nonlinear dynamical system. 

 𝑥̇ = 𝑓(𝑡, 𝑥) + 𝑔(𝑡, 𝑥)𝑈, 𝑠 = 𝑠(𝑡, 𝑥)                               (1) 

where the system's real state is 𝑥 ∈ ℝ𝑛 and the input being utilised to influence it is 𝑈 ∈ ℝ .  The two Smooth 

functions, f(t, x) and g(t, x), together produce the sliding variable, 𝑠 ∈ ℝ . It is presumable that the other two 

sliding variables, s and s, are known. In regard to the controller U, one obtains if one assigns the sliding variable 

s a relative degree of r=2. 

 𝑠̈ = 𝑎(𝑡, 𝑥) + 𝑏(𝑡, 𝑥)𝑈                                          (2) 

where 𝑎(𝑡, 𝑥) = 𝑠̈|𝑈=0and 𝑏(𝑡, 𝑥) =
𝜕𝑠̈

𝜕𝑈
  Two modes exist for the SOSM controller.: U = 1 or U = -1. It is clear 

from the following relation that the switch µ can be identified [26]: 

    µ =
1 

2
 (1 + 𝑠𝑖𝑔𝑛(𝑈))                                          (3) 

However, it is evident from (3) that the sign function will result in an infinite switching frequency when the sliding 

variables approach. ⌈𝑠̇⌋2 + 𝛽1𝑠 = 0  . The results indicate that the nonlinear system's high switching frequency 

precludes the direct implementation of controller (3). Although it is impossible to know how large the range is, 

the operation frequency can still be limited within it. A hysteresis modulation is one method of doing this. As part 

of this study, we restate (3) as 

𝑠𝑎𝑡(⌈𝑠̇⌋2 + 𝛽1𝑠) = {

−1, for ⌈𝑠̇⌋2 + 𝛽1𝑠 < −1

⌈𝑠̇⌋2 + 𝛽1𝑠, for −1 < ⌈𝑠̇⌋2 + 𝛽1𝑠 < 1

1, for ⌈𝑠̇⌋2 + 𝛽1𝑠 > 1

      

  (4) 

providing the region indicated by 𝛺 = −1 < ⌈𝑠̇⌋2 + 𝛽1𝑠 < 1  
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This area will no longer be switched after the upgrade is implemented. Because of this adjustment, the SOSM 

control's infinite switching frequency may be reduced. Eventually, the output voltage error will stabilise where 

|⌈𝑠̇⌋2 + 𝛽1𝑠| < 1 . 

It should be noted that the sliding variables will converge to the region |⌈𝑠̇⌋2 + 𝛽1𝑠| < 1 . It is simple to acquire 

that 𝑠̇|𝑠̇| < 1 − 𝛽1𝑠 . If 𝑉(𝑠) =
1

2
𝑠2 . A quick computation provides us with 𝑉̇(𝑠) ≤

−𝛽1𝑠2+|𝑠|

|𝑠̇|
 , this suggests that 

the sliding variables will eventually converge to the region 𝑠: |𝑠| ≤
1

𝛽1
 

2.2 SOSM with Time-Varying Sliding Surface 

A second-order sliding mode controller in reaching mode that has a fixed sliding surface increases the system's 

sensitivity to parameter changes. Reduce this sensitivity by cutting down on the time spent in reaching mode. The 

right value of the sliding surface slope must also be chosen, which is challenging and time-consuming. Sliding 

surfaces that change over time are preferable than static ones when developing a controller. The method for 

modifying the sliding surface in real time is thus essential in second-order sliding mode control systems. 

Designing an SOSM controller U is now necessary for the output x₁ to follow the desired value x1d. To make the 

expression easier to understand, we first define ⌈𝑥⌋𝛼 = |𝑥|𝛼 sign (x). The SOSM controller for system (2) is 

designed as 

      𝑈 = −𝑠𝑖𝑔𝑛(⌈𝑠̇⌋2 + 𝛽1(𝑠, 𝑠̇)𝑠)                                           (5)  

with an appropriately tuned value for 𝛽1(𝑠, 𝑠̇). 

In this research, we want to provide a method for controlling a system subject to lumped disturbances w1(t) and 

w2(t) in such a way that the output x1 closely tracks the target value x1d. 

You will have a list of three lemmas to utilise as a launching pad for the controller design that follows at the 

conclusion of this part.  

Lemma 1 (see [21]): The following inequality exists if p1 > 0 and 0 < p1 ≤ 1: 

|⌈𝑥⌋𝑝1𝑝2 − ⌈𝑦⌋𝑝1𝑝2| ≤ 21−𝑝2|⌈𝑥⌋𝑝1 − ⌈𝑦⌋𝑝1|𝑝2∀𝑥, 𝑦 ∈ 𝑅           (6) 

Lemma 2 (see [18]): Both c and d are thought to be positive numbers. With respect to every positive function, the 

following inequality appears to apply γ > 0: 

|𝑦|𝑑 ≤
𝑐

𝑐+𝑑
𝛾|𝑥|𝑐+𝑑 +

𝑑

𝑐+𝑑
𝛾−

𝑐

𝑑|𝑦|𝑐+𝑑∀𝑥, 𝑦 ∈ 𝑅                (7) 

Lemma 3 (see [22]): Assume that p is a real number, where 0 < p <1: then one has 

  (|𝑥1| + ⋯ |𝑥𝑛|)𝑝 ≤ |𝑥1|𝑝 + ⋯ |𝑥𝑛|𝑝, ∀𝑥𝑖 ∈ 𝑅, 𝑖 = 1, … , 𝑛.        (8) 

To generate SOSM s = 𝑠 ̇ = 0 in finite time, given the SOSM dynamics (2), the controller (5) must ensure that the 

output x1  follows the desired value x1d. 

Assume y1 = s and y2 = 𝑠̇.  It is possible to rewrite controller (5) and system (3) as 

𝑦1̇ = 𝑦2,  𝑦2̇ = 𝑎(𝑡, 𝑥) + 𝑏(𝑡, 𝑥)𝑈                                     (9) 

𝑈 = −𝑠𝑖𝑔𝑛(⌈𝑦2⌋2 + 𝛽1(𝑦1, 𝑦2)𝑦1)                                 (10) 

respectively. We will demonstrate the finite-time stability of the closed-loop systems (9) and (10) using the 

approach of adding a power integrator described in [27] and [28]. There will be two steps in the proof. In order to 

stabilise y1 to zero, a virtual controller called 𝑦1
∗ will first be built. To ensure that the state y2 will track 𝑦1

∗ in finite 

time, the real controller U will be created 
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Step 1: Lyapunov function the one we select is  𝑉1(𝑦1) =
2|𝑦1|

5
2

5
 The result of taking the derivative of V1(y1) is 

𝑉1̇(𝑦1) = ⌈𝑦1⌋
3

2𝑦2  = ⌈𝑦1⌋
3

2𝑦2
∗ + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗)                     (11) 

in which 𝑦2
∗ is a virtual control law. Designing 𝑦2

∗ so that 𝑦2
∗ = −𝛽1(𝑦1, 𝑦2)

1

2⌈𝑦1⌋
1

2, 𝛽1(𝑦1 , 𝑦2) > 0  produces 

𝑉1̇(𝑦1) = ⌈𝑦1⌋
3

2𝑦2
∗ + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗)

= −𝛽1(𝑦1 , 𝑦2)
1

2⌈𝑦1⌋
3

2⌈𝑦1⌋
1

2 + ⌈𝑦1⌋
3

2(𝑦2 − 𝑦2
∗)

= −𝛽1(𝑦1 , 𝑦2)
1

2𝑦1
2 + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗)

     (12) 

Step 2: Select a function as 

 𝑉2(𝑦1, 𝑦2) = 𝑉1(𝑦1) + 𝑊(𝑦1, 𝑦2)                                  (13) 

with 𝑊(𝑦1, 𝑦2) = ∫  
𝑦2

𝑦2
∗  ⌈⌈𝑘⌋2 − ⌈𝑦2

∗⌋2⌋2𝑑𝑘 . 

 The function V2(y1, y2) is C1, positive definite, and proper, which may be simply proven. The estimation from 

(13) is as follows: 

   𝑉2
̇

 
(𝑦1 , 𝑦2) ≤ −𝛽1(𝑦1, 𝑦2)

1

2𝑦1
2 + ⌈𝑦1⌋

3

2(𝑦2 − 𝑦2
∗) +  

𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇ + ⌈𝜉⌋2𝑦2̇              (14) 

with 𝜉 = ⌈𝑦2⌋2 − ⌈𝑦2
∗⌋2 . Then, we give an assessment for each word in the right hand (14). 

By using Lemma 1, we are able to 

⌈𝑦1⌋
3

2(𝑦2 − 𝑦2
∗)  ≤ |𝑦1|

3

2 |⌈𝑦2⌋2×
1

2 − ⌈𝑦2
∗⌋2×

1

2|   ≤ 2
1

2|𝑦1|
3

2|𝜉|
1

2           (15) 

However, with Lemma 2, we have 

2
1

2|𝑦1|
3

2|𝜉|
1

2 ≤ 2
1

2 ×
3

4
𝛾𝑦1

2 + 2
1

2 ×
1

4
𝛾−3𝜉2                (16) 

Using 2
1

2 ×
3

2
𝑦 =

𝛽1(𝑦1,𝑦2)
1
2

4
, one get 𝑦 =

𝛽1(𝑦1,𝑦2)
1
2

3×2
1
2

. The estimation stated below is valid by (15) and (16): 

  ⌈𝑦1⌋
3

2(𝑦2 − 𝑦2
∗) ≤

𝛽1(𝑦1,𝑦2)
1
2

4
𝑦1

2 + (
3

𝛽1(𝑦1,𝑦2)
1
2

)3𝜉2                  (17)          

Given that 
𝜕⌈𝑦2

∗⌋2

𝜕𝑦1
= −𝛽1(𝑦1 , 𝑦2) , it follows from Lemma 1 that, 

     
𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇  ≤ |⌈𝑦2⌋2×

1

2 − ⌈𝑦2
∗⌋2×

1

2| |𝜉| |
𝜕⌈𝑦2

∗⌋2

𝜕𝑦1
𝑦2|   ≤ 2

1

2𝛽1(𝑦1 , 𝑦2)|𝜉|
3

2|𝑦2|            

 (18) 

Since,|𝑦2| = |⌈𝑦2⌋2|
1

2 = |𝜉 + ⌈𝑦2
∗⌋2|

1

2 ≤ (|𝜉| + |𝑦2
∗|2)

1

2,   according to the lemma 3 |𝑦2| ≤ |𝜉|
1

2 + |𝑦2
∗|.  As a result, 

(18) can be rephrased as 

   
𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇  ≤ 2

1

2𝛽1(𝑦1, 𝑦2)|𝜉|
3

2 (|𝜉|
1

2 + |𝑦2
∗|)   ≤ 2

1

2𝛽1(𝑦1 , 𝑦2)𝜉2 + 2
1

2𝛽1(𝑦1, 𝑦2)
3

2|𝜉|
3

2|𝑦1|
1

2        

                (19) 

Once more applying Lemma 2, one has 

2
1

2𝛽1(𝑦1, 𝑦2)
3

2|𝜉|
3

2|𝑦1|
1

2  ≤ 2
1

2𝛽1(𝑦1, 𝑦2)
3

2 ×
1

4
𝛾𝑦1

2 + 2
1

2𝛽1(𝑦1, 𝑦2)
3

2 ×
3

4
× 𝛾−

1

3𝜉2         

 (20) 
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If 2
1

2𝛽1(𝑦1, 𝑦2)
3

2 ×
1

4
𝛾 =

1

2
𝛽1(𝑦1, 𝑦2)

1

2 , then 𝛾 =
21/2

𝛽1(𝑦1,𝑦2)
  follows. By using (20) and a straightforward 

calculation, it is evident that, 

   2
1

2𝛽1(𝑦1, 𝑦2)
3

2|𝜉|
3

2|𝑦1|
1

2 ≤
1

2
𝛽1(𝑦1, 𝑦2)

1

2𝑦1
2 + 𝛽1(𝑦1, 𝑦2)

11

6 𝜉2     (21) 

Putting (21) into (19) results in 

   
𝜕𝑊(𝑦1,𝑦2)

𝜕𝑦1
𝑦1̇ ≤

1

2
𝛽1(𝑦1 , 𝑦2)

1

2𝑦1
2 + (2

1

2𝛽1(𝑦1, 𝑦2) + 𝛽1

11

6 )𝜉2        (22) 

From (14) it may be inferred that by combining (17) and (22) 

 𝑉2̇ 
(𝑦1, 𝑦2) ≤ (

27

𝛽1(𝑦1,𝑦2)
3
2

+ 2
1

2𝛽1(𝑦1, 𝑦2) + 𝛽1(𝑦1 , 𝑦2)
11

6 )𝜉2  −
𝛽1(𝑦1,𝑦2)

1
2

4
𝑦1

2⌈𝜉⌋2(𝑎(𝑡, 𝑥) + 𝑏(𝑡, 𝑥)𝑈)       

  (23) 

In light of the knowledge that ⌈𝑦2⌋2 − ⌈𝑦2
∗⌋2 = ⌈𝑦2⌋2 + 𝛽1(𝑦1, 𝑦2)𝑦1 = 𝜉  and 𝑏(𝑡, 𝑥) =

𝑉𝑖𝑛0

𝐿0𝐶0
 , putting (12) into 

(23) results in. 

𝑉2̇ 
(𝑦1, 𝑦2) ≤  −

𝛽1(𝑦1, 𝑦2)1/2

4
𝑦1

2 + (
27

𝛽1(𝑦1, 𝑦2)3/2
  + 21/2𝛽1(𝑦1, 𝑦2) + 𝛽1(𝑦1 , 𝑦2)11/6)𝜉2   + 𝜉2|𝑎(𝑡, 𝑥)|

− 𝑏(𝑡, 𝑥)⌈𝜉⌋2. 𝑠𝑖𝑔𝑛(𝜉)                     

≤  −
𝛽1(𝑦1, 𝑦2)1/2

4
𝑦1

2 + (
27

𝛽1(𝑦1, 𝑦2)3/2
  + 21/2𝛽1(𝑦1, 𝑦2) + 𝛽1(𝑦1, 𝑦2)11/6)𝜉2   + 𝜉2|𝑎(𝑡, 𝑥)|

− 𝜉2𝑏(𝑡, 𝑥)     

Based on condition (9), we are aware that 

𝑏(𝑡, 𝑥) > |𝑎(𝑡, 𝑥)| +
27

𝛽1(𝑦1, 𝑦2)3/2
+ 21/2𝛽1(𝑦1, 𝑦2)  + 𝛽1(𝑦1, 𝑦2)11/6 +

1

4
𝛽1(𝑦1, 𝑦2)1/2   

It suggests that 𝑉2̇ 
(𝑦1, 𝑦2) ≤ −

𝛽1(𝑦1,𝑦2)1/2

4
(𝑦1

2 + 𝜉2) . Due to the fact 

∫
𝑦2

𝑦2
∗

 ⌈⌈𝑘⌋2 − ⌈𝑦2
∗⌋2⌋2𝑑𝑘 ≤ |𝑦2 − 𝑦2

∗||𝜉|2 ≤ 2
1
2|𝜉|

5
2  

we get 

𝑉2(𝑦1, 𝑦2) ≤ 2 (|𝑦1|
5

2 + |𝜉|
5

2)                                             (24) 

By assuming that 𝑐 = 2−
14

5 𝛽1(𝑦1, 𝑦2)
1

2,   𝛼 =
4

5

 

 and applying Lemma 3 and (24), we get 𝑉2
̇

 
(𝑦1, 𝑦2) +

𝑐𝑉2
𝛼 (𝑦1 , 𝑦2) ≤ 0. Observe that 0 < α < 1. According to the finite-time Lyapunov theory described in [29], system 

(9) can be stabilised globally with controller (10) in a finite amount of time. 

2.3 Fuzzy Logic Based Sliding Surface Adjustment of Second Order Sliding Mode Controllers. 

A sliding mode controller with a new sliding surface is the method mentioned above. ⌈𝑠̇⌋2 + 𝛽1𝑠. However, 

providing a clear formula to compute the parameter 𝛽1 is challenging. The approximate rule for designing 𝛽1 is 

derived from the study of the dependence of the system response on the slope 𝛽1. Error convergence is shown to 

be quicker with the controller with the highest slope 𝛽1  , although tracking accuracy may suffer as a result. The 

system's performance may degrade significantly or perhaps become unusable if 𝛽1 is set too high.  Error 

convergence time is an important consideration, but monitoring time is also important. This problem may be 

solved by altering the sliding surface of the second-order sliding mode controller, as shown in Figure 1. Hence, 

the best solution is to utilize a time-varying slope, which depends on s and 𝑠̇, ie., 𝛽1(𝑠, 𝑠̇).  
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Figure. 1 Movement of Sliding Surface 

The stability of a sliding surface depends on its having a positive slope. By regularly updating the slope value 

with the most recent values of the sliding variable s and its derivative 𝑠̇, it is feasible to calculate the velocity of a 

sliding surface". There is a lot of uncertainty in the mathematical models that try to explain the connection between 

the error factors and the slope of the sliding surface. In order to change the slope of the sliding surface, a single-

input single-output fuzzy logic controller may be built using the approximation rules provided by the expert 

knowledge. 

The input to the SISO FLC is the magnitude difference between s and 𝑠̇, as given by Equation (25). Sliding surface 

gradient is the result of multiplying FLC output by some output scaling factor. 

𝑠𝑑 = |𝑠| − |𝑠̇|                                                     (25) 

sd can have both positive and negative values. To guarantee stability, the FLC's output must, however, always be 

positive.  

As depicted in Figure 2, the input variable sd is characterized by membership functions representing negative big 

(NB), negative medium (NM), negative small (NS), zero (ZE), positive small (PS), positive medium (PM), and 

positive big (PB). Similarly, Figure 3 illustrates the membership functions associated with the output variable, 

namely very very small (VVS), very small (VS), small (S), medium (M), big (B), very big (VB), and very very 

big (VVB). This is possible using the rule base presented in Table 1. 

 

 

Figure. 2 Input membership functions 
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Figure. 3 Output membership functions 

Table 1 One-dimensional Fuzzy Rule Base 

Sd NB NM NS ZE PS PM PB 

Output VVB VB B M S VS VVS 

 

Defuzzification can be accomplished using the centroid approach. Figure 4 shows the relationship between a 

single-input, single-output fuzzy logic controller's input and output. 

 

 

Figure 4. Input-Output Characteristics of Single Input-Single Output FLC 

The control strategy can now be illustrated as seen in Figure 5.  

 

 

 

Figure 5. Proposed Control Scheme 

3. Results and Discussion 

The suggested controller is assessed and contrasted with an ordinary sliding-surface controller using a nonlinear 

system [18]. The simulation results for the proposed controller and the traditional second-order sliding mode 

controller with a fixed sliding surface are shown in Figures 6–13. The system's reaction to the proposed controller 
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is contrasted with that of a traditional second-order sliding mode controller, as shown in Figure 6, for different 

values for 𝛽1. The proposed controller reacts more quickly than the conventional sliding-surface controller. 

 

 

Figure 6. Responses of the Proposed Controller and SOSM Controller with 𝜷𝟏 = 𝟏𝟎 and 𝜷𝟏 = 𝟐. 𝟓 

 

Figure 7. Sliding Variable of the Proposed Controller and SOSM Controller with 𝜷𝟏 = 𝟏𝟎 and 𝜷𝟏 = 𝟐. 𝟓 

 

Figure 8. Rate of Change of Sliding Variable of the Proposed Controller and SOSM Controller with 𝜷𝟏 =

𝟏𝟎 and 𝜷𝟏 = 𝟐. 𝟓 
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Figure 9. Control Input of the Proposed Controller and SOSM Controller with 𝜷𝟏 = 𝟏𝟎 and 𝜷𝟏 = 𝟐. 𝟓 

 

Figure 10. Error Convergence of the Proposed Controller and SOSM Controller with 𝜷𝟏 = 𝟏𝟎 and 𝜷𝟏 =

𝟐. 𝟓 

 

Figure 11. IAE of Sliding Variable of the Proposed Controller and SOSM Controller with 𝜷𝟏 = 𝟏𝟎 and 

𝜷𝟏 = 𝟐. 𝟓 
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Figure 12. ITAE of Sliding Variable of the Proposed Controller and SOSM Controller with 𝜷𝟏 = 𝟏𝟎 and 

𝜷𝟏 = 𝟐. 𝟓 

 

Figure 13. Responses of the Proposed Controller with Various Initial Conditions 

Table 2. Performance comparison 

Parameter Proposed 

Controller 

SOSM 

with 

β1=10 

SOSM 

with 

β1=2.5 

Rise Time 0.028s 0.238s 0.475s 

Settling 

Time 

 

0.033s 

 

0.285s 

 

0.565s 

Peak Time 0.039s 0.347s 0.693s 

Peak 

Overshoot 

 

0 

 

0 

 

0 

IAE 0.004 0.035 0.069 
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ITAE 0.012 0.104 0.208 

 

The suggested controller and the conventional second-order sliding mode controller with 𝛽1=10 and 𝛽1=2.5 had 

rising times of 0.028s, 0.238s, and 0.475s, and settling times of 0.033s, 0.285s, and 0.565s, respectively. The 

suggested controller-operated system has a response time to peak value of 0.039s, which is significantly faster 

than the 0.347s and 0.693s achieved by a typical second-order sliding mode controller with gains of 𝛽1=10 and 

𝛽1=2.5, respectively. Overshoot and steady-state error both cancel out to zero in every scenario. Figure 7 depicts 

the sliding variables. Figure 9 shows how the suggested controller, compared to the conventional second-order 

sliding mode controller, may deliver a faster response due to the higher control effort in the initial phase.  Figure 

10 demonstrates that using the suggested technique improves the error convergence rate. Figures 11 and 12 show 

integral absolute error (IAE) and integral time-weighted absolute error (ITAE) curves, respectively, which show 

that the suggested controller has a quicker response time. The conventional second-order sliding mode controller 

with 𝛽1 =2.5, the conventional second-order sliding mode controller with 𝛽1 =10, the IAE indices (0.069, 0.035, 

and 0.004), and the ITAE indices (0.218, 0.104, and 0.012) for the proposed controller, respectively, confirm the 

quicker response of the system with the proposed controller. Figure 13 displays the suggested system's reactions 

for a range of starting points. The suggested technique is superior to the usual method in both speed and robustness, 

since its effectiveness is unaffected by changes to the beginning circumstances. The performance metrics for the 

responses are summarised in Table 2. 

Simulation findings show that the suggested controller is more responsive than a standard second order sliding 

mode controller. Dynamic performance is enhanced without compromising on stability, durability, or tracking 

precision. 

4. Conclusion 

In this research, an unique fuzzy logic controller for sliding mode control at the second order is developed. It is 

demonstrated that a fuzzy logic control, by rotating the sliding line in the phase plane, can enhance the controller's 

dynamic responsiveness. The proposed strategy is demonstrated using simulation results for a dynamically 

uncertain system. The suggested controller is compared to a conventional sliding mode controller of the second 

order with a fixed sliding surface using a nonlinear system. Based on simulation results, it can be concluded that 

the suggested controller improves upon the dynamics and reduces the time required to achieve the mode by a 

significant margin compared to a second order sliding mode controller with a fixed sliding surface. In addition, 

the suggested control mechanism is simple, requires less computing time and easy to implement. 
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