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Abstract:- In this communication we are presenting the codes that deal with location of the solid 

restricted bursts errors occurring in byte oriented communication channels/ memory systems during 

the transmission of information. The code-length for such codes is assumed to be subdivided into 

bytes of unequal lengths. The necessary and sufficient conditions for the codes those are capable to 

locate the solid burst errors lying in a single byte. We also provide a construction technique of the 

solid restricted bi-byte correcting non-binary linear optimal codes. 

Keywords: bi-byte correcting codes, optimal codes, Syndromes, Byte oriented channels, Parity check 
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1. Introduction 
The main purpose of coding theory is construction of codes for error-free transmission of 

information by detecting and correcting errors that occur during data transmission. The nature of 

error and the communication channel are known to be related. Study of solid burst errors is an 

important area in coding theory. Schillinger [3] developed codes that correct solid burst errors in 

binary system. Solid burst errors can be found in various storage systems (viz. super computer 

storage system, semiconductor memory data). The primary goal of the early development of solid 

burst error correcting codes was to detect and correct solid bursts in binary memory systems. We 

present in this paper the concept of solid restricted burst (SRB Error), which is a modification of 

Schillinger's [3] definition of a solid burst. The coding theorists are supposed to provide the codes 

that are helpful to perform the error free transmission of the information through a communication 

channel. Initially, communication channels used the codes having the capability to detect and correct 

the errors occurring when the information is transmitted to one place to another place. The nature of  
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occurrence of the errors may vary from a channel to another channel. Errors can be classified into a 

number of different categories, including random error, burst error, solid burst error, repeated burst 

error and key error. Abramson [1] obtained the codes that deal with the errors that are not in a 

random occurrence in other words these errors occur in clusters. At first, Fire [2] gave the concept of 

a particular type of clustered errors known as “burst errors”. According to him “A burst of length b is  

considered as an n-tuple whose only non-zero components are confined to some b consecutive    

positions, the first and the last of which is non-zero”. The vectors 0012100, 1010000, 0111000, 

000201are examples of bursts of length 3 over GF(3). If all the components of a burst of length b are 

non- zero then this burst called a “solid burst”. Initially, only those codes were developed that were 

capable to detect and correct the different types of errors. The error detecting codes use short number 

of parity check digits, but provide the information about the presence of an error and no other 

information. The error correcting codes help to remove the errors, but these codes have large number 

of parity check digits which effects the transmission rate of a channel where these are being used. 

Wolf and Elspas presented a novel idea called "location of errors" in order to prevent these issues. 

They were able to locate the error-causing portion of the code length by using the codes they had 

obtained. These codes have a parity check digit count that falls between the number of parity check 

digits with codes that can detect and correct these errors, respectively. In other words location is a 

midway of detection and correction. The study of the codes dealing with the solid bust errors was 

started by Schillinger [3]. Shiva and Sheng worked on multiple solid bursts. Subsequently, a class of 

solid burst error-correcting codes derived from a reversible code was obtained by Das. He gave the 

codes capable of correcting the solid bursts lying in sub-blocks. Etzion initiated to work on the byte 

oriented channels and obtained the codes that were capable of correct the solid bursts occurring in a 

byte. Chen [6] developed byte oriented error correcting codes. Recently, Tyagi and Lata [10] gave 

the perfect binary codes based bytes. Tyagi and Lata [11] introduced the restricted burst errors and in 

[11] they obtained the byte oriented restricted burst error correcting non-binary optimal codes. 

According to them a restricted burst is defined as: 

Definition-1 A restricted burst of length b is a vector of length n whose all non-zero components are 

confined to some b consecutive positions, the first and last of which is nonzero with the restriction 

that all the non-zero consecutive positions contain same field element. 

As SRB errors correcting non-binary linear codes for byte-oriented communication channels are of 

interest to us. The following defines a SRB error of length b: 

 

Definition-2 A solid restricted burst of length b is defined as a n-tuple vector with non-zero entries 

in some b consecutive positions and zero elsewhere with the restriction that all the non-zero 

consecutive positions contain same field element. 

For example: For q=3, n=4 and b=3, solid restricted burst of length 3 or less are 1110, 2220, 0111, 

0222, 1100, 2200, 0110, 0220, 0011, 0022, 1000, 2000,0100, 0200, 0010, 0020, 0001, 0002. 
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Reciting that communication channel behaves differently in the presence of different types of errors. 

Due to having comparatively less parity check digits or in other words have good code rate, the 

codes capable of detect, correct or locate the solid restricted burst errors will help to enhance the 

transmission speed of a channel. In this paper, we assume that the whole code length n is subdivided 

into f number of bytes of different size. Here we obtain the codes that have capability to locate the 

solid restricted burst errors which are occurring in a single byte. We also provide a construction 

technique of the solid restricted bi-byte correcting non-binary linear optimal codes. This paper is 

divided as follows: Present paper, introduction is given in Section 1. The necessary and sufficient 

bounds for the existence of SRB error locating codes are provided in Section 2. The solid restricted 

bi-byte correcting non-binary linear optimal codes construction method is presented in Section 3. 

 

2. Location of solid restricted burst errors in the bytes 

In this part of the paper, we derive two conditions in the form of inequalities for the codes that have 

capability to locate the solid restricted burst (SRB) errors occurred in one the f bytes of different 

lengths. We will represent the SRB error locating codes by SRBEL-codes satisfy the following 

conditions: 
(i) The syndromes due to the SRB errors in a single byte must be different from zero. 

(ii) The syndromes due to the SRB errors in a single byte must be different from the syndromes due 

      to the SRB errors in any other bytes. 

To verify these codes, we have also provided an example. 

Theorem 1: An (  ∑     
 
   ) SRBEL-code that locates the SRB errors of length b or less 

occurring in a single byte satisfies the following condition  

n − k ≥ logq {1 + f b(q − 1)} 

Proof: The enumeration of all SRB errors that have to be located in a single byte will give the right 

hand side of the required result.  

Let L be a set that contains all of the vectors that contain all of the restricted non-zero entries in at 

least b consecutive positions. We assert that no more than two SRB can be found in the same coset. 

We will use the fact that a code vector is the sum or difference of two bursts in a coset to support 

this claim. Let x1 and x2 be two elements of L lying in the same coset. The sum of x1 and x2 i.e. x1 + 

x2 or their difference 

i.e.  x1 - x2 is a SRB errors. Since x1 and x2 are the same coset therefore x1 + x2 or x1 - x2 is a code 

vector. This is a contradiction. Hence our assumption that x1 and x2 are in the same coset, was 

wrong. This proves our claim.  

The number of elements in the set L is given by b(q − 1). 

Given that the entire code length is divided into f different-length bytes. Therefore the total count of 

the locatable SRB errors is given as: 

                                                                fb(q − 1)                                                                           ...(1) 
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We will get the required result by putting the expression (1) less than q
n−k

.  

q
n−k

 ≥ f b(q − 1). 

The necessary condition for the existence of SRBEL codes is provided by the following theorem. 

Theorem 2: The existence of an (  ∑   
 
     ) SRBEL-code is ensured if the following inequality 

holds 

               {  ∑∑{             }

 

   

   

   

} 

       

Proof: Constructing a parity check matrix H with dimension         is sufficient to derive this 

theorem. We employ the same methodology as [12] in order to prove the Varshamov Gilbert-Sacks 

bound. Let us begin by creating the matrix using n-k tuples. Assume that we have selected all of the 

columns in the first f-1 bytes as well as the first j-1 columns in the f
th

. If the conditions (i) - (ii) are 

met, the last byte   's j
th 

column hj cannot be expressed as a linear combination of the columns hj-1,hj-

2 , . . ., hj-(b-1), in accordance with the condition (i). Stated differently, hj should not equal the linear 

combination of b-1 or fewer columns immediately before it i.e 

                                                                                                                       ... (2) 

In the expression (2), the coefficients σi  are similar as the non-zero entry in a solid restricted burst of 

length b−1 or less. Therefore the total number of linear combinations is given by 

                                                                                (b − 1)(q − 1)                                                                …(3) 

Now according to the condition (ii), the column hj should not be written in the form of linear sum of 

immediately preceding b − 1 columns together with the linear sum of any b columns of any other of j 

− 1 bytes i.e. 

                                   + δ1h1 + δ2h2 + ··· + δbhb.            … (4) 

The number of σi is same as in the expression (2). That is (b − 1)(q − 1). The enumeration of the δ 

coefficients is equivalent to find the solid restricted burst error in a vector of length βs. Therefore the 

total number of linear sums due to the expression (4) is given by 

                                                                                                … (5) 

Since there are j −1 such bytes, therefore due to the condition (ii) the total number of linear sums is 

given by                                                                          … (6) 

2944 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 45 No. 01 (2024) 

 

Therefore hj should not be equal to the linear sums given by expression (3) plus linear sums given by 

expression (6) i.e. 

                                                                                                  … (7) 

Since there are atmost q
n−k 

cosets, there we have 

 

The required result can be obtained by replacing j by f. We conclude this section by giving an 

example of a code that is capable of locating SRB errors occurring in a single burst. 

                                                                                                                

Example 2.1: For β1 = 4, β2 = 5, β3 = 6 and β4 = 5, b = 2, consider a (20, 15) linear code over 

GF(3) with parity check matrix 

  

[
 
 
 
 
                                    
                                    
       
       
       

         
         
         

           
           
           

         
         
         ]

 
 
 
 

 

 

The error patterns and syndromes for the parity check matrix given above can be obtained with the 

help of MS-EXCEL. It can be seen that all the syndrome corresponding to all solid restricted burst 

errors are non-zero and distinct in different bytes. This assures that this code locates all the solid 

restricted burst errors occurring in a single byte. 

1. Construction of Solid Restricted bi-Byte Correcting Non-Binary Linear Optimal Codes 

In this section, firstly we give a construction method of an (  ∑   
 
     )  byte oriented linear 

optimal code that can correct solid restricted bursts of length bi or less within the bytes of size βi, i = 

1,2,3,...,m, over GF(q), q is prime and q ≥ 3. The parity check matrix for the requisite code has been 

constructed by using the construction method given by Etzion [7] (p. 2554).  

Let H = [H1 H2 H3 ... Hm] be the parity check matrix for an (  ∑   
 
     ) code  C that corrects all 

solid restricted bursts of length bi or less within the bytes of size βi, i = 1,2,3,...,m, over GF(q), q is 

prime and q ≥ 3, where Hi = [hi1, hi2, hi3, … , hiβi] denotes the sub matrix of parity check matrix H 

corresponding to i-th byte of size βi, 1 ≤ i ≤ m. 

Let S(Hi) denote the set of distinct non-zero syndromes corresponding to all solid restricted bursts of  
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length bi or less within the bytes of size βi for i = 1,2,3,...,m and S(H) denote the union of sets of 

distinct non-zero syndromes corresponding to all solid restricted bursts of length bi or less within the 

bytes of size βi for i = 1,2,3,...,m. In other words we can say that,                        ⋃      
 
    

Clearly, each S(Hi) is the union of the sets of the sum of bi or less adjacent columns of Hi by 

multiplying the columns of Hi,i = 1,2,3,...,m with each non-zero field element viz. 1,2,3,...,(q − 1) ∈ 

GF(q). In other words, 

S(Hi) = {hj + hj+1 + hj+2 + ··· + hj+bi−1 : 1 ≤ j ≤ βi − (bi − 1)} ∪  {hj + hj+1 + hj+2 + ··· + hj+bi−2 : 1 ≤ 

j ≤ βi − (bi − 2)} ∪  ... ∪  {hj + hj+1 : 1 ≤ j ≤ βi − 1} ∪  {hj : 1 ≤ j ≤ βi}∪  {2hj + 2hj+1 + 2hj+2 + ··· +  

 

size βi, therefore each subset of S(Hi) must be distinct for i = 1,2,3,...,m i.e 

{hj + hj+1 + hj+2 + ··· + hj+bi−1 : 1 ≤ j ≤ βi − (bi − 1)} ∩ {hj + hj+1 + hj+2 + ··· + hj+bi−2 : 1 ≤ j ≤ βi − 

(bi − 2)} ∩ …. ∩ {hj + hj+1 : 1 ≤ j ≤ βi − 1} ∩ {hj : 1 ≤ j ≤ βi} ∩ {2hj + 2hj+1 + 2hj+2 + ··· + 2hj+bi−1 : 1 ≤ 

j ≤ βi − (bi − 1)} ∩ {2hj + 2hj+1 + 2hj+2 + ··· + 2hj+bi−2 : 1 ≤ j ≤ βi − (bi − 2)} ∩ …∩ {2hj + 2hj+1 : 1 ≤ j ≤ 

βi − 1} ∩ {2hj : 1 ≤ j ≤ βi} ∩ …∩ {(q − 1)hj + (q − 1)hj+1 + ··· + (q − 1)hj+bi−1 : 1 ≤ j ≤ βi − (bi − 1)} ∩ 

{(q − 1)hj + (q − 1)hj+1 + ··· + (q − 1)hj+bi−2 : 1 ≤ j ≤ βi − (bi − 2)} ∩ … ∩ {(q − 1)hj + (q − 1)hj+1 : 1 ≤ 

j ≤ βi − 1} ∩ {(q − 1)hj : 1 ≤ j ≤ βi} = Φ                                                                                      … (3.2) 

The non-binary code C is a solid restricted bi-byte correcting linear optimal code if every column 

vector of H of length r belongs to      ⋃      
 
    and all the column vectors of H are distinct. 

We now illustrate the construction of codes using the technique discussed above. In the following, 

several examples of solid restricted bi-byte correcting non-binary linear optimal codes have been 

provided. 

Example 3.1: For β1 = 4, β2 = 9, β3 = 5 and b1 = 3, b2 = 2, b3 = 1, consider a (18, 15) linear code over 

GF (5) with parity check matrix 

                                    [
                                 
                                 
                                 

]                                     … (3.3) 

This matrix has been obtained by the construction method given in the equations (3.1, 3.2) by taking 

β1 = 4, β2 = 9, β3 = 5 and b1 = 3, b2 = 2, b3 = 1 over GF (5). It can be easily verified from error-vector 

and syndrome table (Table 1 and 2) that the syndromes of different solid restricted bursts of length bi 

or less with in the bytes of size βi for i = 1, 2, 3 are distinct, showing thereby that the linear code that 

is the null space of the matrix (3.3), corrects all solid restricted bursts of length bi or less within the 

bytes of size βi, for i = 1, 2, 3 over GF (5). 
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Table-1: Error-Vector and Syndrome 

Error-Vectors Syndromes Error-Vectors Syndromes 

1110 000000000 00000 231 0000 000011000 00000 233 

0111 000000000 00000 111 0000 000001100 00000 243 

1100 000000000 00000 221 0000 000000110 00000 241 

0110 000000000 00000 110 0000 000000011 00000 232 

0011 000000000 00000 011 0000 100000000 00000 102 

1000 000000000 00000 121 0000 010000000 00000 012 

0100 000000000 00000 100 0000 001000000 00000 120 

0010 000000000 00000 010 0000 000100000 00000 104 

0001 000000000 00000 002 0000 000010000 00000 130 

2220 000000000 00000 412 0000 000001000 00000 103 

0222 000000000 00000 222 0000 000000100 00000 140 

2200 000000000 00000 442 0000 000000010 00000 101 

0220 000000000 00000 440 0000 000000001 00000 131 

0022 000000000 00000 044 0000 220000000 00000 223 

2000 000000000 00000 242 0000 022000000 00000 214 

0200 000000000 00000 200 0000 002200000 00000 443 

0020 000000000 00000 020 0000 000220000 00000 413 

0002 000000000 00000 002 0000 000022000 00000 411 

3330 000000000 00000 143 0000 000002200 00000 431 

0333 000000000 00000 333 0000 000000220 00000 432 

3300 000000000 00000 113 0000 000000022 00000 414 

0330 000000000 00000 330 0000 200000000 00000 204 

0033 000000000 00000 033 0000 020000000 00000 024 

3000 000000000 00000 313 0000 002000000 00000 240 

0300 000000000 00000 300 0000 000200000 00000 203 

0030 000000000 00000 030 0000 000020000 00000 210 

0003 000000000 00000 003 0000 000002000 00000 201 

4440 000000000 00000 324 0000 000000200 00000 230 

0444 000000000 00000 444 0000 000000020 00000 202 

4400 000000000 00000 334 0000 000000002 00000 212 

0440 000000000 00000 440 0000 330000000 00000 332 

0044 000000000 00000 044 0000 033000000 00000 341 

4000 000000000 00000 434 0000 003300000 00000 112 

0400 000000000 00000 400 0000 000330000 00000 142 

0040 000000000 00000 040 0000 000033000 00000 144 

0004 000000000 00000 004 0000 000003300 00000 124 

0000 110000000 00000 114 0000 000000330 00000 123 

0000 011000000 00000 132 0000 000000033 00000 141 

0000 001100000 00000 224 0000 300000000 00000 301 
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Table-2 

Error-Vectors Syndromes Error-Vectors Syndromes 

0000 000110000 00000 234 0000 030000000 00000 031 

0000 003000000 00000 310 0000 000000040 00000 404 

0000 000300000 00000 302 0000 000000004 00000 424 

0000 000030000 00000 340 0000 000000000 10000 122 

0000 000003000 00000 304 0000 000000000 01000 133 

0000 000000300 00000 320 0000 000000000 00100 134 

0000 000000030 00000 303 0000 000000000 00010 013 

0000 000000003 00000 343 0000 000000000 00001 014 

0000 440000000 00000 441 0000 000000000 20000 244 

0000 044000000 00000 423 0000 000000000 02000 211 

0000 004400000 00000 331 0000 000000000 00200 213 

0000 000440000 00000 321 0000 000000000 00020 021 

0000 000044000 00000 322 0000 000000000 00002 023 

0000 000004400 00000 312 0000 000000000 30000 311 

0000 000000440 00000 314 0000 000000000 03000 344 

0000 000000044 00000 323 0000 000000000 00300 342 

0000 400000000 00000 403 0000 000000000 00030 034 

0000 040000000 00000 043 0000 000000000 00003 032 

0000 004000000 00000 430 0000 000000000 40000 433 

0000 000400000 00000 401 0000 000000000 04000 422 

0000 000040000 00000 420 0000 000000000 00400 421 

0000 000004000 00000 402 0000 000000000 00040 042 

0000 000000400 00000 410 0000 000000000 00004 041 

 

Example 3.2: For β1 = β2 = 3, β3 = 2 and b1 = 3, b2 = 2, b3 = 1, consider a (8, 5) linear code over GF 

(3) with parity check matrix 

                                  [
             
             
             

]                                                                            … (3.4)

 This matrix has been obtained by the construction method given in the equations (3.1, 3.2) by taking 

β1 = β2 = 3, β3 = 2 and b1 = 3, b2 = 2, b3 = 1 over GF(3). It can be verified from error-vector and 

syndrome table (Table 3) that the syndromes of different solid restricted bursts of length bi or less 

with in the bytes of size βi for i = 1, 2, 3 are distinct, showing thereby that the linear code that is the 

null space of the matrix (3.4), corrects all solid restricted bursts of length bi or less within the bytes 

of size βi for i = 1, 2, 3 over GF (3). 
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Table-3 Error-Vector and Syndrome 

Error-Vectors Syndromes Error-Vectors Syndromes 

111 000 00 011 000 011 00 102 

110 000 00 220 000 100 00 122 

011 000 00 200 000 010 00 012 

100 000 00 111 000 001 00 120 

010 000 00 112 000 220 00 202 

001 000 00 121 000 022 00 201 

222 000 00 022 000 200 00 211 

220 000 00 110 000 020 00 021 

022 000 00 100 000 002 00 210 

200 000 00 222 000 000 10 010 

020 000 00 221 000 000 01 001 

002 000 00 212 000 000 20 020 

000 110 00 101 000 000 02 002 

 

Example 3.3: For β1 = β2 = β3 = 3 and b1 = 1, b2 = b3 = 2, consider a (9, 6) linear code over GF (3) 

with parity check matrix 

                                    [
               
               
               

]                                                                      … (3.5) 

This matrix has been obtained by the construction method given in the equations (3.1, 3.2) by taking 

β1 = β2 = β3 = 3 and b1 = 1, b2 = b3 = 2 over GF (3). It can be easily verified from error-vector and 

syndrome table that the syndromes of different solid restricted bursts of length bi or less with in the 

bytes of size βi for i = 1, 2, 3 are distinct, showing thereby that the linear code that is the null space of 

the matrix (3.5), corrects all solid restricted bursts of length bi or less within the bytes of size βi for i 

= 1, 2, 3 over GF (3). 

2. Construction 

As we know that the byte correcting optimal codes can enhance the rate of transmission of data and 

also improve the efficiency of the byte-oriented communication systems. The contribution of this 

paper is to find out the possibility of existence of the non-binary linear codes that can correct solid 

restricted burst of length b1 or less in the first byte of size β1, solid restricted burst of length b2 or less 

in the second byte of size β2 and so on and solid restricted burst of length bi or less in the i-th byte of 

size βi. We have been able to obtain some codes. This justifies the existence of such solid restricted 

bi-byte correcting non-binary linear optimal code. 
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