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Abstract: The study focused on the development of Extreme Learning Machine (ELM) based Artificial Neural 

Network (ANN) model. The developed model then used for predicting combustion related cylinder pressure 

parameters of a spark ignition (SI) engine. A widely used back propagation (BP) based ANN model also developed 

for the prediction performance comparison. For training and testing the model, set of data has been collected by 

conducting the experiment on twin spark ignited SI engine. The experiment was carried out under different load, 

ethanol-gasoline blend, compression ratio and spark timing. The modelling results showed that ELM based ANN 

model gives minimum MSE and MAPE (%) compared to the BP based ANN model. It is also found that the ELM 

algorithm is faster as it takes only one epoch with added advantages of good generalization performance and 

compact network architecture.  
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Nomenclature and Abbreviations 

[dP/dƟ]m Maximum rate of pressure rise ELM Extreme learning machine 

ANN Artificial Neural Network HC Hydro Carbon 

bTDC Before TDC HCCI Homogeneous charged compression 

ignition 

BP Backpropagation IGN Ignition  

BSFC Brake-Specific Fuel Consumption Imep Indicated Mean Effective Pressure 

CAD Crank Angle Degree K-ELM Kernel-ELM 

c-b-c Cycle–by–Cycle MAPE Mean Absolute Percentage Error 

CFD Computerised Fluid Dynamics ANN Artificial Neural Network 

CO Carbon Monoxide MLP Multilayer Perceptron  

COV  Coefficient of variation MSE Mean Square Error 
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CR Compression Ratio NOx Oxides of Nitrogen 

DSI Dual Spark Ignition Pm Maximum cylinder pressure 

DI Direct Injection SI Spark Ignition 

E05 5% Ethyl alcohol +95% Petrol  TDC Top Dead Centre 

E10 10% Ethyl alcohol +90% Petrol Ɵ Crank angle  

E15 15% Ethyl alcohol +85% Petrol 𝞼 Standard deviation 

E20 20% Ethyl alcohol +80% Petrol S Seconds 

ECU Electronic Control Unit 𝑋̅ Arithmetic mean  

 

1 Introduction 

Raising oil prices continuously and stringent emission regulations assist to use a higher percentage of ethanol in 

the gasoline. The higher blending ratio of ethanol not only saves money and lowered carbon emissions, but also 

increases energy security, good air quality, better use of damaged food grains, increases farmers’ incomes and 

greater opportunities for capital investment, etc. [1]. The blending of ethanol with gasoline reduces the quantity 

of gasoline required for the engine and thereby reducing the dependency on costly imported petroleum derived 

fuels [2]. The higher blending of ethanol makes use of many supporting arguments, including the availability of 

large farming land, rising food grain and sugarcane production that is creating surpluses, the availability of 

technology to produce ethanol from plant-based sources, and the viability of making vehicles compliant with 

ethanol blended gasoline [3]. Due to the favorable characteristics of bioethanol, such as its higher-octane number, 

wider flammability limit, faster flame speed, and higher heat of vaporization, an engine can burn fuel more 

efficiently at a high compression ratio and shorter burn time [4-6]. Because the ethanol molecule contains oxygen 

in its molecular structure, it allows the engine to more completely combust the fuel, resulting in fewer emissions 

[4-8]. Previous studies have revealed that bioethanol in gasoline can improve engine performance while also 

lowering exhaust emissions without requiring major changes in the engine's design [9]. The presence of ethanol 

in the air fuel mixture forms the gasoline engine operation to a leaner air-fuel ratio since ethanol is an oxygenated 

fuel [10]. Even though lean mixture operation lowers fuel consumptions and tail pipe emissions, ultra-lean 

operation increases cycle-by-cycle (c-b-c) fluctuations which in turn causes rough engine operation and increased 

emissions [11-13]. Hence it is necessary to minimize c-b-c fluctuations of the engine when it is operated with 

ethanol as a fuel blend. There are many research works done either by experiment or simulation on the c-b-c 

fluctuations of the engine with regard to their occurrence, causes and remedies [14-17]. If these variations are 

eliminated, there would be a 10% increase of engine power output for the same fuel consumption as stated by the 

Soltau, J. P. [18].  Laminar flame burning velocity is one of the factors that mainly affect the engines c-b-c 

fluctuations [17]. The strategies that can accelerate laminar flame burning velocity will reduce the c-b-c 

fluctuations of the engines. There are several approaches for increasing the laminar flame burning velocity which 

includes combustion chamber shape optimization, optimization of spark plugs location and ignition at multiple 

points in the engine cylinder [19-20]. Out of all, a simple, comfortable and least expensive approach is the ignition 

at multiple points. This approach enhances the mixture burning speed and results in more combustion 

completeness [21]. 

A dual spark ignition [DSI] employs double spark plugs mounted in each engine cylinder at different 

locations and is commonly seen in aircraft engines [22], but is now also implemented in road vehicles. A DSI 

system initiates spark at different spots simultaneously in the burning zone and moves across the burning zone 

resulting in a shorter effective flame travel distance and hence boosting the knocking resistance of the engine. A 

DSI engine has shown an extended lean misfire limit in a carbureted single cylinder SI engine [23]. A DSI single 

cylinder SI engine, operating with CNG increased power output by 3-5% [24]. Raja et al. [25] experimentally 

showed that a DSI engine increases BSFC, volumetric efficiency, and excess air coefficient and reduces exhaust 

emissions such as CO, HC and NOx with increase in ethanol content in the fuel blend. Huichao Swang et al. [26] 
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investigated the impact of DSI on the combustion and knocking tendency of the engine. This work noticed that 

the DSI approach effectively improves the burning process and hence rises the peak pressure in the cylinder. Also, 

the DSI shortens the burning period and hence reduces the c-b-c variations. They finally concluded that the utility 

of DSI will be very beneficial under lean burn operation. Ismail Altın et al. [27] theoretically investigated the 

combustion behavior of a DSI engine with ethanol and concluded that a DSI engine’s combustion behavior is 

similar to a centrally placed single plug operation. Aisyah et al. [28] investigated the usage of ethanol (94–100%) 

as fuel in DSI engines and compared it with a single plug operation. This work concluded that the presence of 

ethanol in dual spark plug operation yields more efficient combustion compared to single plug operation. 

The intricate combustion process is affected by many unanticipated parameters. High precise instruments 

and equipment are needed for measuring these parameters, and it is necessary to conduct multiple tests for 

ascertaining the correlation between various parameters [29]. A lot of money and effort must be spent on these 

kinds of tests. The correlation between each engine parameter might be difficult to identify by employing simple 

mathematical equations with assumptions and simplifications [29,30]. These difficulties can be resolved by 

employing ANN approaches [31]. An ANN is a computing system in which the information is processed in a 

fashion same as human brain by using artificial neurons [32]. ANN detects the necessary information about the 

underlying problem by learning non-linear correlations that are hidden inside the problem domain [33-34].  

A Multilayer Perceptron (MLP) Neural network is a feed-forward neural network which consists of nodes 

in every layer with every layer linked to the subsequent layer. The MLPNN is appropriate for finding complicated 

non-linear relationships. MLPNN uses BP learning approach to train the network [35]. Traditional ANN models 

employ a gradient descent learning process, that is usually slow and needs iterative network parameter tuning. 

Further, it has a proclivity to converge to local minima [36]. G.B Haung [37] developed the ELM algorithm, which 

is a fast batch learning algorithm with good generalization performance involving smaller number of simulation 

parameters. ELM learning uses a single-pass process, that makes it extremely fast as it removes the iterative 

method associated with the gradient descent learning algorithm [39]. Further, the non-iterative nature of this 

technique helps it in overcoming local minima problems. Hence it is a better choice for large-scale computing for 

real time applications [38] 

 A.H. Sebayang et al. [40] proved that the coefficient of determination (R2) is within a range of 0.980–

1.000 and the MAPE values within a range of 0.411%−2.782%, indicating that the ANN model developed by the 

ELM algorithm is capable of prediction of engine performance as well as exhaust emission parameters in 

bioethanol-gasoline fueled SI engine. Weiying Zeng et al. [41] presented an ANN approach to predict gasoline 

engine output torque with good accuracy using an ELM based single-hidden layer feedforward neural network. 

Viviana C. M. et al. [42] predicted the pressure of SI engines using optimized ELM models and presented that the 

proposed model and its variants optimized by biogeography-based optimization approaches have the potential to 

predict IMEP at reasonable consistency with experimental results. A.S. Silitonga et al. [43] used K-ELM to predict 

performance parameters as well as emission parameters of the engine. MAPE (%) of the parameters predicted by 

the K-ELM model was within 1.363– 4.597%, whereas the R2 values were close to one. They concluded that K-

ELM was a reliable technique to predict the performance and exhaust emission parameters of engines fueled with 

biodiesel-bioethanol-diesel blends. ELM model is also applicable in a variety of research areas, including the 

development of a model for combustion knocks probability control of SI engines [44], predictive control method 

for homogeneous charged compression ignition (HCCI) engines [45], predicting engine performance in a direct 

injection diesel engine running on diesel/biodiesel blends containing polymer waste [46] etc.  

It is understood from the literature survey that there are only a few studies on DSI engines using ethanol-

gasoline blends as fuel. It is also observed that the vast majority of them are related to engine performance studies 

and few are on combustion studies. In addition to this, the majority of the studies included the BP algorithm to 

predict engine performance, emission and combustion related parameters. The studies focused to predict 

combustion related parameters using ELM are found to be limited. Thus, the aim of present work is to develop an 

efficient ELM model for the prediction of combustion related parameters of DSI engines fueled with ethanol-

gasoline blends and then compare the performance with the widely used BP algorithm model. 
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2 Materials and Methods 

2.1 Fuel Preparation and Properties 

In this study, different blends of gasoline (REC-90) and ethanol (99.9% pure) has been prepared to conduct 

experiment on SI engine in order to acquire data for training and to test the model. This gasoline and ethanol were 

mixed in different proportions such as 100-0%, 95-5%, 90-10%, 85-15% and 80-20% by volume and are 

represented as pure gasoline, E5, E10, E15 and E20 respectively. Using magnetic stirrer, the mixture is agitated 

under 500-600 rpm speed for about 4-5 minutes to obtain uniform mixture. The physical, chemical and thermal 

properties of blends obtained from the literature [51] are listed in Table 1. 

Table 1 Properties of Ethanol-Gasoline Blends 

Properties Gasoline Ethanol E05 E10 E15 E20 

Specific gravity 0.772 0.770 0.773 0.775 0.776 0.777 

Carbon (% mass) 87.4 52.4 87.7 86.7 87.6 87.6 

Hydrogen (%mass) 15.8 13 12.2 13.2 12.3 12.3 

Oxygen (%mass) 0.00 34.73 1.89 3.97 5.86 7.89 

Read vapour pressure at 37.80C (kPa) 173 60 59.3 59.6 58.8 58.3 

Research octane number 90 108 92.8 93.6 95.3 105.6 

Motor octane number  80 92 82.4 82.7 83.4 87.90 

Stoichiometric AFR 14.57 8.94 14.26 13.96 13.36 13.00 

Lower calorific value (KJ/kg) 42.61 26.90 40.57 39.82 39.41 39.00 

Laminar burning velocity (cm/s) 34 42 34.42 34.88 35.32 35.74 

Latent heat of vaporization (KJ/kg) 305 840 - - - - 

Auto ignition temperature (0C) 442.8 257.2 265 271 281 290 

2.2 Engine Setup and experimental procedure 

The experimental set-up consists of a single-cylinder, four-stroke, liquid-cooled, variable compression ratio 

(VCR) DSI engine attached to an eddy current dynamometer. The schematic layout of the engine setup for 

gathering data is displayed in Fig.1. The technical specifications of the test engine are listed in Table 2.  

 

Fig.1 The layout of an experimental set-up 
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PT= Pressure transducer T6 = EGT at the exit to the calorimeter 

T1= Engine cooling water temperature at entry F1= volume of fuel in m3/s to the engine 

T2 = Engine cooling water temperature at exit F2 = volume of air in m3/s to the engine 

T3 = Water temperature at entry to the calorimeter F3 = Volume of engine cooling water in m3/hr. at 

entry  

T4 = Water temperature at exit to the calorimeter F4 = Volume of water in m3/hr. at the calorimeter 

entry  

T5 = EGT at the entry to the calorimeter  N = Crank angle encoder 

The setup contains accessories for the measurement of combustion pressure in bar, crank angle in degrees, air and 

fuel flow rate in m3/hr, temperature in K and engine load in kg. The data from these accessories are interfaced to 

a software through high speed data acquisition device. A programmable open ECU in the setup controls all the 

operating variables of the engine. The data collection and analysis were done using “engine soft” that is also 

compiled in the engine setup.  

The engine was tested under different loads, blends, compression ratios and spark timings at 1800 rpm 

constant speed using open ECU mode. Under each operating condition, the data of IMEP, Pmax and [dP/dθ]max 

parameters have been acquired for 200 cycles once the engine cooling water reaches steady state temperature. 

Finally, the mean value ( X ) and coefficient of variation (COV) of each parameter has been calculated using the 

Eq. (1) and (2) respectively [49-52]. 

X =
∑ Xi

𝑁
𝑖=1

N
          (1) 

σ = √(∑ (X𝑖 − X)
2

N⁄𝑁
𝑖=1 )    

                                                                   COV =
σ

X
−                                                                                                           (2) 

Where  

N   = Sample size 

σ  = Standard deviation 

Table 2 Engine specification. 

Engine type 4-stroke, Multifuel, VCR engine with DSI and open ECU (computerized) 

Rated Power 4.5kW 

Rated Speed 1500 rpm 

Cooling system Water-cooled 

Bore 87.5mm 

Stroke 110 mm 

Compression Ratio Variable 6:1 to10:1 

Swept volume 661 cc 

Dynamometer Water-cooled eddy current with loading unit 

Dynamometer arm length 185 mm 

2.3 Engine testing conditions 



Tuijin Jishu/Journal of Propulsion Technology 
ISSN: 1001-4055 
Vol. 44 No.4 (2023) 
__________________________________________________________________________________ 

8495 
 

To acquire data for training and test the model, different engine testing conditions have been employed.  The 

engine test protocol included measurements at different ethanol-gasoline blends, engine loads, compression ratios 

and spark timings, which are listed in the Table 3. All the variables are measured at a constant speed of 1800 rpm. 

Table 3 Engine testing environment 

Fuel blends [% volume] 0 [Pure gasoline], 5 [E5], 10 [E10], 15 [E15] and 20 [E20] 

Spark timing [0bTDC] 200-200, 240-240 and 280-280  

Compression ratio 8:1, 9:1 and 10:1 

Load (% full load) 60, 80 and 100  

Speed Constant 1800 rpm 

 

3 ELM Model  

MLP is a popular and universally accepted type of neural network. It is a simplest form of neural network 

working only in forward direction. It can handle complex non-linear problems while dealing with large data sets. 

The sigmoidal activation function in MLP introduces this nonlinearity, allowing the network to learn complex 

relationships. Some other characteristic feature of MLP is the high degree of connectivity decided by the synapses 

of the network [52]. 

Back Propagation (BP) learning algorithm is a well-known and broadly used error-correction learning 

algorithms. But there are numerous shortcomings in the BP algorithm. The primary one is its iterative nature 

which makes the convergence extremely slow. The algorithm tends to regularly converge to local minima. This 

factor turns highly undesirable if the difference between global and local minima is massive. Defining the stopping 

criterion will become crucial in error minimization learning algorithm. Otherwise, the network may get over-

trained and can bring about bad generalization performance [37,53]. Further, fixing the proper values for learning 

rate (ƞ) and momentum rate (α) parameters play an important role in the convergence and the performance of this 

algorithm [54]. 

ELM is a simple yet effective and non-iterative algorithm, which is finding significance in real-time 

applications involving complexity and massive computations because of its excellent generalization ability, 

remarkable efficiency, universal approximation and simplicity [37]. To achieve the output weight matrix, the 

algorithm makes use of a generalized inverse (Moore- Penrose) operation on the output matrix of the hidden layer. 

This algorithm is powerful and easy because it involves a smaller number of simulation parameter in comparison 

to traditional gradient descent learning algorithms. Less number of simulation parameters leads to less human 

intervention for tuning those parameters. Furthermore, this algorithm has established its ability in a huge variety 

of applications with good generalization performance [55,56]. Further, ELM requires the only one epoch for 

training, and thus proves to be extraordinarily faster in comparison with the gradient descent technique [57]. Some 

of the application of this algorithm is in fields such as system identification, control and robotics, computer vision, 

biomedical engineering etc. [58]. 

The working of the ELM algorithm is as follows: 

Choose a set of input and output {xi
μ, yk

μ} from the training patterns. 

Where, μ = 1, 2...N constitutes a number of patterns. 

 i = 1, 2...p constitutes a number of input attributes and  

k = 1, 2...r constitutes a number of output attributes. 

1. The weights and bias i.e., wji, bjk values are initialized randomly.  

2. Determine hidden layer output using equation (3) for Q number of hidden nodes. 
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𝐻(𝑤1, …𝑤𝑁 , 𝑏1, … . 𝑏𝑁 , 𝑥1, … . . 𝑥𝑁) =

[
 
 
 
 
 
𝑔(𝑤1𝑥1 + 𝑏1) … 𝑔(𝑤𝑄𝑥1 + 𝑏𝑄)

. .

. … .

. .
𝑔(𝑤1𝑥𝑁 + 𝑏1) … 𝑔(𝑤𝑄𝑥𝑁 + 𝑏𝑄)]

 
 
 
 
 

𝑁𝑋𝑄

   (3) 

Where  𝑔(𝑥)is the activation function, which is usually a sigmoidal activation function.  

3. Obtain the output weight matrix wkj: wkj= H†T,  

where H†  is the Moore-Penrose generalized inverse of the H, and T is the actual output matrix as given in equation 

(4) [53]. 

                          𝑇 =

[
 
 
 
 

     

𝑡1
𝑇

.

.

.
𝑡𝑁
𝑇

   

]
 
 
 
 

𝑁𝑋𝑘

                                                                               (4)

  

The collected experimental data have been used for training and to test the model. From the collected data, 85% 

has been used for training and the remaining 15% for testing the model developed. The data were normalized 

between zero and one using equation (5) so that all inputs exert an equivalent influence on the development of the 

ANN model. 

X′ =
X

X𝑀𝑎𝑥
          (5) 

Where X′, X and X𝑀𝑎𝑥 be the normalized data, original data and maximum data in the dataset respectively 

Six different ANN models were developed in the present work. Model-1, Model-3 and Model-5 were 

developed using the BP learning algorithm and Model-2, Model-4 and Model-6 were developed using the ELM 

algorithm to predict IMEP, Pmax and [dP/dθ]max parameters respectively. Table 4 shows the details of these models. 

Table 4 Details of ANN models 

The % load, % blend, compression ratio and spark timing are used as the model input parameters to predict 

parameters of IMEP, maximum cylinder pressure, and maximum rate of pressure rise. 

         (a)                                 (b)              (c) 

Model No. 
Learning 

algorithm 
Output parameter  

Optimum 

configuration 
η α 

Model-1 BP Imep and COVImep 4:35:2 0.023 0.015 

Model-2 ELM IMEP and COVImep 4:25:2 - - 

Model-3 BP Pma,  COVpm and Ɵpm 4:35:3 0.030 0.016 

Model-4 ELM Pma,  COVpm and Ɵpm 4:20:3 - - 

Model-5 BP [dP/dƟ]m, COV [dP/dƟ]m, and Ɵ[dP/dƟ]m 4:40:3 0.028 0.018 

Model-6 ELM [dP/dƟ]m, COV [dP/dƟ]m, and Ɵ[dP/dƟ]m 4:25:3 - - 
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Fig. 2 General architectures of ANN model to predict (a) IMEP (b) Pm (c) [dP/dƟ]m parameters. 

Fig. 2(a), Fig. 2(b) and Fig. 2(c) represent the general architecture of the ANN model to predict IMEP parameters, 

Pmax parameters and [dP/dθ]max parameters respectively. The simulations were carried out on a personal computer 

by customized codes in MATLAB R2014a environment with an Intel i5-6200U, 2.3 GHz CPU and 4 GB RAM. 

The methodology adopted in this study is shown in Fig. 3. Three models Model-1, Model-3 and Model-

5 were trained using the BP algorithm. In this work, the minimum error or maximum number of epochs were the 

criteria used for stopping network training. The value for these criteria has been fixed as 1 ∗ 10−3and 1000 

respectively. The value of simulation parameters, η and α for MLP were fixed based on a trial and error during 

training, according to maximum prediction accuracy. Training the models has been done for different hidden layer 

size. The best values have been provided in Table 4. 

Three models Model-2, Model-4 and Model-6 were trained by using the ELM algorithm. The most 

interesting feature of ELM is that it takes only a single epoch for network training and it involves few numbers of 

model simulation parameters. The only simulation parameter for training the ELM model is the number of neurons 

of hidden layers that have been fixed on a trial and error technique by taking into account the maximum training 

accuracy. The optimum configurations along with simulation parameters of all the models are given in Table 4.  
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Fig. 3 Methodology adapted in this work 

4 Results and Discussions 

In this study, six ANN models have been developed and the results are compared to obtain the best ANN 

model. Three models, Model-1, Model-3 and Model-5 were developed using the BP learning algorithm and 

Model-2, Model-4 and Model-6 were developed using the ELM learning algorithm for three different sets of 

output parameters namely i) Imep and COVImep, ii) Pm,  COVpm and θPm iii) [dP/dƟ]m,, COV[dP/dƟ]m and θ[dP/dƟ]m. The 

performance of the models was assessed using two performance metrics namely MAPE (%) and MSE which are 

determined using Equation (6) and Equation (7) respectively. 

MAPE (%) =
1

N
∑

|yp(i)−ya(i)|

ya(i)
× 100𝑁

𝑖=1         (6) 

𝑀𝑆𝐸 =
1

𝑁
∑  (𝑦𝑝(𝑖) − 𝑦𝑎(𝑖))2𝑁

𝑖=1          (7) 

Where 𝑦𝑝(𝑖) 𝑎𝑛𝑑 𝑦𝑎(𝑖) represent predicted values and actual values respectively of the output parameter at the  

𝑖𝑡ℎ  data point and N constitutes the total number of data points considered. 

4.1 Imep and COVImep Prediction Model 

Model-1 and Model-2 were developed for the prediction of the IMEP parameters i.e. Imep and COVImep. The result 

of these two models are shown in Table 5 and Table 6 respectively. 
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Table 5 Performance of Model-1 for the prediction of Imep and COVImep 

Table 6 Performance of Model-2 for the prediction of Imep and COVImep 

Hidden layer size 15 20 25 30 35 40 

Training set MSE 0.00065 0.00050 0.00020 0.00031 0.00045 0.0005

5 

Test data MSE 0.00078 0.00072 0.00033 0.00042 0.00056 0.0006

1 

Training set MAPE (%)   4.92 3.54 1.77 2.80 3.12 4.95 

Test data MAPE (%) 7.98 6.31 2.33 3.95 4.80 6.46 

Execution Time (s) 0.00394

5 

0.00406

1 

0.00409

5 

0.00420

7 

0.00443

1 

0.0046

62 

For Model-1 as well as Model-2, the hidden size was set manually, and the results are displayed for the varied 

hidden layer size. It can be noticed that Model-1 resulted in the least MAPE (%) value of 8.38 on test set for 

hidden layer size of 35 neurons using 0.596251 seconds of Execution time. Whereas Model-2 presented the best 

result for hidden layer size of 25 neurons with the least MAPE (%) of 2.33 on test set taking 0.004095 seconds of 

Execution time. It can be realized that Model-2 is an accurate and compact model with extremely fast learning 

compared to Model-1.  

(a) 

 

(b) 

 

 

Fig. 4 Comparison of Actual Vs Predicted (a) IMEP and (b) COVImep for Model-1 and Model-2 

Hidden layer size 25 30 35 40 45 50 

Training set MSE 0.00097 0.00084 0.00075 0.00092 0.00099 0.0015 

Test data MSE 0.0019 0.0015 0.00088 0.0017 0.0025 0.0030 

Training set MAPE (%)   8.11 6.75 5.66 7.98 9.75 10.55 

Test data MAPE (%) 11.91 10.94 8.38 11.39 11.98 12.01 

Execution Time (s) 0.505001 0.525827 0.596251 0.60517 0.645477 0.671810 
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The comparison of IMEP and COVIMEP predictions achieved from these two models with the actual is represented 

in Fig. 4(a) and Fig. 4(b) correspondingly. In both cases, it can be viewed from the figure that the actual and the 

predicted values of Model-2 are in good agreement compared to Model-1. This demonstrates the superiority of 

the ELM model in providing better performance than the BP model. 

4.2 Pma,  COVpm and Ɵpm Prediction Models 

Model-3 and Model-4 were developed for the prediction of maximum cylinder pressure parameters i.e.  Pma,  

COVpm and Ɵpm. Table 7 and Table 8 presents the results of Model-3 and Model- 4 respectively. 

 

Table 7 Performance of Model-3 for the prediction of Pma,  COVpm and Ɵpm 

Hidden layer size 15 20 25 30 35 40 

Training set MSE 0.00098 0.00087 0.00084 0.00079 0.00047 0.00055 

Test set MSE 0.0025 0.0019 0.00093 0.00086 0.00059 0.00074 

Training set MAPE (%)   12.21 10.11 9.48 8.01 6.52 7.38 

Test set MAPE (%)   18.25 16.23 14.4 12.01 9.39 11.17 

Execution Time (s) 0.520462 0.431690 0.245194 0.317968 0.291639 0.264371 

Table 8 Performance of Model-4 for the prediction of Pma,  COVpm and Ɵpm 

Hidden layer size 5 10 15 20 25 30 

Training set MSE 0.00028 0.00021 0.00016 0.00013 0.00011 0.00025 

Test set MSE 0.00040 0.00037 0.00032 0.00022 0.00029 0.00034 

Training set MAPE (%)   5.21 5.11 4.48 1.93 3.66 4.38 

Test set MAPE (%)   9.42 8.79 6.88 3.24 4.94 6.18 

Execution Time (s) 0.004746 0.004711 0.006950 0.008585 0.006908 0.004529 

(a) 

 

(b) 

 

(c) 
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Fig. 5 Comparison of Actual Vs Predicted (a) Pma,  (b)COVpm and (c) Ɵpm for Model-3 and Model-4 

In case of both the models, the error is found to be decreasing with the increase in hidden layer size up to a certain 

value i.e 35 and 20 respectively for Model-3 and Model-4 and increased thereafter. Model-4 recorded a minimum 

MAPE error (%) of 3.24 on test set with 20 hidden neurons taking 0.008585 seconds since it uses the ELM 

algorithm.  Fig. 5(a), Fig. 5(b) and Fig. 5(c) illustrate the comparison of predicted values of two models with the 

actual for Pmax, COVPmax and θPmax respectively. From the graph, it can be realized that Model- 4 performs better 

compared to Model-3 with predicted values close to the actual values. 

4.3 [dP/dƟ]m, COV [dP/dƟ]m, and Ɵ[dP/dƟ]m Prediction Models 

Two Models Model-5 and Model-6 were developed for the prediction of [dP/dƟ]m, COV [dP/dƟ]m, and Ɵ[dP/dƟ]m. 

The performance of these two models is represented in Tables 9 and Table 10 respectively for a varied hidden 

layer size.  

 

Table 9 Performance of Model-5 for the prediction of [dP/dƟ]m, COV [dP/dƟ]m, and Ɵ[dP/dƟ]m 

 

Table 10 Performance of Model-6 for the prediction of [dP/dƟ]m, COV [dP/dƟ]m, and Ɵ[dP/dƟ]m 

Hidden layer size 5 10 15 20 25 30 

Training set MSE 0.00065 0.00042 0.00039 0.00034 0.00022 0.00025 

Test. set MSE 0.00082 0.00075 0.00061 0.00048 0.00036 0.00041 

Training set MAPE (%)  5.03 4.27 3.32 2.99 1.17 3.05 

Test set MAPE (%)  8.73 7.23 6.50 4.05 2.80 5.46 

Hidden layer size  25 30 40 45 50 55 

Training set MSE  0.00092 0.00082 0.00077 0.00087 0.0013 0.0018 

Test set MSE  0.0017 0.0011 0.00092 0.0017 0.0022 0.0025 

Training set MAPE (%)    8.12 6.74 5.82 7.97 9.76 10.56 

Test set MAPE (%)    11.90 10.93 8.87 11.38 11.99 12.02 

Execution Time (s)  0.421601 0.568571 0.596922 0.680706 0.840428 0.876413 
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Execution Time (s) 0.00438

5 

0.00460

1 

0.004925 0.004703 0.005494   

0.005826   

Table 9 shows that the error for Model-5 decrease with an increase in hidden layer size and the minimum MAPE 

(%) value of 5.83 was achieved for 40 neurons taking 0.596921 seconds of Execution time. Consequently, for 

Model- 6, it was noticed that the least MAPE (%) for training was achieved with 25 hidden layers neurons, which 

took only 0.005494 seconds of Execution time since this is an ELM based model with only a single epoch. Fig. 

6(a) through Fig. 6(c) shows the comparison of the performance of Model-5 and Model-6 respectively for test 

patterns of [dP/dθ]max, COV [dP/dθ]max and θ[dP/dθ]max. From the figure, it can be realised that Model-6, the predicted 

values demonstrate a higher degree of proximity to the actual values in comparison to Model-5, which is a BP 

based model. 

(a) 

 

(b) 

 

(c) 

 

Fig. 6 Comparison of Actual Vs Predicted (a) [dP/dƟ]m, (b) COV [dP/dƟ]m, and (c) Ɵ[dP/dƟ]m for Model-5 and 

Model-6 

4.4 Comparison of BP and ELM based models 

The comparison of performance of BP and ELM models for Indicated Mean Effective Pressure (Imep), Maximum 

cylinder pressure (Pm) and Maximum rate of pressure rise ([𝑑𝑃 𝑑Ɵ]⁄
𝑚

) parameters has been presented in Table 
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11. Model-1, Model-3 and Model-5 are models using BP learning whereas Model-2, Model-4 and Model-6 are 

ELM based models.  

Table 11 Comparison of performance of ANN models 

 

It is clear from the table that in all the three cases, ELM model outperforms the model with BP learning with 

respect to prediction accuracy and computation speed. Further, the ELM based models are found to be having 

compact network architecture with a smaller number of simulation parameters. Thus, ELM models are proved to 

be superior to BP based models in all aspects.    

5 Conclusions 

In this study, ANN models using extreme learning machine and back propagation algorithm have been developed 

to predict combustion pressure related parameters in dual spark ignition (DSI) engine which operates on varied 

percentage of ethanol blended with gasoline. The combustion pressure related parameters namely IMEP 

parameters (IMEP and COVImep), maximum cylinder pressure parameters (Pma,  COVpm and Ɵpm) and maximum rate 

of pressure rise parameters ([dP/dƟ]m, COV [dP/dƟ]m, and Ɵ[dP/dƟ]m) were obtained for 200 cycles at different loads, 

blends, compression ratios, spark timings at constant speed. Finally, the performance of models using two 

different learning algorithms is compared to arrive at the best ANN model.   

Following conclusions are drawn from the current study: 

• Models with ELM takes less time as compared to BP. Model-2 takes 0.004095 s compared to 0.596251s taken by 

Model-1, since ELM operates with single epoch.  

• ELM based model provides the best possible performance with the least error. MAPE (%) on test data for Model-

3 is 3.24 in contrast to 9.39 for Model-4.  

• ELM based models have compact architecture taking a smaller number of hidden neurons. The optimum model 

architectures for Model-5 and Model-6 are 4:40:3 and 4:25:3 respectively.     
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