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Abstract- 

A proliferation of data generated by the Internet of Things (IoT) and Big Data Analytics (BDA) has 

revolutionized the decision-making process. In distributed IoT networks, real-time processing encounters 

obstacles. This research investigates the application of deep learning to edge-cloud computing to optimize 

BDA. The IoT Botnet Dataset, which comprises attributes of internet transactions, is employed. The 

procedure entails a number of stages, including as cleaning the data, use Term Frequency-Inverse Document 

Frequency (TF-IDF) Vectorization to extract features, and using Principal Component Analysis (PCA) to 

identify the most relevant features. A hybrid model is proposed in this research that combines Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and Deep Autoencoders for data analysis. 

The hybrid model trained well, with a tendency toward reducing training and validation losses, which settled 

at 0.0063 and 1.1182e-04, respectively, after 100 iterations. At the Initial Threshold, the model demonstrated 

elevated precision (0.97) and recall (0.954), accompanied by a minimal false negative rate (FN) of 0.13% and 

a false positive rate (FP) of 9%. At the Final Threshold, recall improved to 0.996, reducing the FP rate to 6% 

and increasing the FN to 2.59%, while precision decreased marginally to 0.943. The hybrid model exhibited 

enhanced precision (0.943) and recall (0.996) when compared to the "Auto Encoder" model. However, it did 

demonstrate a marginally higher false positive (FP) rate of 6% and false negative (2.59%). 

Keywords: Internet of Things, Big Data Analytics, Deep Learning, Cloud Computing, Edge Computing  

1. Introduction 

Kevin Ashton coined the term Internet of Things (IoT) [1] in 1999 for supply chain management [2]. Smarter 

items can communicate with one another and the Internet[3]. With their unique digital identifiers, all these 

entities (things) on the Internet of Things may be remotely organized, managed, and controlled, expanding their 

reach far beyond their physical locations[4]. As the number of connected devices and smart items proliferates, 

the IoT continues to expand the spectrum of creative, inventive, and intelligent applications available to us[5]. 

These applications include smart healthcare[6], smart cities[7], smart agriculture[8], crowd sensing[9,10], 

crowdsourcing[11], etc., as shown in Figure 1[12].The idea behind edge computing is to bring processing closer 

to the network edge and data sources, which could solve the problems[13]. IoT connects objects to the Internet 

and other devices, allowing them to collect environmental data. Data analysis is crucial for implementing smart 

systems including smart cities, healthcare, transportation, and energy, which IoT enables[14]. With edge 

computing, computation is moved from the cloud or a centralized system to the periphery of the network, close 

to the data sources, where it can significantly reduce both network traffic and latency. While edge computing 

has been widely used for mobile task offloading[15] and content distribution[16], its implementation for data 

analytics has been more restricted[17,18]. Figure 1 illustrates the difference between Cloud and Edge 

Computing. 
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Figure 1. Cloud and Edge Computing[19] 

Edge computing reduces latency and high-speed connections by processing data locally. It's great for real-time 

systems like IoT and autonomous cars but lacks scalability and redundancy. Cloud computing transmits data 

from remote centers, increasing latency. Its scalability, availability, and storage make it ideal for data analytics 

and AI training. Edge computing is cheaper to process, but cloud computing requires constant upkeep. Specific 

use cases and requirements determine the choice[20].Edge computing overcomes problems including poor 

reaction times, high bandwidth prices, excessive energy use, and inadequate security, spawning many new and 

fascinating fields of study and work[21].  

Computing technology at the network's edge is called edge computing. Edge resources include data sources, 

cloud data centers, computing power, and communication connectivity. Edge processing protects users' privacy 

more than cloud uploading[22]. Edge computing is motivated by the demand for better computing methods as 

technology advances, yet present methods fail[23]. The IoT-endpoint edge computing architecture is shown in 

Figure 2. 

 

Figure 2. Edge Computing Architecture with IoT endpoints[24] 

Deep Learning's capacity to analyzelabeled and unlabeled data, which are abundant in Big Data, can help handle 

a range of data. In recent years, Deep Learning has become increasingly relevant for Big Data analytics[25]. 

Deep Learning's capacity to build hierarchical representations for both labeled and unlabeled, structured, and 

unstructured input data is very important [26]. Higher-order representations can be learned from lower-level 

inputs using a hierarchical representation. Transcription of spoken words into text, object recognition from 

photographs, and motion analysis from videos are all examples [27]. Many real-world sources provide massive 
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amounts of labeled and unlabeled data in real-time[28]. The paper tackles IoT technological issues, particularly 

Big Data Analytics for Edge-Cloud Computing architecture. It finds data processing and feature selection 

inefficiencies that can hinder network attack and anomaly detection. The study uses deep learning to uncover 

patterns and representations from a cleaned IoT Botnet Dataset to improve this framework. The model is going 

to be thoroughly tested for network attack and anomaly detection and categorization. The research purposes 

encompass the development of a framework for optimizing IoT-enabled big data analytics using deep learning, 

the investigation of deep learning-driven security mechanisms for secure and real-time data transmission and 

processing in a distributed edge-cloud architect, and the reduction of latency and energy consumption in hybrid 

cloud and edge computing configurations. 

2. Literature of Review 

A review of the literature reveals that many authors have attempted this method and published their results. 

Almutairi et al., (2022)[29]illustrate that themulti-user, multi-cloud edge computing with delay-optimal 

offloading of tasks for several users. Minimizing Unmanned Aerial Vehicles (UAVs)[30] overall service time is 

the goal of this optimization model, which makes use of Integer Linear Programming (ILP)[31] methods. The 

simulation results demonstrate that the proposed approach is effective over a large fleet of UAVs, decreasing 

service time by 33.5% for edge execution policies and 55.0% for cloud execution policies. 

Hussein et al., (2022)[32] offered an offloading method for IoT-based processes in a powerful MEC setting. An 

optimization problem that considers task dependency, communication costs, workflow restrictions, device 

energy consumption, and the heterogeneous properties of the edge environment makes up the suggested task-

based offloading technique. The experimental findings demonstrate that the suggested algorithm and offloading 

technique significantly reduce response times for IoT-based processes while preserving the least amount of 

energy consumption for mobile devices.  

Ahmed et al., (2022)[33] provide a segmentation-based method for multiple-item detection using IoTs-enabled 

smart surveillance. The focus is on enhancing surveillance applications in smart cities through the integration of 

collaborative drones, deep learning, and IoTs. Based on experimental evidence, researchers know that data 

augmentation improves the effectiveness of the method by yielding accurate results in multiple object 

segmentation. The created method achieves an accuracy of 93% with ResNet-50 (Residual Neural Network) and 

92% with VGG-16, while MobileNet achieved 95% accuracy. 

Babar et al., (2022)[34]designed a framework for edge-cloud computing that uses machine learning to analyze 

large amounts of data gathered from the IoT. The proposed framework involves the development of an edge 

intelligence module that effectively processes and stores large-scale data at the periphery of the network, 

incorporating cloud technologies.The efficacy of the proposed data design is evaluated by the implementation of 

a simulation utilizing an authentic dataset in Apache Spark. 

Apostol et al., (2021)[35]suggest a method for detecting anomalies in IoT botnet activity by employing 

unsupervised deep learning methods. The study conducted an empirical evaluation of the suggested approach, 

testing its ability to detect threats on both balanced and imbalanced datasets. The proposed strategy has been 

shown to obtain high accuracy (99.7%), high precision (0.99), and high recall (99%) in experiments. 

Lahoura et al., (2021)[36] suggested a system for leveraging the cloud-based machine learning classifier 

Extreme Learning Machine (ELM) in the diagnosis of breast cancer. The healthcare sector can benefit from 

cloud computing since it enables constant access to the system whenever it is needed. The trial outcomes show 

an accuracy of 0.9868, precision of 0.9054, recall of 0.9130, and F1-score of 0.8129. 

Gong et al., (2021)[37] illustrate thata qualitative case study was conducted at the Dutch Tax and Customs 

Administration to investigate enterprise architecture roles and capabilities for the implementation of big data 

analytics. The results show that large businesses that can effectively capture the competencies are more likely to 

employ EA to overcome the unique problems of BDA adoption and implementation. 

Khayyat et al., (2020)[38] provide an innovative deep learning-based computational offloading algorithm that 

is adapted to distributed, edge-cloud computing infrastructures based on vehicles. A concept of computational 

offloading as well as resource allocation is incorporated to make sure that shared resources are utilized 

effectively by several vehicles, hence decreasing the total time and cost of energy of running the system. Results 

from computer simulations demonstrate that the suggested algorithm is capable of fast convergence and much 

lower system-wide consumption than benchmark solutions. 

Tuli et al., (2020)[39]introduce a real-time scheduler based on A3C to facilitate distributed, concurrent learning 

in stochastic Edge-Cloud settings. To make effective scheduling decisions, authors employ the R2N2 
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architecture, which allows be recordingof a wide variety of host and task information in addition to temporal 

patterns. The suggested model is flexible in that it may adjust its hyper-parameters to meet the needs of a given 

application. Through sensitivity analysis, the authors explain the rationale behind the hyper-parameter 

selections.Extensive iFogSim and CloudSim simulation trials on the real-world Bitbrain dataset showed that the 

method reduced energy consumption by 14.4%, response time by 7.74%, SLA violations by 31.9%, and cost by 

4.64%. 

Castellanos et al., (2020) [40]Using a design process method built on the Attribute-Driven Design (ADD) 

technique and the Architecture trade analysis method (ATAM), demonstrate how to specify, implement, and 

measure performance metrics in BDA systems supported by domain-specific modeling and DevOps. These 

findings show that ACCORDANT is better suited to applications that require several iterations or to follow-on 

apps where reusing architectural components helps speed up development. 

Jameel et al., (2019)[41]offer an investigation of the confidentiality of SWIPT-based cooperative NOMA 

systems and optimization based on deep learning. When a nearby user acts as a cooperative node when an 

eavesdropper is present, researchers obtain an analytical equation for the intercept probability. The findings 

prove the efficiency and effectiveness of deep learning optimization compared to more traditional approach 

algorithms that search iteratively. 

Femminella et al., (2016)[42]examine the efficiency of a Hadoop benchmark suite in a testbed simulating an 

edge computing deployment, using both real and virtual infrastructure. The results of the experiments show that 

it is still practical to run Hadoop in a small cloud, despite the expected performance reduction in virtualized 

settings compared to the native one. 

3. Research Methodology 

The concept of designed architecture is examined regarding different techniques of research. 

3.1 Dataset Description 

The "IoT Botnet Dataset" is a trove of transactional data from the internet, with numerous attributes describing 

each one. The provided data encompasses various data elements, including unique row identifiers (pkSeqID), 

the start and end times of each record (Stime and Ltime), flow state flags (Flgs and flgs_number), textual and 

numerical representations of transaction protocols (Proto and proto_number), source and destination IP 

addresses and port numbers (Saddr, Sport, Daddr, Dport), as well as details regarding packet and byte counts 

(Pkts, Bytes, Spkts, Dpkts, Sbytes, Dbytes), transaction states and their numerical representations (State and 

state_number), record duration metrics (Dur, Mean, Stddev, Sum, Min, Max), and various other statistics 

pertaining to packets and bytes per source and destination IP, per protocol, and per port.  

Features of the dataset include counts of incoming connections by source and destination IP address, as well as 

average rates per protocol and IP address. Finally, it offers categorical information about the traffic's category 

and subcategory as well as a class label (Attack) indicating whether the traffic is regarded normal (0) or an 

attack (1). It is likely that Deep Learning models for identifying intrusions into IoT botnets are trained and 

evaluated using this dataset.  

3.2 Technique Used 

The following are the important techniques used in the proposed methodology: 

Term Frequency-Inverse Document Frequency (TF-IDF) Vectorization 

TF-IDF is designed to assign weight to terms (words) within pre-processed documents [43]. In order to assign 

relative weight to individual words, this method takes into account not only how often a word appears in the 

current document, but also how often it appears in other publications. The TF and IDF values for each document 

are to be determined using the TF-IDF algorithm. Equation (1) [44] is utilized so that the weight of each phrase t 

in the document d may be computed. 

𝑊𝑑𝑡 = 𝑇𝐹𝑑𝑡 ∗ 𝐼𝐷𝐹𝑡                                                    (1) 

In the context of document retrieval, the weight of a document 𝒅 with respect to a specific word 𝒕 can be 

denoted as 𝑾. Additionally, 𝒕𝒇 represents the count of words being searched for within a document [45]. The 

TF-IDF vectorized features retrieved from the IoT Botnet Dataset are shown in Table 1. 
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Table 1. Feature Extraction 

Feature  Description 

Sport Source port number 

Dport Destination port number 

Saddr Source IP address 

Daddr Destination IP address 

Bytes Total number of bytes in transaction 

Spkts Source-to-destination packet count 

Pkts Total count of packets in transaction 

Dpkts Destination-to-source packet count 

Sbytes Source-to-destination byte count 

Dbytes Destination-to-source byte count 

Rate Total packets per second in transaction 

Srate Source-to-destination packets per second 

Drate Destination-to-source packets per second 

TnP_PSrcIP Total Number of packets per source IP 

TnP_PDstIP Total Number of packets per Destination IP 

TnBPSrcIP Total Number of bytes per source IP 

TnBPDstIP Total Number of bytes per Destination IP 

Category Traffic category 

Subcategory Traffic subcategory 

Attack Class label: 0 for Normal traffic, 1 for Attack Traffic 

3.2.1 Principal Component Analysis (PCA) 

PCA is a multivariate technique for analyzing a data table in which observations are characterized by many 

quantitative dependent variables that are connected among themselves.The data is extracted from the table and 

represented as a set of new orthogonal variables called principal components; these are then used to detect 

patterns of similarity between observations and variables, which are then displayed as dots on maps [46]. 

Feature sets can be refined further through the use of (PCA as a), a method that decreases the number of 

dimensions in the data without altering the essential details [47]. The following equation provides a useful 

representation of PCA: 

𝑋𝑛𝑒𝑤 = 𝑋. 𝑊                                                (2) 

Where: 

• 𝑋𝑛𝑒𝑤  is the transformed feature set. 

• 𝑋 is the original feature set. 
• 𝑊 represents the transformation matrix obtained from PCA. 

Table 2 illustrates the selected features using Principal Component Analysis. 

Table 2. Feature Selection using PCA. 

Feature Description 

Sport Source port number 

Dport Destination port number 

Pkts Total count of packets in transaction 

Spkts Source-to-destination packet count 

Dpkts Destination-to-source packet count 

Rate Total packets per second in transaction 

Attack Class label: 0 for Normal traffic, 1 for Attack Traffic 

Category Traffic category 

Subcategory Traffic subcategory 

3.2.2 Deep learning approaches  

Data representations at different levels of abstraction can be learned by computer models with deep learning 

[48]. The algorithms that make up Deep Learning systems use a multi-level, hierarchical learning technique to 

figure out how to extrapolate the most insightful possible abstract representations of the input. A deep learning 

model can be taught to distinguish between botnet and authentic data after features have been extracted and 
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selected. CNNs, RNNs, and Deep Autoencoder are only few of the deep learning models that can be utilized for 

this purpose. The deep learning model is trained by feeding it the features that have been hand-picked from the 

training data and their associated labels (botnet/legitimate). The model learns, through alterations to its internal 

parameters, how to map the features to the labels. After the model has been trained, it can be used to make 

predictions about the labels of unseen data. 

• Convolutional Neural Networks (CNNs)  

Extraction of spatial information from structured data is a strong advantage for Convolutional Neural Networks 

(CNNs), especially when dealing with images or data organised in a grid-like style [49]. CNNs excel at 

processing grid-like data, such as images or, in this case, the derived network-related metrics. Convolutional 

layers, which search the data for local patterns and gradually develop more sophisticated representations, allow 

these models to learn hierarchical features. CNNs likely help in this process by capturing detailed correlations 

within the network data, allowing the model to effectively detect and respond to anomalies or attacks. Their 

usefulness in this context is demonstrated by their ability to accurately classify or predict network-related 

outcomes through the extraction of significant characteristics from complicated datasets. 

• Recurrent Neural Networks (RNNs)  

In this research, the training data is put through a series of deep learning techniques, including CNNs, RNNs, 

and a Deep Autoencoder. RNNs are used to analyse temporal elements of IoT device network operations 

because they are trained to handle sequential data. RNNs are built to handle time-dependent data, making it 

possible for them to detect trends and associations across longer periods of time [50]. Network attacks and 

abnormalities can be detected and classified with the help of RNNs because of their ability to accurately 

simulate the time-series nature of network traffic. Using RNNs and other deep learning architectures, the system 

may learn complex patterns and representations from the data, improving its ability to recognize and respond to 

security risks in IoT networks. 

• Deep Autoencoder 

An autoencoder is a bottleneck layer in a fully linked artificial neural network. The encoder and the decoder are 

the two main components of an autoencoder. Encoders are responsible for transforming high-dimensional 

feature vectors into lower-dimensional representations at the bottleneck layer. Learning in an autoencoder is 

driven by the features provided as input and as output, therefore the input characteristics are first presented in a 

lower dimensional form by the bottleneck layer before being translated into a higher dimensional form by the 

decoder [51].  

The Deep Autoencoder is utilized in this context to acquire a condensed representation of the pre-processed data 

acquired from the IoT Botnet Dataset. The Deep Autoencoder is trained on a set of characteristics with the 

intention of discovering hidden structures and patterns in the data. After compression, this representation is 

analyzed and classified to identify network threats and anomalies. A Deep Autoencoder helps the model extract 

relevant features from the data, improving the performance and accuracy of the deep learning approach. 

3.3 Proposed Methodology 

The defined procedure encompasses six primary stages for the analysis of data derived from the IoT Botnet 

Dataset. Initially, data is gathered, typically encompassing pertinent information pertaining to IoT devices and 

their respective networks. Subsequently, the gathered data undergoes preprocessing procedures, encompassing 

error correction, data standardization, and missing value management. Subsequently, the TF-IDF vectorization 

method is employed to extract valuable features, including but not limited to IP addresses, port numbers, packet 

counts, and network metrics. Using PCA for feature selection, a subset of these characteristics is subsequently 

chosen for analysis. The chosen attributes consist of data such as the counts of packets, the types, and categories 

of attacks, as well as the source and destination ports. The dataset is subsequently partitioned into training and 

testing sets, and the performance of a deep learning model is assessed for representation learning and pattern 

recognition. The efficacy of the model in predicting or classifying network attacks or anomalies is ultimately 

evaluated through performance analysis of its outputs. The Proposed layout in Figure 3 shows the operation 

depicted in diagrammatic form.  
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3.4 Proposed Algorithm 

Here's a fully mathematical algorithm for the steps outlined: 

Step 1: Data Collection 

• Let 𝐃 be the IoT Botnet Dataset containing information related to IoT devices and their network 

activities. 

Step 2: Data Preprocessing 

• Data Cleaning 

• 𝐃𝐜𝐥𝐞𝐚𝐧 = 𝐜𝐥𝐞𝐚𝐧(𝐃) removes errors and inconsistencies from the dataset. 

• Normalization 

• 𝐃𝐧𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞 = 𝐧𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞(𝐃𝐜𝐥𝐞𝐚𝐧) scales the data. 

• Handling Missing Values: 

• 𝐃𝐟𝐢𝐧𝐚𝐥 = 𝐡𝐚𝐧𝐝𝐥𝐞_𝐦𝐢𝐬𝐬𝐢𝐧𝐠(𝐃𝐧𝐨𝐫𝐦𝐚𝐥𝐢𝐳𝐞𝐝) fills in or remove missing values. 

Step 3: Feature Extraction 

• TF-IDF Vectorization: 

Start 

IoT Botnet Dataset 

Data Preprocessing  

Data Cleaning and Normalization 

Handling Missing Values 

Feature extraction using TF-IDF 

vectorization. 

Feature Selection using PCA. 

Split data in to two parts  

Apply deep learning approaches CNN, RNN and Deep 

autoencoder.  

Result and Validation using performance analysis. 

End  

Training Set 

 
Testing Set 

 

Figure 3.Proposed Methodology 
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• 𝐗 = 𝐓𝐅 − 𝐈𝐃𝐅(𝐃𝐟𝐢𝐧𝐚𝐥) extracts features using the Term Frequency-Inverse Document Frequency 

vectorization approach. 

Step 4: Feature Selection 

• Principle Component Analysis (PCA): 

• 𝐗𝐬𝐞𝐥𝐞𝐜𝐭𝐞𝐝 = 𝐏𝐂𝐀(𝐗) selects a subset of features 

(𝐒𝐩𝐨𝐫𝐭, 𝐃𝐩𝐨𝐫𝐭, 𝐏𝐤𝐭𝐬, 𝐒𝐩𝐤𝐭𝐬, 𝐃𝐩𝐤𝐭𝐬, 𝐑𝐚𝐭𝐞, 𝐀𝐭𝐭𝐚𝐜𝐤, 𝐂𝐚𝐭𝐞𝐠𝐨𝐫𝐲, 𝐒𝐮𝐛𝐜𝐚𝐭𝐞𝐠𝐨𝐫𝐲) using PCA. 

Step 5: Data Split 

• 𝐗𝐭𝐫𝐚𝐢𝐧, 𝐗𝐭𝐞𝐬𝐭 = 𝐬𝐩𝐥𝐢𝐭(𝐗𝐬𝐞𝐥𝐞𝐜𝐭) splits the data into a training set (𝑿𝒕𝒓𝒂𝒊𝒏) and a testing set (𝐗𝐭𝐞𝐬𝐭). 

Step 6: Deep Learning 

• Let 𝐟𝐃𝐋 be the deep learning model composed of Convolutional Neural Networks (CNNs), Recurrent 

Neural Networks (RNNs), and a Deep Autoencoder. 

• Training: 

• 𝐟𝐃𝐋 = 𝐭𝐫𝐚𝐢𝐧 (𝐗𝐭𝐫𝐚𝐢𝐧) trains the model on the training data. 

Step 7: Performance Analysis 

• Testing: 

• 𝐲𝐩𝐫𝐞𝐝 = 𝐟𝐃𝐋(𝐗𝐭𝐞𝐬𝐭) predicts outcomes on the testing set. 

• Evaluation: 

• Performance metrics(𝐏𝐦𝐞𝐭𝐫𝐢𝐜𝐬) are calculated to assess the model’s performance. 

 

4. Result and Discussion 

The results obtained by a hybrid model comprising CNNs, RNNs, and Deep Autoencoder in detecting attacks 

specific to IoT botnets are detailed and discussed in this section. The study begins with an explanation of how 

the optimal network configuration and hyper-parameters were determined, and then continues with an in-depth 

analysis of the results. The research then delves into a more in-depth analysis of the model's predictions on the 

dataset that was used for validation. The result of the study includes a comparison of the study's findings to 

those of previous studies that have utilized the same or a comparable Bot-IoT dataset. 

4.1 Training the hybrid model 

The paper explains how to do Big Data Analytics in the cloud at the edge using the Internet of Things. The 

architecture relies on information gathered from the "IoT Botnet Dataset," which details internet transactions 

with a variety of properties. Internet Protocol (IP) addresses, port numbers, packet counts, and other attributes 

are all included in the collection. Data is pre-processed, features are extracted using TF-IDF vectorization, and 

final features are selected using PCA. After that, it analyzes the data using deep learning methods including 

CNNs, RNNs, and Deep Autoencoders. Using the provided loss and validation loss data, the hybrid model 

produces amazing results.  

The training and validation losses of the model consistently go down over the course of training. The model 

quickly improves its predictions after an initial loss of 0.5334 in the first epoch, reaching a remarkable low loss 

of 0.0063 by the 100th epoch. The validation loss exhibits a similar pattern, going from 0.3181 to a value as 

small as 1.1182e-04. These outcomes indicate that the hybrid model learns to efficiently capture temporal 

dependencies with the RNN, enhance the representations with the Deep Autoencoder, and extract relevant 

features from the input data with the CNN. The efficacy of this model in producing accurate and precise 

predictions seems to have been enhanced by the integration of these methods. Figure 4 depicts the distinction 

between training loss and validation loss. 
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Figure 4. Training Progress Over 100 Epochs: Loss and Validation Loss. 

 

4.2 Predictions 

Two threshold levels, Initial Threshold and Final Threshold, are presented in the table, along with associated 

performance data for the corresponding classification model. The model has an accuracy of 0.97 at the Initial 

Threshold, meaning that 97% of the positive predictions were accurate, and a recall of 0.954, suggesting that 

95.4% of the true positives were caught by the model. The 9% false positive rate (FP) signifies that 9% of the 

negative instances were erroneously categorized as positive. Conversely, the FN stands at 0.13%, signifying that 

just 0.13% of the true positives were erroneously classified as negatives. Conversely, the precision exhibits a 

marginal decline to 0.943 at the Final Threshold, while the recall demonstrates an improvement to 0.996. This 

indicates that the model is approximately increasing the percentage of accurate positive identifications. Reduced 

to a false positive rate of 6%, this indicates fewer incidents were wrongly labelled as positive. However, the 

false negative rate increases to 2.59%, indicating that a greater proportion of true positives are now being 

incorrectly labelled as false negatives. Experiment findings for both the initial and final thresholds are outlined 

in Table 3.  

Table 3. Experimental Results. 

 Precision Recall FP (%) FN (%) 

Initial Threshold 0.97 0.954 9 0.13 

Final Threshold 0.943 0.996 6 2.59 

 

Precision, recall, false positives (FP), and false negatives (FN) characteristics are graphically represented in 

Figure 5 for both the initial and final threshold values. The influence on the accuracy and efficacy of the hybrid 

model in identifying IoT botnet-specific attacks is highlighted by this visualization, which allows for a clear 

comparison of the performance metrics at different threshold levels. 
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Figure 5. Performance Metrics at Different Thresholds 

4.3 Comparative study 

The performance metrics of two distinct models are utilized to assess their standing in the comparison table. The 

"Hybrid Model," an architecture that integrates a Deep Autoencoder, CNNs, and RNNs, exhibits a remarkable 

precision rate of 94.3%, signifying its ability to accurately discern pertinent instances. Additionally, it obtains a 

noteworthy recall rate of 99.6%, which signifies its capacity to accurately detect a substantial portion of 

pertinent instances. In contrast, the aforementioned model exhibits a false negative rate (2.59%) and a 6% false 

positive rate (FP), respectively, suggesting that it occasionally erroneously categorizes non-relevant instances. 

Conversely, the precision of the "Auto Encoder" [35] model is marginally lower at 91.6%, indicating a narrow 

space for enhancement in accurately classifying pertinent instances. Its 100% recall rate indicates that it 

successfully captures all target instances, but its 10.3% FP rate is somewhat high. The surprising lack of a false-

negative rate suggests that it never overlooks important data. Metrics for two models' performances are listed in 

Table 4. 

Table 4. Comparison of Hybrid Model and Auto Encoder model 

 Precision Recall FP (%) FN (%) 

Hybrid Model 0.943 0.996 6 2.59 

Auto Encoder [35] 0.916 1 10.3 0 

As shown in Figure 6, the proposed hybrid model compares favorably to an existing model that solely employs 

Autoencoder [35] when pitted against a model that includes Deep Autoencoder, CNNs, and RNNs. Differences 

in how these two models work are clearly depicted in this visual comparison. 

 

Figure 6. Performance Metrics of Hybrid Model and Auto Encoder 
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5. Conclusion and Future Scope 

IoT and Big Data Analytics provide data-driven decision-making, but encounter hurdles in real-time processing. 

In order to process IoT data quickly and effectively, this research focuses on integrating deep learning with 

edge-cloud computing. This study introduces an IoT-enabled Big Data Analytics architecture for Edge-Cloud 

Computing, which solves the problems of low processing efficiency in real time over dispersed IoT networks. 

For real-time analytics, it promotes deep learning at the edge to circumvent latency, bandwidth, and privacy 

concerns. The study intends to construct tailored deep-learning frameworks, explore security measures, and 

design improved algorithms for efficient data processing. Edge-cloud computing is suggested as a method to 

deal with the rising data generation and consumption prompted by the IoT. The significance of Deep Learning in 

Big Data Analytics for deriving actionable insights from massive datasets is also emphasized. Recent initiatives 

to improve IoT-based system processes are highlighted in a review of relevant literature. The research presents 

an architecture for IoT-enabled big data analytics in edge-cloud computing.  

The architecture uses deep learning models like CNNs, RNNs, and Deep Autoencoder for intrusion detection in 

IoT botnets, with techniques like TF-IDF vectorization for feature extraction and PCA for feature selection. Data 

is gathered, pre-processed, features are extracted and selected, data is divided, deep learning is trained, and 

results are analysed. Over the course of 100 epochs, both the training and validation losses have decreased, 

demonstrating considerable progress in the model's training process. That the model is successful at feature 

extraction, temporal dependency capture, and representation refinement is shown by this result. The 

classification performance at various threshold values reveals that the model reaches 97% precision and 95.4% 

recall at the Initial Threshold. The precision is slightly lower at 94.3%, but the recall is much greater at 99.6% 

when using the Final Threshold. In a head-to-head comparison with an Auto Encoder model, the hybrid model is 

found to be more accurate (94.3% vs. 91.6%) and has a higher rate of correct predictions (99.6% vs. 100%). The 

false positive rate is slightly higher at 6% compared to 10.3%, and the false negative rate at 2.59% compared to 

0%. Based on these findings, it appears that the hybrid model is an effective method for detecting assaults 

conducted via an IoT botnet. In-depth comparisons with other methods and models could be conducted in future 

research to confirm the superiority of the suggested hybrid strategy and pinpoint places for improvement. 
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