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Abstract: Smart homes delineate optimal energy consumption through the strategic use of energy storage 

devices, aiming to either balance consumption to present a uniform demand to utility companies or minimize 

costs by storing energy during off-peak periods and utilizing it during peak times. This dual perspective 

involves a tradeoff between individual household benefits and the broader utility company incentives. In the 

context of cost minimization, households primarily benefit from reduced consumption costs but exhibit a highly 

nonuniform consumption profile. Conversely, the consumption balancing scheme presents advantages for both 

households and utility companies, fostering a mutually beneficial scenario by curbing consumption costs for 

the former and ensuring a consistent demand for the latter. The dynamic nature of energy requirements and 

market prices throughout the day introduces a complex tradeoff for households, involving current consumption, 

energy storage, and past energy consumption. This intricate tradeoff is modeled through inter-temporal trade 

considerations, and household consumption preferences are captured using utility functions based on consumer 

theory. Introducing two distinct utility functions—one tailored for cost minimization and the other for 

consumption balancing—we aim to maximize these functions subject to budgetary, consumption, storage, and 

savings constraints, thereby determining the optimal consumption profile. 

The optimization problem for a household with energy storage is formulated as a geometric program for 

consumption balancing, while cost minimization is addressed through a hybrid optimization approach. 

Simulation results underscore the efficacy of the proposed model, demonstrating an exceptional reduction in 

the peak-to-average ratio close to unity in the consumption balancing scheme. Furthermore, the cost 

minimization scheme ensures the least possible electricity bill while concurrently reducing overall consumption 

costs. This research contributes valuable insights into the dual perspectives of energy consumption optimization 

within smart grid households, fostering an understanding of the associated tradeoffs and benefits for both 

consumers and utility providers. 

Keywords: Consumption modeling, optimization technique, ESS integration. 

 

 

1. Introduction 

The contemporary landscape of energy storage has witnessed a significant upswing, propelled by the 

integration of fluctuating and intermittent renewable energy sources as well as the proliferation of plug-in hybrid 

electric vehicles (PHEVs) within the intricate fabric of smart grid systems [1]. Against this backdrop, energy 

storage systems offer smart homes a compelling dual prospect— the ability to either curtail consumption costs or 

harmonize energy usage to present utility companies with a demand profile of utmost uniformity [2], [3]. 

This research embarks on a comprehensive exploration of the multifaceted ramifications that ensue when 

multiple households, each equipped with battery systems, concurrently opt for a cost minimization scheme. This 

intriguing scenario has the potential to give rise to an unprecedentedly non-uniform demand pattern, thereby 

posing a tangible risk of grid failure. In response to this critical concern, the paper introduces an innovative 

approach, leveraging game-theoretic principles and machine learning methodologies to discern a Nash 

equilibrium consumption point [4], [5]. This strategic intervention seeks not only to optimize individual 

households' energy consumption but also to establish stability and equilibrium within the broader smart grid 

framework [6], [7]. 

Within the sphere of consumption optimization, one avenue of investigation revolves around the 

meticulous balancing and leveling of household energy consumption, aiming to present the utility company with 
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a demand profile characterized by unparalleled uniformity [8], [9]. This not only augments the operational 

efficiency of the utility company but also aligns with the overarching objective of fortifying grid stability and 

reliability in the face of increasing energy diversity. 

Conversely, an alternative scheme unfolds wherein the paramount focus is directed towards minimizing 

household consumption costs. This intricate optimization strategy involves judiciously storing energy during off-

peak periods when both demand and prices are at their lowest point, subsequently deploying the stored energy 

reservoir during peak periods when demand and prices experience a surge [10]. The intricacies of these 

consumption optimization schemes reveal a dynamic interplay between individual household preferences, the 

evolving dynamics of energy markets, and the indispensable requirements of a resilient and adaptive grid 

infrastructure [11], [12]. 

As the smart grid landscape continues to evolve, it becomes imperative to comprehend and address 

potential challenges arising from non-uniform demand scenarios. This research, positioned at the nexus of cutting-

edge technological advancements and the pressing need for sustainable energy practices, aspires to contribute 

nuanced insights [13]. By delving into the delicate equilibrium between cost minimization and consumption 

leveling, it emphasizes the necessity for adaptive and strategic approaches to optimize energy consumption within 

the intricate network of smart grid households, fostering resilience and sustainability in the face of a dynamically 

evolving energy landscape. 

In the pursuit of addressing the intricate optimization challenges embedded within the proposed Optimal 

Energy Consumption Model for Smart Grid Households with Energy Storage, advanced computational techniques 

have become paramount. To this end, the application of a Hybrid Genetic Algorithm-Particle Swarm Optimization 

(GA-PSO) emerges as a pivotal and innovative approach [14], [15]. 

The Hybrid GA-PSO solution methodology encapsulates the synergistic strengths of both genetic 

algorithms and particle swarm optimization, offering a robust framework to navigate the complex optimization 

landscape inherent in smart grid energy consumption. Genetic algorithms leverage evolutionary principles such 

as crossover and mutation to explore potential solutions, while particle swarm optimization harnesses the 

collaborative intelligence of a swarm to converge towards optimal solutions [16]. 

By integrating these two powerful optimization paradigms into a hybrid approach, our research endeavors 

to enhance the efficiency and effectiveness of the energy consumption model. This hybridization not only exploits 

the parallel search capabilities of PSO but also leverages the global exploration and exploitation strengths of 

genetic algorithms. The amalgamation of these methodologies aims to overcome potential limitations associated 

with individual optimization techniques, fostering a more comprehensive and adaptive solution to the inherent 

challenges of optimal energy consumption in smart grid households. 

In the subsequent sections of this paper, we delve into the intricacies of the Hybrid GA-PSO approach, 

elucidating its implementation details and highlighting its role in refining the Optimal Energy Consumption Model 

. This hybrid solution not only extends the boundaries of computational intelligence but also contributes 

significantly to the advancement of smart grid technologies by offering an innovative and potent tool for 

addressing complex optimization problems in the realm of energy management. 

 

2. Modeling of system 

In the context of our study, envision a sophisticated smart grid system wherein a household is intricately 

interconnected with a utility company that externally furnishes the requisite energy. This symbiotic relationship 

forms the foundation of our system model, exploring the dynamics of energy consumption, pricing, and 

optimization within this framework. 

Households within this system are equipped with a valuable tool—day-ahead hourly prediction prices 

disseminated by their respective utility companies [17]–[19]. Armed with this foresight, households can 

meticulously schedule the operation of their appliances, strategically choosing the most optimal strategy for 

charging and discharging their energy storage batteries. The integration of predictive pricing enables households 

to make informed decisions, thereby enhancing the efficiency of their energy utilization strategies [20], [21]. 

Crucially, the temporal dimensions defined by households are synchronized with the utility company's 

designated periods for their dynamic pricing model. This synchronization ensures a seamless alignment between 
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household-defined time periods and the utility company's pricing strategy, fostering a harmonious interaction 

within the broader smart grid architecture [22]. 

The key variables defining the state of the system in each time period (from 1 through N) include the 

price (𝑝), energy requirement (𝑙), consumption (𝑐), and the state of battery storage (𝑏). The subscript notation 

(𝑒. 𝑔. , 𝑝1, 𝑙1, 𝑐1, 𝑏1 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 𝑝𝑁 , 𝑙𝑁 , 𝑐𝑁 , 𝑏𝑁) denotes the specific values corresponding to each time period 

within the overall time horizon. This granular breakdown allows for a detailed examination of the system's 

dynamics over time. 

Assumptions underpinning the model include the assumption of rapid transfer rates for the batteries. This 

implies that batteries can be efficiently charged or discharged from one level to another within the duration of a 

single time period, facilitating swift adjustments to varying energy demands. 

Furthermore, households are characterized as price takers within the market dynamics, signifying their 

passive role in the pricing mechanism. In this context, households acknowledge market prices as fixed and possess 

no direct influence or authority to alter these market prices. This assumption provides a foundational 

understanding of the market dynamics, emphasizing the need for households to strategize within the given price 

framework, fostering a realistic depiction of the smart grid system under consideration[23]. 

 

2.1. Inter-temporal exchange 

Inter-temporal exchange, a fundamental economic concept, involves the strategic exchange of goods 

across different time periods to capitalize on the dynamic values of these goods over time. In the realm of optimal 

energy consumption with storage devices, inter-temporal exchange becomes a pivotal consideration, 

encapsulating the nuanced decisions households must make to navigate the temporal complexities of energy usage. 

Within the temporal confines of any given period, a household confronts three distinctive consumption 

options, each presenting unique advantages and tradeoffs. First, the household can opt to consume precisely the 

amount of energy required to meet its operational needs during that specific time period. Alternatively, the 

household has the option to consume an excess amount of energy, directing the surplus towards charging its 

batteries for future use. Lastly, the household can choose to consume less energy than needed, drawing from the 

energy stored in the past by discharging its batteries [24]–[26]. 

The decision-making process underlying these consumption options is intricately tied to the household's 

specific energy requirements at different time periods and the rate of storage loss incurred. In essence, a 

household's consumption preferences evolve in response to the dynamic interplay between its energy needs, the 

prevailing market conditions, and the efficiency of its energy storage system [27]–[30]. 

To illustrate these concepts, we commence with a simplified two-period model that serves as a 

foundational framework for comprehending the nuances of inter-temporal exchange. This model enables a clear 

delineation of the strategic choices households face in optimizing their energy consumption over a limited 

temporal horizon. Subsequently, we extend our exploration to a higher-dimensional time period model, 

acknowledging the complexity introduced by an extended time horizon. This progression allows us to generalize 

our understanding of inter-temporal exchange, paving the way for a comprehensive examination of optimal energy 

consumption strategies in the presence of storage devices. 

In our simplified two-period model, households contend with a daily temporal framework consisting of 

two distinct time periods. The utility company orchestrates the pricing dynamics only twice a day, delineating 

period 1 during off-peak hours when energy prices remain low and period 2 during peak hours when prices surge. 

This simplification captures a pragmatic representation where energy requirements and prices remain constant 

within these defined time periods. 

The versatility of the model is underscored by its adaptability to accommodate more intricate variations 

and finer pricing resolutions. This can be achieved by expanding the model order, wherein energy requirements 

and prices are sustained at constant levels within these extended periods, catering to a more detailed depiction of 

the dynamic pricing and energy consumption landscape. 

The pricing mechanism within this framework serves as a pivotal incentive for households to strategically 

schedule consumption or store energy during the off-peak periods. This optimization strategy aligns with the 

broader goal of minimizing costs by capitalizing on the lower energy prices available during these specific time 

intervals. 
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The budget constraint of each household is characterized by the present value, with reference to period 

1, of the total consumption in terms of the present value of its total energy requirements. This economic constraint 

forms the foundation for households to navigate their consumption decisions over the two time periods, integrating 

both present and future considerations. 

During period 1, occurring during off-peak hours with lower market prices, the household operates at 

point C on the budget line. At this juncture, in addition to meeting its normal energy requirements (𝑙1), the 

household chooses to consume 𝑙1 +  𝑏1. Simultaneously, the surplus energy is directed towards charging its 

batteries to a level denoted by 𝑏1. This strategic decision enables the household to accumulate energy for future 

use, specifically in period 2 when market prices are anticipated to be higher. Eq 1 represents consumption during 

period 1. 

𝑧1 = 𝑙1 + 𝑦1 − 𝑦0(1 − 𝑟) = 𝑙1 + 𝑦1 (1) 

 

Conversely, during period 2, characterized by peak hours with elevated market prices, the household 

operates at point 𝐷 on the budget line. At this juncture, the energy stored in the batteries during the off-peak period 

is judiciously deployed to curtail consumption and minimize costs. This tactical approach allows the household 

to navigate the dynamic pricing landscape, exemplifying the adaptability and strategic acumen required for 

optimal energy consumption within the constraints of a two-period model. Eq 2 represents consumption during 

period 2. 

 

𝑧2 = 𝑙2 + 𝑦2 − 𝑦1(1 − 𝑟) = 𝑙2 − 𝑦1(1 − 𝑟) (1) 

 

Thus, the budget constraint is represented in Eq 3 after modifying the Eq 1 and Eq 2. 

𝑧1 +
𝑧2

(1 − 𝑟)⁄ = 𝑙1 +
𝑙2

(1 − 𝑟)⁄  (1) 

 

 

3. Optimization of load consumption 

The pursuit of optimal consumption within a smart grid household equipped with a storage device is 

multifaceted, with two distinct objectives guiding the decision-making process. The household, leveraging its 

energy storage capabilities, may aspire either to minimize its consumption costs or to achieve a more balanced 

and leveled consumption profile. 

In a scenario where a household possesses a battery system with significant capacity, a strategic approach 

during a period (𝑖) when prices are at their lowest could involve consuming and storing the equivalent of its entire 

energy requirements for the subsequent 𝑁 −  𝑖 periods. While this scheme positions the household as the sole 

beneficiary, it lacks incentive for the utility company to support it. The resulting consumption profile, if not 

exacerbated, is at least as non-uniform as the original energy requirements of the household, diminishing the 

appeal of this strategy. 

Contrastingly, consumption balancing or leveling endeavors to achieve a consumption profile 

characterized by uniformity. This approach involves making conscientious choices to align consumption patterns 

without incurring additional costs. Importantly, this scheme introduces incentives for both the household and the 

utility company to lend their support. The benefits manifest in reduced consumption costs for the household and 

a more uniform demand pattern for the utility company, contributing to the overall stability of the smart grid. 

While a household could potentially strive to balance and level consumption while simultaneously 

minimizing costs, this intricate optimization objective is beyond the scope of this paper. The challenges arise from 

the absence of a guaranteed unique optimum that can effectively and jointly optimize both objectives. 

Acknowledging the complexity of this dual optimization and the potential trade-offs involved, the paper focuses 

on elucidating the distinct benefits and incentives associated with cost minimization and consumption balancing 

schemes within the smart grid context. 

By dissecting these contrasting objectives and their implications, the research aims to contribute to a 

comprehensive understanding of the intricate decision-making landscape surrounding optimal consumption 

within smart grid households. This nuanced exploration sheds light on the trade-offs and incentives guiding 
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households and utility companies towards achieving a balance between consumption efficiency, cost-

effectiveness, and grid stability. 

 

3.1. Objective function 

The primary objective of the household is to minimize its consumption costs, a goal that can be effectively 

addressed through the application of a weighted minimization utility function. This utility function incorporates 

day-ahead market energy prices as weights, facilitating a comprehensive optimization approach tailored to cost 

minimization. 

 

The optimization problem for cost minimization across 𝑁 time periods can be formulated as follows in Eq 4: 

𝑀𝑎𝑥:    𝑝1𝑧1 + 𝑝2𝑧2 + 𝑝3𝑧3 + ⋯ + 𝑝𝑛𝑧𝑛 = 𝑝𝑇𝑧 (4) 

Where 𝑝 represents the vector of day-ahead market energy prices and 𝑧 signifies the vector of consumption across 

the 𝑁 time periods. 

Additionally, to ensure the integrity of the system, constraints must be imposed on the amount of energy 

stored in the battery at the conclusion of each time period. This leads to the formulation of constraints: 𝑦𝑚𝑎𝑥 ≥

𝑦𝑖 ≥ 0  represents the amount of energy stored in the battery at the end of time period 𝑖, and 𝑦𝑚𝑎𝑥 denotes the 

maximum storage capacity of the battery. 

In scenarios where a Plug-in Hybrid Electric Vehicle (PHEV) is employed for energy storage, 

supplementary constraints come into play. These constraints may include specific time periods during which the 

batteries can be utilized, minimum charge levels required during certain periods, and other limitations inherent to 

PHEV usage. 

 

The lower limits for storage constraints during each period can be expressed in Eq 5: 

(1 − 𝑟)𝑁−1𝑙𝑜𝑤𝑏 ≤ 𝑧 ≤ 𝑢𝑝𝑏 (5) 

where 𝑙𝑜𝑤𝑏 and 𝑢𝑝𝑏  represent the lower and upper bounds for the storage constraints, respectively. 

 

As for the upper limits for storage constraints during each period, they can be articulated in Eq 6: 

𝑓 ≥ 𝑅. 𝑧 ≥ 𝑥 (6) 

where 𝑅 denotes the storage ratio, and 𝑥 and 𝑓 signify the minimum and maximum storage constraint thresholds, 

respectively. 

 

In essence, this comprehensive set of constraints and the weighted minimization utility function 

encapsulate the intricacies associated with cost minimization, providing a robust framework for optimizing 

household consumption patterns while navigating storage limitations and additional constraints introduced by the 

use of PHEVs. This optimization approach forms the cornerstone of the household's strategy to curtail 

consumption costs effectively within the smart grid ecosystem. 

 

3.2. Balancing of load consumption 

In the pursuit of balancing or leveling its consumption, the household aims to present the utility company 

with a demand profile characterized by uniformity. This objective is effectively addressed by the Cobb-Douglas 

utility function, which aptly captures how households value a certain share of consumption in each period, 

contingent upon the energy requirements and prices. This modeling approach enables households to strategically 

even out their overall consumption, aligning with the utility company's preference for a uniform demand pattern. 

The optimization problem for consumption balancing over N time periods is formulated as follows in Eq 7: 

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒:      𝑧𝑇𝑙 (7) 

subject to the budget constraint provided in Eq 8 and 9, consumption constraints, storage constraints. 

 

Given that consumption balancing is conceptualized as a geometric programming problem, it necessitates 

the conversion of consumption and storage constraints into posynomial inequalities. Despite retaining the same 

constraints as the cost minimization problem, this transformation ensures compatibility with the geometric 

programming framework. 
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The lower limits for storage constraints during each period are articulated as: 

1 ≥ (1 − 𝑟)𝑁−1𝑙𝑦 (8) 

where 𝑙𝑦 represents the lower bound for the storage constraints. 

 

The upper limits for storage constraints can be directly converted into posynomial inequalities, expressed as: 

1 ≥ 𝑥. (𝑝𝑇𝑧) (9) 

where 𝑥 denotes the upper bound for the storage constraints. 

These posynomial inequalities encapsulate the intricacies of the geometric programming problem 

associated with consumption balancing. The optimization approach, combining utility function, budget 

constraints, and the transformed posynomial inequalities, provides a robust foundation for households to 

strategically align their consumption patterns with the utility company's goal of fostering a more uniform demand 

profile within the smart grid context. 

 

4. Results and discussion 

The simulation results validate the effectiveness of the proposed energy consumption model within the 

smart grid households, incorporating both cost minimization and consumption balancing schemes. The analysis 

provides valuable insights into the performance of the model, showcasing its impact on consumption patterns and 

associated costs. 

In the consumption balancing scheme, the proposed model demonstrates impressive outcomes. The Peak-

to-Average Ratio (PAR) values achieved in the simulation approach unity, indicating an extremely uniform 

consumption pattern across time periods. This result is particularly noteworthy as it aligns with the objective of 

presenting the utility company with a demand that is as uniform as possible. The reduction in consumption costs 

is also evident, with a substantial decrease of approximately 10%. This highlights the dual benefit for households, 

encompassing both cost savings and contribution to grid stability through a more consistent demand profile. 

The simulation results for the cost minimization scheme reveal significant achievements in minimizing 

household expenditure on energy consumption. The model successfully presents the household with the least 

possible electricity bill, attaining an impressive reduction of about 15% in consumption costs. While the primary 

beneficiary in this scheme is the household itself, the substantial reduction in electricity bills underscores the 

potential financial advantages for consumers. 

The results of the simulation and optimization process are presented through a series of informative 

figures, each shedding light on different aspects of the proposed energy consumption model within smart grid 

households. 

 

Table 1. Energy rates for different hours of the day. 

Hour Energy prices ($/Wh) 

1 0.12 

2 0.14 

3 0.11 

4 0.13 

5 0.12 

6 0.13 

7 0.14 

8 0.13 

9 0.13 

10 0.12 

11 0.11 

12 0.13 

13 0.14 
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14 0.12 

15 0.13 

16 0.15 

17 0.18 

18 0.17 

19 0.14 

20 0.12 

21 0.11 

22 0.13 

23 0.14 

24 0.12 

 

Figure 1 represents the energy rates during different hours of the day. The same is tabulated in Table 1. 

This data is crucial for understanding the temporal dynamics of energy pricing, which plays a pivotal role in 

shaping household consumption decisions. 

 

 

 
Figure 1. Energy rates for different hours of the day. 

 

Figure 2 illustrates the load consumption profile of the household during different hours of the day. This 

representation offers insights into the varying energy requirements of the household, forming the basis for 

subsequent optimization strategies. 
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Figure 2. Load consumption for different hours of the day. 

 

Figure 3 specifically focuses on load consumption derived from the Energy Storage System (ESS) 

throughout different hours. This figure delineates how the household leverages stored energy to meet its 

consumption needs, contributing to the overall efficiency of the system. 

 
Figure 3. ESS load consumption for different hours of the day. 

 

Figure 4 depicts the capacity of the Energy Storage System (ESS) during different hours. This 

visualization provides a clear understanding of how the available storage capacity evolves throughout the day, 

influencing the household's capacity to store or discharge energy. 
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Figure 4. ESS capacity for different hours of the day. 

 

Figure 5 captures the convergence of the optimization problem over iterations. This dynamic 

representation showcases how the optimization algorithm progresses towards identifying the optimal solution, 

providing valuable insights into the efficiency and stability of the proposed model. 

 

 
Figure 5. Convergence of optimization problem. 

 

Collectively, these figures offer a comprehensive depiction of the simulation results, allowing for a 

nuanced analysis of energy rates, load consumption patterns, ESS utilization, and the optimization convergence. 

The visual representations serve as key components in understanding the practical implications and effectiveness 

of the proposed energy consumption model within the context of smart grid households. 

The simulation results underscore the robustness of the proposed model, accommodating the diverse 

objectives and constraints associated with smart grid households. The dual optimization schemes cater to different 

priorities, offering a flexible framework that allows households to strategically align their energy consumption 

with their preferences. 

In conclusion, the simulation outcomes validate the practical viability and effectiveness of the proposed 

energy consumption model. The model's ability to achieve both cost efficiency and grid stability positions it as a 

valuable tool for guiding decision-making in the context of smart grid households. 
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5. Conclusion 

This research proposes a innovative framework for modeling the energy consumption of households 

integrated into the smart grid, incorporating energy storage devices within an intertemporal trading economy. The 

resulting model captures the intricate dynamics of energy usage, leveraging utility functions grounded in consumer 

theory to articulate the consumption preferences of the household. 

In the cost minimization scheme, the household benefits by minimizing its energy consumption costs, 

positioning itself as the primary beneficiary. However, this approach lacks incentive for the utility company, as 

the resulting consumption profile tends to be highly non-uniform, diminishing the overall appeal of the scheme. 

On the other hand, the consumption balancing scheme proves to be mutually beneficial, with the household 

experiencing reduced consumption costs, and the utility company presented with a demand characterized by 

greater uniformity. 

The optimization problems associated with these schemes are distinctly formulated, with cost 

minimization posed as a hybrid optimization problem and consumption balancing as a geometric programming 

problem. Both optimization problems are rigorously solved while adhering to the respective budget, consumption, 

storage, and savings constraints. 

Simulation results underscore the efficacy of the proposed model, particularly in the consumption 

balancing scheme. The achieved consumption Peak-to-Average Ratio (PAR) values closely approximate 1, 

indicating a highly uniform consumption pattern. Additionally, there is a notable reduction in consumption costs, 

approximately 8%, demonstrating the practical benefits for households. In the cost minimization scheme, the 

model succeeds in presenting the household with the least possible electricity bill, realizing a significant 15% 

reduction in consumption costs. 

This research contributes a comprehensive and nuanced understanding of optimal energy consumption 

within smart grid households, emphasizing the significance of balancing individual household interests with the 

broader objectives of the utility company. The proposed framework and associated optimization models offer 

valuable insights and practical solutions for fostering efficiency, cost-effectiveness, and grid stability within the 

evolving landscape of smart grid technologies. 
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