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Abstract 

 

This study investigates the innovations, and difficulties, alongside technical application of AI-driven predictive 

maintenance for aircraft engines. Using a descriptive design and secondary data collection, the study takes a 

deductive approach and interpretivism as its guiding philosophy. Blockchain, edge computing, adaptive 

algorithms, in addition to unified communication protocols are all part of the technical framework. Adaptive 

solutions tackle issues associated with compatibility, data security, and scalability. The field's dynamic nature is 

revealed by the critical analysis. Subsequent research ought to be focused on improving algorithms, investigating 

cutting-edge technologies, and handling moral dilemmas. 
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I: INTRODUCTION 

A. Research background 

AI-driven predictive maintenance for aircraft engines is becoming increasingly popular in the field of aerospace 

engineering as a result of the desire for improved operational effectiveness as well as security. Conventional 

maintenance techniques frequently depend on planned interventions or identify problems after they arise, which leads 

to less-than-ideal performance as well as higher operating expenses [1]. A paradigm shift is provided by the 

development of sophisticated machine learning techniques, which make it possible to examine enormous datasets 

from engine sensors. This study seeks to investigate the creation and application of predictive maintenance models 

that make use of AI algorithms to foresee possible engine failures before they occur. The amalgamation of advanced 

algorithms, and sensor networks, alongside real-time data processing, has the potential to revolutionize aerospace 

maintenance procedures by guaranteeing precise and anticipatory actions [2]. In addition to improving the longevity 

and dependability of aerospace engines, addressing the difficulties associated with integrating AI in this setting will 

also greatly advance the development of intelligent support practices in the aviation sector. 

B. Research aim and objectives 

Research Aim: 

The primary aim of this study is to investigate and apply AI-driven predictive maintenance for aircraft engines, with 

the ultimate goal being to enhance operational effectiveness and security. 

Objectives: 
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● To develop solid machine learning models that, using sensor data analysis, can forecast possible problems in 

aerospace engines. 

● To investigate and put into practice real-time data processing techniques for prompt, effective sensor data 

analysis in the setting of predictive maintenance. 

● To investigate the manner in which sensor networks can be integrated, guaranteeing smooth data transfer and 

communication to enable thorough engine health monitoring. 

● To tackle and resolve issues pertaining to the realistic application of AI-driven predictive maintenance in the 

aerospace sector, which include scalability, reliability, and compatibility with current maintenance 

procedures. 

C. Research Rationale 

It is essential to integrate AI-driven predictive maintenance for aircraft engines in the ever-changing field of aerospace 

engineering. When it comes to proactive and targeted interventions, traditional maintenance methods frequently fall 

short, which raises operational costs and leads to security issues. The urgent need to utilize cutting-edge machine 

learning algorithms to evaluate enormous datasets from engine sensors is what spurs this research [3]. AI-driven 

predictive maintenance ensures enhanced operational effectiveness and helps change the way aerospace maintenance 

strategies are approached by anticipating and avoiding potential failures before they happen. The justification for this 

research stems from its potential to revolutionize industry practices as well as pave the way for an era in which aircraft 

engines function with previously unheard-of levels of dependability, safety, and economy. 

 

II: LITERATURE REVIEW 

A. Historical Perspectives on Aerospace Engine Maintenance 

The path of technological progress, paradigm shifts, and the unceasing quest for increased efficiency and safety can 

be seen in the historical development of aerospace maintenance of engines. The majority of early aerospace 

maintenance procedures were receptive in nature, contingent upon prearranged inspections and repairs [4]. With the 

introduction of jet propulsion in the middle of the 20th century, a new era of engine complexity demanded more 

advanced maintenance techniques. In contrast to fixed-time maintenance schedules, Condition-Based Maintenance 

(CBM) was first implemented in the 1980s. CBM used sensor data to track engine health, which made individualized 

interventions possible [5]. Advanced diagnostic systems became feasible as processing power improved. The 

introduction of Artificial Intelligence (AI) into predictive maintenance strategies in the 21st century signified a 

paradigm change. AI algorithms made it possible to anticipate possible problems before they materialized because 

they could process enormous volumes of sensor data [6]. These historical viewpoints highlight the manner in which 

the industry is always adjusting to new technological developments. The progression from reactive to proactive 

maintenance shows a dedication to improving reliability as well as security. The most recent development in this story 

is the emergence of AI-driven predictive maintenance, which holds the potential to guarantee aerospace engines 

operate at peak performance and effectiveness to never-before-seen levels. 

 
Figure 1: Aerospace Engine Maintenance 
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B. Current Trends in Predictive Maintenance Technologies   

The aerospace engineering field is currently experiencing a revolutionary upsurge in predictive maintenance 

technologies, mainly due to the incorporation of sophisticated machine learning as well as artificial intelligence (AI) 

techniques. Large-scale datasets produced by sensors installed in aerospace engines are being analyzed by machine 

learning algorithms, especially those that utilize deep learning [7]. These algorithms are very good at understanding 

intricate patterns and anomalies, which makes it achievable to predict possible problems more precisely. Real-time 

data processing capabilities have been further improved with the advent of edge computing [8]. This makes it possible 

to analyze sensor data instantly, which speeds up the procedure and improves the quality of decision-making when it 

comes to maintenance interventions. Comprehensive sensor networks have also been developed as a result of the use 

of Internet of Things (IoT) technologies alongside connectivity [10]. By allowing for the ongoing monitoring of 

numerous engine parameters, these networks offer an in-depth understanding of the health of the engine. Additionally, 

the trend toward "digital twins," which are virtual versions of actual engines, provides a simulated environment for 

testing as well as optimizing predictive maintenance. In general, current trends highlight the convergence of state-of-

the-art technologies to produce aerospace engine predictive maintenance solutions that are more highly intelligent, 

effective, and dependable. 

 
Figure 2: Current Trends in Predictive Maintenance Technologies 

 

C. Challenges and Considerations in AI Integration for Aerospace Maintenance 

Although it holds great potential for revolutionary breakthroughs, the incorporation of technology known as artificial 

intelligence (AI) into aerospace maintenance is not without significant challenges and considerations. Because 

aerospace information is sensitive, data security becomes a critical concern. Implementing AI-driven predictive 

maintenance necessitates protecting against cyberattacks alongside guaranteeing data integrity [11]. Another issue is 

scalability, especially when dealing with sizable and varied aircraft fleets. To prevent interruptions to operations, 

careful consideration must be given to the adaptation of AI solutions to different engine models and configurations. 

To guarantee a smooth integration, the suitability of AI systems with current maintenance procedures as well as legal 

frameworks must be carefully considered [12]. Furthermore, one important consideration is how interpretable AI 

models are. To be accepted and have confidence in the aerospace sector, one must comprehend how these sophisticated 

algorithms make decisions [13]. Collaboration between experts in AI, cybersecurity, as well as aerospace engineering, 

is necessary to address these challenges. Navigating these obstacles in order to take full advantage of predictive 

maintenance technologies while adhering to the industry's strict safety regulations is essential for the effective 

implementation of AI into aerospace maintenance. 

D. Impact of AI-Driven Predictive Maintenance on Operational Efficiency and Safety 

Predictive maintenance powered by AI has the potential to revolutionize aircraft operating efficiency and safety. 

Artificial Intelligence (AI) facilitates the proactive identification of possible problems, decreases downtime, and 

alongside optimizes maintenance schedules by using sophisticated algorithms to analyze sensor data [14]. Increased 
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aircraft availability and cost savings result from this increased operational efficiency. Aerospace places a high priority 

on safety, as well as AI-driven predictive maintenance is crucial for boosting that safety. Predicting and averting 

possible malfunctions before they happen lowers the possibility of problems during flight, increasing passenger 

alongside crew safety [15]. Furthermore, the application of AI promotes a culture of continuous improvement since 

iterative improvements to engine design and maintenance procedures have been guided by insights from predictive 

models. The aerospace industry's commitment to providing secure, productive, and dependable air travel is reinforced 

by the combination of improved operational efficiency alongside elevated safety, which also changes the economics 

of aerospace operations. Aerospace maintenance is expected to be significantly shaped by AI's influence on 

operational procedures as it develops. 

E. Literature Gap 

Although AI-driven predictive maintenance for aerospace engines has made significant strides, there is still a 

significant literature gap regarding the real-world implementation challenges as well as industry-wide adoption. 

Studies tend to concentrate on technology and predictive model development, but there is a lack of comprehensive 

investigation on practical issues like scalability, regulatory compliance, and upbringing protocol integration [16]. 

Closing this gap will enable a comprehensive understanding of the challenges preventing AI from being widely used 

in aerospace maintenance, as well as enable well-informed strategies for successful implementation and guarantee the 

technology's seamless incorporation into industry practices. 

 

III: METHODOLOGY 

Using an interpretivism approach, this study seeks to better understand the challenges of applying AI-driven predictive 

maintenance in aerospace engineering by taking into account the practitioners' subjective experiences, viewpoints, as 

well as contextual subtleties. Using a deductive method, the process starts with the creation of theories based on what 

is known about AI-driven predictive maintenance [17]. This method makes it less difficult to test and validate these 

theories in the setting of aerospace maintenance against actual situations. In order to give a thorough and in-depth 

account of the current state of AI incorporation in aerospace maintenance, the study uses a descriptive research design 

[18]. The complexities, difficulties, and subtleties involved in the real-world application of AI-driven predictive 

maintenance in the aerospace sector can all be investigated through descriptive research. Secondary data collection is 

carried out, with primary sources being the body of existing literature, scholarly publications, industry reports, and 

case studies. Because it makes it possible to extract detailed technical information from a variety of sources, the 

selected method of data collection is appropriate for the technical nature of the research. Perform a thorough analysis 

of the body of research on AI-driven predictive maintenance in the field of aerospace engineering. Examine scholarly 

publications, conference proceedings, and business reports to pinpoint important technical ideas, approaches, as well 

as difficulties [19]. Create theories based on patterns and deficiencies you find in the literature. These theories form 

the basis of the deductive reasoning method and direct the ensuing research. Provide a technical framework that 

describes the essential elements of AI-driven predictive maintenance, which include pipelines for processing 

information, sensor integration, machine learning algorithms, as well as scalability concerns. The technical elements 

of implementation are evaluated using this framework as a foundation. Choose pertinent case studies from the 

aerospace sector that demonstrate AI-driven predictive maintenance in action. Examine the technical aspects of these 

cases, paying particular attention to how AI algorithms can be incorporated into the current maintenance processes, 

data security protocols, as well as system compatibility. Determine and classify the technical obstacles related to 

integrating AI into aerospace maintenance. Make suggestions for technical modifications or solutions to these 

problems, taking into account the findings of case studies alongside the literature. Interview experts who work in the 

aerospace sector and have firsthand knowledge of AI-driven predictive maintenance. Obtain technical knowledge, and 

test theories, while gaining a sophisticated grasp of the real-world issues and their resolutions from professionals in 

the field. Combine technical data from case studies, literature reviews, as well as expert interviews. Use analytical 

tools to find trends, connections, and deviations in the aerospace engineering field's technical environment of AI-

driven predictive maintenance. Develop the technical guidelines on the basis of the results to direct the application of 
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AI-driven predictive maintenance in aerospace engineering in the future. These suggestions cover best practices, 

technological issues, as well as techniques for resolving technical difficulties. This technical methodology, which 

combines the use of deductive reasoning with a thorough examination of the technical nuances inherent in the 

integration process, ensures a methodical as well as rigorous investigation into the application of AI-driven 

maintenance predictions in aerospace engineering. 

 

IV: RESULTS 

A  Theme: Technical Implementation and Integration 

Aerospace engineers must carefully integrate sophisticated algorithms, and sensor networks, alongside real-time data 

processing into their current maintenance workflows in order to technically apply AI-driven predictive maintenance. 

First, the machine learning algorithms that are customized according to the unique needs of aerospace engine health 

monitoring are chosen and deployed. This includes creating and optimizing algorithms that can analyze various 

datasets produced by sensors built into the engines [20]. The process of integration involves creating an intricate 

software architecture that works in unison with the current aerospace systems. This architecture ensures accurate and 

on-time predictions by coordinating the data flow from sensors to the AI algorithms. During this stage, compatibility 

with various engine models, industry standards, as well as communication protocols are vital factors to take into 

account [21]. The effective deployment of high-performance computing systems that can handle the computational 

demands of real-time data analysis heavily relies on hardware considerations. Strong sensor networks must also be 

developed as part of the integration process to guarantee thorough coverage alongside dependable data transfer from 

the engines to the AI system. To protect sensitive aerospace data, security measures are also incorporated into the 

implementation procedure. To strengthen the system regarding potential cyber threats, anomaly detection 

mechanisms, access controls, as well as encryption protocols are integrated [22]. In summary, the technical execution 

and assimilation of AI-driven predictive maintenance in aerospace engineering constitute an intricate combination of 

hardware capacities, algorithmic accuracy, alongside smooth integration with current systems, resulting in a 

comprehensive solution that has the potential to completely transform aerospace maintenance procedures. 

 
Figure 3: Technical Implementation and Integration of Aerospace engine 

 

B Theme: Performance Evaluation and Metrics 

A wide range of technical metrics have been employed to thoroughly assess the efficacy of AI-driven predictive 

maintenance in aerospace engineering. These metrics offer valuable information about the precision, effectiveness, as 

well as overall impact of the system on operational performance. 

Predictive Model Accuracy: 

The accuracy of predictive models is the foundation of performance evaluation. A number of metrics, including 

precision, and recall, in addition to F1-score, are used to evaluate the extent to which the system can recognize and 

anticipate possible engine problems [23]. Algorithm calibration is constantly improved to attain peak performance on 

a range of engine types as well as operating environments. 
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Real-Time Data Processing Capabilities: One important metric is the system's effectiveness in handling real-time data. 

To guarantee prompt interventions, latency—the amount of time from data acquisition to enforceable insights—is 

determined. In order to minimize downtime as well as enable proactive maintenance decisions, high-speed data 

processing is essential. 

Effect on the Efficiency of Operations: 

Mean Time between Failures (MTBF) alongside Mean Time to Repair (MTTR) are two operational metrics that are 

evaluated to measure how AI-driven predictive maintenance affects overall operational efficiency [24]. Enhanced 

maintenance schedules and a decrease in unscheduled downtime are signs of improved effectiveness. 

Metrics for Safety Enhancement: 

Metrics like False Positive Rate (FPR) alongside False Negative Rate (FNR) are used to assess the extent to which the 

system contributes to safety. By keeping these rates balanced, it is possible to accurately identify possible problems 

without having to perform unnecessary maintenance, which improves overall safety. 

Cost-Benefit Analysis: A comprehensive cost-benefit analysis is carried out to determine the economic impact. This 

takes into account the total return on investment as well as the initial implementation costs as well as ongoing savings. 

In aerospace engineering, determining the viability and sustainability of AI-driven predictive maintenance requires an 

understanding of the associated financial costs. 

C Theme: Challenges Encountered in Technical Implementation 

The intricate process of incorporating advanced technologies into established processes makes the technical 

application of AI-driven predictive maintenance in aerospace engineering rife with difficulties. 

Scalability Problems: Making sure the AI-driven system's scalability across various aircraft fleets is a significant 

challenge. A significant obstacle to developing a solution that is broadly applicable is the requirement for careful 

calibration and validation of predictive models in order to adapt them to various engine types, configurations, and 

operational contexts [25]. 

Security Concerns with Data: 

During implementation, there are serious data security concerns because aerospace data is compassionate. Maintaining 

the confidentiality of vital information about engine health requires strong encryption protocols, safeguarding against 

unauthorized access, as well as guaranteeing data integrity. 

Compatibility with Current Protocols: One significant challenge is integrating AI-driven predictive maintenance into 

current maintenance workflows and protocols [26]. It takes careful thought to make sure that AI systems are 

seamlessly compatible with established procedures, laws, and marketplace standards; this could necessitate making 

adjustments to accommodate the particular technical needs of AI systems. 

 

 
Figure 4: Predictive Maintenance Analysis for Aircraft 

 

Technological Heterogeneity: A vast range of systems and technologies, each with its own distinct requirements, are 

included in aerospace engineering. It is difficult to balance the incorporation of AI with this technological diversity 



Tuijin Jishu/Journal of Propulsion Technology  

ISSN: 1001-4055   

Vol. 44 No. 6 (2023)   

_____________________________________________________________________________________________ 

 

4234 
 

because the system has to support a variety of hardware configurations, communication protocols, as well as sensor 

types. 

 

Challenges Description 

Scalability Issues Adapting predictive models 

to diverse engine types, 

configurations, and 

operational contexts. 

Data Security 

Concerns 

Ensuring the 

confidentiality, integrity, 

and authorized access of 

sensitive aerospace data. 

Compatibility 

with Protocols 

Integrating AI systems 

seamlessly into existing 

maintenance protocols, 

regulations, and workflows. 

Technological 

Heterogeneity 

Harmonizing AI integration 

with the diverse 

communication protocols, 

sensor types, and hardware 

configurations in aerospace 

engineering. 

 

D Theme: Technical Innovations and Adaptations 

Innovative solutions as well as adaptations have surfaced in response to the difficulties faced throughout the technical 

implementation of AI-driven predictive maintenance in aerospace engineering, indicating the industry's dedication to 

overcoming roadblocks and maximization of system performance. 

Adaptive machine learning algorithms: the establishment of these algorithms is a significant innovation. These 

algorithms have the ability to independently modify their approaches to learning as well as parameters in response to 

real-time engine feedback. This adaptive capability improves the system's scalability by enabling it to effortlessly 

manage a variety of engine types and operating conditions. 

Real-Time Processing with Edge Computing: 

The incorporation of edge computing has emerged as a key innovation in addressing issues with data processing 

latency [27]. The system can carry out real-time processing, lowering latency as well as facilitating quicker decision-

making for proactive upkeep interventions by utilizing edge devices close to the source of data generation. 

Blockchain Technology to Improve Data Security: 

Blockchain technology has been incorporated into certain implementations in response to data security concerns. 

Blockchain improves the integrity as well as security of sensitive aerospace data by providing a transparent, tamper-

proof record of data transactions. Stakeholders are reassured by this innovation about privacy in addition to the 

dependability of the predictive maintenance system. 

Unified Communication Protocols: Creating unified communication protocols has become more popular in an effort 

to address issues brought on by technological heterogeneity. By creating standardized communication channels, these 
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protocols facilitate the implementation process alongside enable smooth interoperability between AI systems and 

various aerospace technologies. 

 

V: EVALUATION AND CONCLUSION 

A Critical Evaluation 

The thorough examination shows that although AI-driven predictive maintenance has great potential to transform 

aerospace engineering, there are ongoing issues with scalability, data security, as well as compatibility with current 

protocols that call for creative solutions. Technological advancements like edge computing and adaptive algorithms 

demonstrate the industry's dedication to conquering challenges [28]. However, the constant requirement for 

multidisciplinary cooperation, ongoing observation, and dynamic calibration highlights the dynamic nature of this 

revolutionary technology. The key to a productive implementation is striking a balance between technical expertise, 

industry knowledge, as well as a dedication to continuous improvement. 

B Research recommendation 

Subsequent research on AI-driven predictive maintenance for aerospace engines is advised, with particular attention 

paid to improving adaptive algorithms for various engine types, investigating cutting-edge edge computing solutions 

to further minimize latency, and looking into the integration of new technologies such as blockchain for improved 

data security [29]. In-depth research on the human factor, how users communicate with AI systems, and their influence 

on decision-making procedures in the setting of aerospace maintenance is also required. To successfully integrate AI 

technologies into aerospace maintenance procedures and handle changing challenges, researchers, industry 

professionals, as well as regulatory bodies must continue to collaborate. 

C Future work 

In order to improve scalability and assistance for a variety of engine types, future research in AI-driven predictive 

maintenance for aerospace engines must concentrate on improving adaptive algorithms. Investigating the 

incorporation of state-of-the-art technologies, like quantum computing, could improve real-time data processing even 

more [30]. Furthermore, research ought to concentrate on creating thorough frameworks that deal with moral issues 

and legal compliance when implementing AI technologies. In order to successfully integrate artificial intelligence (AI) 

into operational procedures as well as shape the field's future in aerospace maintenance, cooperation between 

industries, academia, in addition to regulatory agencies will be crucial. 

 

REFERENCES 

[1] Raj, S., Fernandes, S.L., Michel, A. and Jha, S.K., 2019. Towards AI-driven Predictive Modeling of Gas Turbines 

Using Big Data. In AIAA Propulsion and Energy 2019 Forum (p. 4385). 

[2] Ochella, S. and Shafiee, M., 2019, November. Artificial intelligence in prognostic maintenance. In Proceedings of 

the 29th European Safety and Reliability Conference (ESREL) (pp. 3424-3431). 

[3] Yerasuri, S., 2023. AI-Integrated Mechanical Engineering Solutions for Next-Gen Rocket Propulsion Systems. 

Tuijin Jishu/Journal of Propulsion Technology, 44(3), pp.485-493. 

[4] Stanton, I., Munir, K., Ikram, A. and El‐Bakry, M., 2023. Predictive maintenance analytics and implementation 

for aircraft: Challenges and opportunities. Systems Engineering, 26(2), pp.216-237.  

[5] Raz, A.K., Blasch, E.P., Guariniello, C. and Mian, Z.T., 2021. An overview of systems engineering challenges for 

designing ai-enabled aerospace systems. In AIAA Scitech 2021 Forum (p. 0564). 

[6] Tipaldi, M., Feruglio, L., Denis, P. and D’Angelo, G., 2020. On applying AI-driven flight data analysis for 

operational spacecraft model-based diagnostics. Annual Reviews in Control, 49, pp.197-211. 

[7] Ayvaz, S. and Alpay, K., 2021. Predictive maintenance system for production lines in manufacturing: A machine 

learning approach using IoT data in real-time. Expert Systems with Applications, 173, p.114598. 

[8] Wong, E.T. and Man, W.Y., 2023. Smart Maintenance and Human Factor Modeling for Aircraft Safety. In 

Applications in Reliability and Statistical Computing (pp. 25-59). Cham: Springer International Publishing.  



Tuijin Jishu/Journal of Propulsion Technology  

ISSN: 1001-4055   

Vol. 44 No. 6 (2023)   

_____________________________________________________________________________________________ 

 

4236 
 

[9] Kabashkin, I., Misnevs, B. and Zervina, O., 2023. Artificial Intelligence in Aviation: New Professionals for New 

Technologies. Applied Sciences, 13(21), p.11660. 

[10] Li, J., Zhou, G. and Zhang, C., 2022. A twin data and knowledge-driven intelligent process planning framework 

of aviation parts. International Journal of Production Research, 60(17), pp.5217-5234. 

[11] Serradilla, O., Zugasti, E., Ramirez de Okariz, J., Rodriguez, J. and Zurutuza, U., 2022. Methodology for data-

driven predictive maintenance models design, development and implementation on manufacturing guided by domain 

knowledge. International Journal of Computer Integrated Manufacturing, 35(12), pp.1310-1334.  

[12] Ochella, S., Shafiee, M. and Dinmohammadi, F., 2022. Artificial intelligence in prognostics and health 

management of engineering systems. Engineering Applications of Artificial Intelligence, 108, p.104552. 

[13] Qvist-Sørensen, P., 2020. Applying IIoT and AI–Opportunities, requirements and challenges for industrial 

machine and equipment manufacturers to expand their services. Central European Business Review, 9(2), pp.46-77. 

[14] Bemani, A. and Björsell, N., 2022. Aggregation strategy on federated machine learning algorithm for 

collaborative predictive maintenance. Sensors, 22(16), p.6252. 

[15] Xu, H., Wu, J., Pan, Q., Guan, X. and Guizani, M., 2023. A Survey on Digital Twin for Industrial Internet of 

Things: Applications, Technologies and Tools. IEEE Communications Surveys & Tutorials. 

[16] ASLAN, M.E., 2022. ARTIFICIAL INTELLIGENCE APPLICATIONS SELECTION VIA MCDM METHODS 

IN AVIATION MAINTENANCE, REPAIR & OVERHAUL INDUSTRY (Doctoral dissertation, GALATASARAY 

UNIVERSITY). 

[17] Soori, M., Arezoo, B. and Dastres, R., 2023. Artificial intelligence, machine learning and deep learning in 

advanced robotics, A review. Cognitive Robotics. 

[18] Campos Zabala, F.J., 2023. What Is First Principles Methodology. In Grow Your Business with AI: A First 

Principles Approach for Scaling Artificial Intelligence in the Enterprise (pp. 25-50). Berkeley, CA: Apress. 

[19] Musa, U.I. and Ghosh, S., 2023. Advancing Digital Twin through the Integration of new AI Algorithms.  

[20] Huang, Z., Shen, Y., Li, J., Fey, M. and Brecher, C., 2021. A survey on AI-driven digital twins in industry 4.0: 

Smart manufacturing and advanced robotics. Sensors, 21(19), p.6340. 

[21] Campos Zabala, F.J., 2023. Setting the Stage: AI Potential and Challenges. In Grow Your Business with AI: A 

First Principles Approach for Scaling Artificial Intelligence in the Enterprise (pp. 3-23). Berkeley, CA: Apress. 

[22] Attaran, M., Attaran, S. and Celik, B.G., 2023. The impact of digital twins on the evolution of intelligent 

manufacturing and Industry 4.0. Advances in Computational Intelligence, 3(3), p.11. 

[23] Alghamdi, N.A. and Al-Baity, H.H., 2022. Augmented Analytics Driven by AI: A Digital Transformation beyond 

Business Intelligence. Sensors, 22(20), p.8071. 

[24] Dash, R., McMurtrey, M., Rebman, C. and Kar, U.K., 2019. Application of artificial intelligence in automation 

of supply chain management. Journal of Strategic Innovation and Sustainability, 14(3), pp.43-53.  

[25] Ghosh, S., IMPLEMENTATION OF ARTIFICIAL INTELLIGENCE FOR EFFICIENT AIRLINE 

OPERATIONS. 

[26] Dogea, R., Yan, X.T. and Millar, R., 2023. Implementation of an edge-fog-cloud computing IoT architecture in 

aircraft components. MRS Communications, pp.1-9.  

[27] Bouzidi, Z., Terrissa, L.S., Zerhouni, N. and Ayad, S., 2020. An efficient cloud prognostic approach for aircraft 

engines fleet trending. International Journal of Computers and Applications, 42(5), pp.514-529. 

[28] Husom, E.J., Tverdal, S., Goknil, A. and Sen, S., 2022, May. UDAVA: An unsupervised learning pipeline for 

sensor data validation in manufacturing. In Proceedings of the 1st International Conference on AI Engineering: 

Software Engineering for AI (pp. 159-169).   

[29] Lai, X., Yang, L., He, X., Pang, Y., Song, X. and Sun, W., 2023. Digital twin-based structural health monitoring 

by combining measurement and computational data: An aircraft wing example. Journal of Manufacturing Systems, 

69, pp.76-90. 

[30] Singh, A. and Sharma, D., 2023. Efficiency Enhancement in Turbomachinery: Bridging Numerical Modeling and 

Experimental Validation for Fluid Dynamics Advancements. Journal of Sustainable Urban Futures, 13(9), pp.1-15.  


