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Abstract:- In the quest for early disease detection and efficient treatment, microarray gene data 

analysis emerges as a pivotal research domain. Public gene expression datasets, reflecting the 

complex activation profiles of thousands of genes in potential disease patients, present 

formidable challenges due to high-dimensional feature vectors. Identifying disease-associated 

genes becomes paramount. This research introduces a novel method fusing feature 

discretization and selection into a machine learning framework. Our experiments reveal 

exceptional accuracy, minimal false negatives, and substantial dimensionality reduction. The 

resultant gene subsets are interpretable by clinical experts, facilitating disease verification. 

Microarray technology, integral to genetic research, offers diverse applications in health, 

including disease prediction and cancer investigation. However, analyzing copious raw gene 

expression data encounters computational complexities. Our research encompasses feature 

selection methods, crucial for achieving robust cancer classification amidst high dimensions, 

small sample sizes applicable for both labelled and unlabeled data, and noise. The 

comprehensive taxonomy of these methods, open research inquiries, and potential inferences 

are meticulously explored, enriching the field of microarray-based cancer prediction. 
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1. Introduction 

Cancer, or malignant neoplasm, epitomizes a profound challenge, characterized by the tumultuous proliferation 

of cells and their invasive proclivity [1]. The World Health Organization (WHO) underscores the global scourge 

of cancer, with a staggering 14 million new cases documented in 2012, rendering it a paramount cause of 

morbidity and mortality. Globally, cancer stands responsible for almost one-sixth of all reported fatalities, 

claiming 8.8 million lives in 2015, securing its position as the second leading global cause of death [2]. As of 

2023, there were an estimated 20 million new cases of cancer worldwide, resulting in 10 million deaths. In 2023, 

there were around 20 million new instances of cancer globally, leading to 10 million fatalities. It is expected that 

over the next two decades, the incidence of cancer will increase by approximately 60%, reaching nearly 30 million 

new cases by 2040. [105]. 

In the realm of cancer management, early diagnosis and treatment are pivotal to mitigating mortality rates. 

Venturing into medical data mining, a branch of data analysis, stands out as a promising method to carefully 

examine, convert, interpret, and present the vast collection of medical reports stored in databases. This enigmatic 

and challenging pursuit of medical data mining holds the responsibility not just for diagnosing and predicting 
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diseases but fundamentally impacts matters of life and death. Erroneous classifications or predictions can have 

catastrophic consequences for patients and their kin. It thus embodies an expert system leveraging machine 

learning to empower healthcare experts in the precise and expeditious diagnosis and prediction of maladies [3]. 

In this landscape, microarray data, specifically the microarray technology (MT), assumes paramount significance 

within cancer research. The imperative for early cancer detection, critical for treatment stratagem and survival, 

has made MT indispensable [4]. MT empowers biologists to unravel the orchestration of myriad genes in a single 

experiment, offering profound insights into cellular functionality. This wealth of information serves as a linchpin 

for diagnosing a plethora of diseases, including Alzheimer's, diabetes, and the multifaceted realm of cancer. 

Amidst this, gene expression data generated through MT emerge as the touchstone for cancer classification and 

prognosis. Yet, the genomic landscape is marred by high dimensionality, replete with superfluous, repetitive, and 

discordant genes that scarcely contribute to disease diagnosis. High-dimensionality intricacies, the delicate 

balance between gene abundance and sample scarcity, and the ubiquity of data redundancy collectively necessitate 

the deployment of potent dimensionality reduction strategies in the spectrum of medical data mining and machine 

learning, with a marked emphasis on cancer prediction [5][6]. 

Microarray datasets encapsulate the gene expression profiles of numerous genes under specific conditions, 

typically organized as a matrix. Each row signifies a gene, each column represents a distinct sample (e.g., cells or 

tissues at specific time points), and the matrix cells embody gene expression levels within these samples. These 

data serve the purpose of discerning gene expression patterns, especially in comparative analyses of different 

conditions, such as healthy versus diseased states. AI encompasses various algorithms, with machine learning 

prevailing, excelling in labeled or unlabeled data analysis [107]. Machine learning techniques have been pivotal 

in automating the utilization of microarray data, leading to the availability of numerous publicly accessible gene 

expression datasets [7]. These datasets are instrumental for constructing models capable of predicting disease 

presence based on an individual's gene expression data. Additionally, from a scientific standpoint, it's imperative 

to identify the most pertinent genes for disease classification and detection. However, these gene expression 

datasets exhibit high dimensionality, featuring a multitude of features, which presents challenges for human 

interpretation. Moreover, they often suffer from a scarcity of instances, significantly fewer than the number of 

genes/features, amplifying the complications associated with the "curse of dimensionality" [8][9]. 

 

Fig.1. Categorization of the different types of feature selection approaches 
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Recent research endeavors have proposed machine learning pipelines that encompass Feature Discretization (FD) 

and Feature Selection (FS) stages for the analysis of microarray data [10][11][12]. The primary objective is to 

alleviate the curse of dimensionality by reducing data dimensionality and adopting discrete representations of 

numeric features. Furthermore, these pipelines conduct in-depth analysis on the selected feature subsets, with a 

focus on identifying the smallest yet informative subset of features for disease prediction. This endeavor is aimed 

at rendering the selected features interpretable by clinical experts [14]. 

In the quest for cancer classification accuracy, contemporary research pivots toward the embrace of computational 

intelligence algorithms, pinpointing the gems among the gene haystack that illuminate the path to precise 

diagnosis [13]. Notably, a plethora of studies underscores the substantial proportion of genes within DNA 

microarray datasets that bear no relevance to the arduous task of disease diagnosis. To grapple with the "curse of 

dimensionality," the mantle of feature selection, synonymous with gene selection, is donned, exquisitely curated 

to spotlight the genes that embellish disease diagnosis and the mantle of prediction [13][15][16][17][18].  

The vast array of genes present in microarray expression data, combined with a restricted pool of patient samples, 

has brought about a significant shift in cancer prediction and identification. Utilizing this technological progress, 

accurate classification of cancer now depends on carefully choosing genes that are distinctly linked to each 

particular subtype of cancer, representing a substantial advancement in oncology research [106]. In a landscape 

marred by dimensionality challenges, dimensionality reduction assumes the character of a pivotal research 

epicenter spanning data mining, pattern recognition, machine learning, and statistics. It champions the noble 

pursuit of enhancing algorithmic classification accuracy by pruning the irrelevant and the superfluous from the 

microarray dataset, thereby optimizing predictive prowess. A multiplicity of dimensionality reduction approaches 

vies for primacy, their selection guided by the nature of the dataset and the peculiarities of the domain under 

scrutiny. Notably, feature selection methods traverse the terrain, parceled into four distinct genres: the filter, the 

wrapper, the embedded, and the hybrid [19].  

The filter algorithms, honed to select features, dissect individual feature characteristics. In juxtaposition, the 

wrapper strategies enlist the might of machine learning algorithms and evolutionary paradigms to craft beguiling 

feature subsets. In the realm of large datasets, the filter's celerity renders it the favored choice, albeit occasionally 

at the cost of accuracy. In the wrapper universe, accuracy reigns supreme, albeit at the expense of computational 

complexity. However, the nub of the conundrum lies in the intricate relationship between the classifier and the 

feature interplay, as both the filter and the wrapper exhibit a degree of indifference to these mutual dependencies. 

Conversely, embedded methods, the unsung heroes, synchronize with specific learning algorithms, yielding the 

twin promise of classifier interaction and computational expediency [19]. 

Yet, the terrain remains uncharted, and the literature, though replete with an abundance of feature selection 

strategies, has hitherto lacked a comprehensive survey. Notably, while some surveys delve into specific feature 

selection paradigms or their broader medical implications, none have embarked on the panoramic voyage across 

the myriad feature selection methods, their taxonomy, the peculiar challenges in navigating microarray data, and 

the realm of microarray experimentation. The present endeavor unfurls its banner to unfurl this expansive 

panorama, drawing insights from over 150 academic narratives. 

This research, with its resolute mission, aspires to illuminate the labyrinthine terrain of microarray cancer datasets, 

juxtaposing the vivid tapestry of feature selection methodologies. In so doing, it unveils the convoluted realm of 

microarray experiments and, with unswerving candor, it delineates the limits and outlines the shores of future 

research in this domain.  

 

Fig.2. Flowchart of the procedures involved in gene microarray data extraction 
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2. Background 

The introduction of Microarray technology has ushered in a transformative era in biological research, bestowing 

unprecedented insight into the intricate mechanisms governing genetic expression. This technological marvel 

enables the concurrent exploration of hundreds to thousands of gene activities, ushering in an era of unparalleled 

research possibilities. While its potential is undeniable, many biologists and interdisciplinary researchers grapple 

with the complexities of mining and harnessing the wealth of data it yields. Moreover, the results of Microarray 

experiments find their home in diverse and myriad databases, further complicating the landscape of data 

management. 

The origins of Microarray technology can be traced to the latter part of the 1980s, [20] innovating DNA 

Microarrays, where about 4000 complementary DNA (cDNA) sequences were carefully organized on 

nitrocellulose [21]. Subsequently, it has emerged as a powerful tool, allowing biologists to scrutinize the 

expressions of hundreds of thousands of genes in a single sweep [22][23][24]. 

Microarray technology has expanded beyond the boundaries of biology and initiated a fresh domain of exploration 

covering bioinformatics, medical sciences, and machine learning [25][26]. DNA Microarrays, commonly known 

as DNA chips or biochips, contain an arrangement of tiny DNA spots meticulously positioned on firm surfaces. 

These frameworks act as portals into the manifestations of numerous genes at once, shedding light on the 

complexities of genotypes [23]. 

At the heart of this groundbreaking technology lies the cellular nucleus, housing the DNA that encodes the 

blueprint for future generations. DNA comprises both coding and non-coding components, with coding segments, 

known as genes, dictating the structure and function of pivotal proteins. Proteins, the workhorses of organisms, 

are synthesized in genes through a two-step process: the conversion of DNA into mRNA (transcription), followed 

by the translation of mRNA into proteins. The progression of molecular genetics tools, such as DNA Microarrays, 

has offered an advantageous perspective to observe the coordination of cellular functions and examine the 

simultaneous expressions of tens of thousands of genes. 

Gene expression data, portrayed as the total transcribed mRNA within a genomic system, offer the gateway to 

comprehending how genotype metamorphoses into phenotype. A plethora of standardized approaches, including 

differential display, Microarray matching, RNA-seq sequencing, and Serial Analysis of Gene Expression (SAGE), 

aid in detecting differences in gene expression [28][29][30]. 

The cornerstone of Microarray experimentation lies in the hybridization reaction, which involves comparing the 

relative mRNA from a pair of tissue samples. This essential procedure occurs as RNA molecules or individual 

strands of DNA combine to form double-stranded complexes. The primary objective of gene expression 

Microarray experiments is twofold: firstly, to examine differential gene expression between groups through class 

comparison, and secondly, to forecast and explore classes for conducting classification studies [23]. 

This meticulous endeavor unfolds through four key phases. The preparation and labeling of samples inaugurate 

the journey, involving RNA extraction from specific tissues and subsequent labeling depending on the chosen 

technology. Hybridization, the second phase, marks the union of DNA or RNA probes with their complementary 

sequences in the hybridization array, forming Watson-Crick base pairs. Detection methods span optical, 

electrochemical, and mass-sensitive devices [23]. The washing stage ensues, eliminating non-specifically bound 

cRNA molecules from the microarray surface, thereby mitigating background and sensitivity effects. Finally, the 

image acquisition stage unveils the hybridized array's visual representation. 

The datasets born from Microarray experiments manifest as extensive matrices (M x N), wherein rows represent 

samples and columns signify genes or features. The volume of Microarray data is substantial, where M 

corresponds to samples and N represents genes, with each cell housing a numeric value denoting gene expression 

in a sample [31].  

In summary, the realm of Microarray technology has opened new frontiers in genomics research, unraveling the 

complexities of gene expression and bestowing invaluable data for a multitude of scientific endeavors. 
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Table I. Table shows the merits of each of the different Feature Selection Techniques 

MODELS MERITS 

Filter models Univariate 

 Capable with high-dimensional data, rapid computation, algorithm-agnostic, and model-

independent, ensuring versatile, efficient feature selection. 

 Multivariate 

 Addressing feature dependencies, agnostic to classifiers, offering superior computational 

efficiency compared to wrapper techniques, and maintaining model independence. 

Wrapper models Deterministic 

 This methodology is characterized by its emphasis on simplicity, engagement with the 

classifier, representation of feature interdependencies, and computational efficacy, 

surpassing randomized techniques. 

 Randomized 

 This approach's robustness against local optima, active engagement with the classifier, 

representation of feature interdependencies, and improved classification efficacy 

highlights its strengths. 

Embedded models  

 Effective interaction with classifiers, superior computational efficiency compared to 

wrappers, and the ability to model feature dependencies make this method exceptional. 

3. Feature Selection Techniques and its types 

Table II. Table shows the demerits of each of the different Feature Selection Techniques 

MODELS DEMERITS 

Filter models Univariate 

 Neglects feature interactions, lacks dependency modeling, leading to subpar 

classification results without engagement with the classifier. 

 Multivariate 

 Significantly slower and less scalable than univariate methods, lacking interaction with 

the classifier and underperforming in classification tasks. 

Wrapper models Deterministic 

 Wrapper methods, despite their effectiveness, present risks of overfitting and can be 

more susceptible to local optima due to their classifier-dependent, greedy search 

approach, making them challenging to navigate. 

 Randomized 

 Compared to deterministic algorithms, wrapper methods are computationally intensive 

and carry a higher risk of overfitting due to their classifier-dependent selection, making 

them less efficient for feature selection. 

Embedded models  

 Selection techniques are dependent on the classifier used. 

A. Search Strategies 

The quest for optimal feature selection (FS) methods is akin to traversing a labyrinth, with multiple strategies and 

pathways to explore. These strategies are differentiated based on their searching approaches, leading us down 

three distinct routes: filter techniques, wrapper techniques, and embedded techniques. 

Filter methods, akin to experienced scouts, commence the feature selection (FS) task prior to engaging in 

classification or clustering. In a dual-phase procedure, they first evaluate all characteristics and organize them 

according to predetermined criteria. The subsequent phase entails selecting the highest-ranking attributes. Filter 

techniques assess the significance of features by investigating the inherent properties of the data. Occasionally, a 

score determining feature relevance is computed, leading to the swift elimination of features with low scores. The 

crème de la crème of features, having earned high ranks, secures their position [32][33][34]. 

Some widely recognized filter methods are Receiver Operating Characteristics Analysis [38], Fuzzy Logic for 

identifying redundant features [42], ReliefF [35][36], Maximum-Minimum Correntropy Criterion [45], Mutual 

Information [46], Information Gain [36][39], Laplacian Score [40], F-Statistic [41], Consensus Independent 
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Component Analysis using gene expression for cancer classification [43], T-Test Feature Ranking for gene 

selection [44], and Signal-to-Noise Ratio [37]. 

Filter methods are impartial to specific machine learning algorithms, focusing on the general intrinsic properties 

of the data. This autonomy renders them computationally efficient with robust generalization capabilities. 

In contrast, wrapper and embedded techniques require the involvement of machine-learning algorithms to execute 

FS. Wrappers, like discerning critics, employ a learning algorithm to evaluate candidate feature subsets. Their 

close interaction with the classifier contributes to their higher computational cost, although they often outperform 

filters. Wrappers scrutinize FS through the lens of the learning algorithm, such as the employment of Support 

Vector Machine-based Recursive Feature Elimination (RFE) [47] to identify important genes linked to cancer 

ailments. 

Embedded techniques tread the middle path amidst filters and wrappers. Feature selection (FS) is seamlessly 

integrated into the training phase within the algorithm used for learning. During training, investigation into the 

occurrence of the best selection of features happens, such as the optimization of weights in a neural network. This 

integration results in embedded techniques being more computationally efficient compared to wrappers. 

The landscape of FS strategies becomes even more intricate with the advent of hybrid approaches. Hybrid 

approaches fuse two or more FS algorithms of different search strategies sequentially, allowing for a judicious 

combination of computational efficiency and fine-tuning, much like a well-conducted orchestra. For example, a 

less computationally demanding filter may first prune the feature set, paving the way for a more complex and 

resource-intensive wrapper to carry out the final refinement. 

 

Fig.3.  Artificial Bee Colony (ABC) Algorithm 

B. Filter Methods 

In the intricate realm of feature selection (FS) for predicting cancer using microarray gene profiles, the quest to 

uncover the most informative genes mirrors a harmonious symphony, with each FS technique playing a unique 

part in the composition. Among these, filter techniques stand as the initial movements in this orchestration, 

drawing inspiration solely from the intrinsic characteristics of the data. 
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Filter techniques, akin to soloists, rely on the inherent data characteristics, primarily statistical measures, to assess 

the relevance of individual genes or subsets concerning class labels. Various traditional filter methodologies, such 

as Fast Correlation-Based Filter (FCBF), ReliefF, Consistency-Based Filter, and Correlation Feature Selection 

(CFS), have been prominently featured in the realm of microarray data analysis. However, these virtuosos often 

focus solely on the individual features, neglecting the harmonious interplay among them, leading to comparatively 

lower accuracy in diagnostics compared to other FS methodologies. 

Filter methods, nevertheless, offer their own virtues: they are computationally simple, easily scalable to high-

dimensional datasets, and exhibit independence from specific classifiers. Furthermore, these techniques can be 

categorized into single variable analysis and multi-variable analysis. Univariate technique, which evaluate features 

one by one, often provide simplicity and speed. Notable examples include the signal-to-noise ratio. Conversely, 

multivariate methods, such as forward feature selection and base-pair selection, navigate the intricate 

interdependencies among features within subsets. Yet, they require more computational resources and must steer 

clear of overtraining. 

Filter techniques have contributed significantly to various research endeavors, showcasing their diverse repertoire 

of methods. However, their chief limitation lies in their detachment from the learning algorithms, potentially 

resulting in suboptimal feature subsets and, in some cases, redundancy. 

Distinguished Filter Techniques: 

a. Correlation-Based Feature Selection (CFS): A multivariate filter algorithm conducts feature subset ranking 

based on correlation-driven heuristic evaluation [48]. This methodology prioritizes feature subsets that 

exhibit high correlation with the class label while ensuring minimal redundancy among the chosen features. 

b. The Fast Correlation-Based Filter (FCBF) technique: This multivariate algorithm excels at evaluating both 

feature-class and feature-feature correlation. It utilizes Symmetrical Uncertainty (SU) to pick out features 

strongly associated with the class, employing heuristic methods to remove redundant features [49]. 

c. The INTERACT algorithm: Utilizing SU goodness measurement and introducing consistency contribution, 

it ranks features by their evaluated SU values. It also assesses the impact of excluding each feature on the 

consistency of the FS. Features that exceed a set consistency contribution threshold are selected [50]. 

d. Information Gain: A univariate filter approach that calculates mutual information for each class-attribute 

pair. Features are ranked based on their information gain values [51]. 

e. ReliefF: A prominent multivariate filter based on nearest neighbor concepts. It selects attributes that 

differentiate instances from different classes while maintaining consistent values within the same class [52]. 

ReliefF excels in multiclass scenarios and demonstrates resilience against missing and noisy data.  

f. The minimum Redundancy Maximum Relevance (mRMR) algorithm: This methodology highlights features 

with high relevance to the target class and minimal redundancy, guided by mutual information criteria [39].  

g. Consistency-Based Filter: A multivariate methodology that chooses subsets of features relying on their 

consistency with the class, incorporating an inconsistency criterion [53]. 

In this intricate symphony of feature selection, these filter techniques, each a maestro in its own right, contribute 

their distinct melodies to the composition, showcasing their rich diversity and unique capabilities in the pursuit of 

predicting cancer using microarray gene profiles. 

C. Wrapper Methods 

Wrapper techniques constitute the second category of feature selection methods, and they are known for using 

evolutionary approaches in their search strategies. These methods typically begin with a population of solutions, 

each representing a feature subset. Subsequently, a learning algorithm is used to assess the fitness of each subset, 

and an iterative process is employed to optimize the feature selection. In the literature, notable wrapper techniques 

cited include Genetic algorithm with SVM [58], Particle Swarm Optimization [59], Distance Sensitive Rival 

Penalized Competitive Learning – Support Vector Machine (ADSRPCL-SVM) [55], Artificial Bee Colony (ABC) 
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algorithm [56][57], Genetic Programming (utilized for predicting alternative mRNA splice variants) [60], and Ant 

Colony Optimization [54]. 

These techniques often outperform filter methods because they enable connections between results and indicators. 

In these methodologies, the feature subset search and model selection are integrated. The wrapper approach 

defines a search space for possible feature subsets, generating and evaluating many feature subsets. Each subset 

is evaluated using a specific classification algorithm tailored to a specific learning model. The exploration 

algorithm involves the classification method to investigate the complete space of feature subsets. However, as the 

number of features increases, the feature subset search space grows exponentially, which can become a significant 

challenge, especially for high-dimensional datasets. This is why wrapper techniques are relatively less common 

in the literature. 

Wrapper methods were more prevalent during the initial period of Microarray data analysis. They engage in 

exploration within the genetic scope, wherein the merit of every gene subset is assessed by examining the precision 

attained using the designated learning algorithm. For instance, Inza, Sierra, Blanco, & Larrañaga (2002) utilized 

typical wrapper techniques such as floating selection, sequential forward and backward selection, and best-first 

search on three Microarray datasets [61]. However, the use of wrapper techniques in Microarray data analysis is 

less widespread in comparison to alternative feature selection methods. 

Recent studies have explored new wrapper techniques. Sharma, Imoto, & Miyano (2011) presented an approach 

called Successive Feature Selection (SFS) [62]. This approach strives to surpass the constraints of singular ranking 

and forward selection methods. SFS divides the features into smaller segments and picks the most outstanding 

features from each segment, considering their accuracy in classification. It subsequently contrasts these 

outstanding features to determine the best set of features, leading to superior classification accuracy across 

numerous DNA Microarray datasets. In 2013, Wanderley, Gardeux, Natowicz, and de Pádua Braga presented the 

evolutionary wrapper technique known as Genetic Algorithm-Kernel Density Estimation (GA-KDE-Bayes), 

offering another illustrative instance in this domain [63]. This approach utilizes a Bayesian classification 

algorithm along with a non-parametric density estimation method. The authors clarified that non-parametric 

methods are apt for analyzing sparse and limited data, particularly observed in bioinformatics analysis, as they 

abstain from depending on pre-established assumptions about data structure and instead utilize the data itself for 

details. Their approach outperformed other methods on six Microarray datasets. 

In summary, wrapper techniques excel in optimizing feature selection for specific learning algorithms and 

considering feature dependencies. However, they can be prone to overfitting, especially in scenarios with limited 

sample sizes, and are computationally expensive, particularly when dealing with a high number of features. The 

wrapper approach is less common in the literature compared to filter methods due to its computational demands. 

D. Embedded Methods 

Although filter methods are efficient in terms of computation, they lack engagement with the classifier, frequently 

resulting in less-than-optimal classifier performance compared to wrappers. In contrast, wrapper methods, though 

effective, are linked with significant computational expenses, especially when handling Microarray data. A middle 

ground between these two methods is identified in embedded techniques, which utilize the fundamental learning 

algorithm to evaluate feature condition. Embedded techniques aim to reduce computational time for evaluating 

various feature subsets by incorporating feature selection into the learning process. This integration serves as the 

primary purpose of embedded methods. An example of an embedded technique is Support Vector Machine based 

on Recursive Feature Elimination (SVM-RFE), introduced by Guyon, Weston, Barnhill, and Vapnik (2002) [47]. 

SVM-RFE was expressly crafted for the purpose of choosing genes in the classification of cancer. It repeatedly 

trains the SVM classifier with feature sets and eliminates the least significant features as indicated by the classifier.  

A novel embedded technique is Kernel Penalized SVM (KP-SVM), proposed by Maldonado, Weber, and Basak 

(2011) [64]. KP-SVM identifies important features while constructing the classifier by penalizing individual 

features employed in the dual formulation of SVM. It improves the radial basis function (RBF) Kernel structure 

by eliminating features of minimal significance for the learning model. Test outcomes from standard Microarray 
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datasets and practical datasets indicated that KP-SVM surpassed other methods while utilizing fewer pertinent 

features.  

In response to the problem of imbalanced data in specific Microarray datasets, Anaissi, Kennedy, and Goyal 

(2011) introduced an integrated technique relying on the random forest algorithm [65]. This method utilizes 

diverse strategies and algorithms to manage intricate gene expression data within Leukemia datasets. It seeks the 

optimal training error cost for distinct classes, addresses data imbalance, uses random forest for feature selection, 

and applies strategies to prevent overfitting. The results showed significant improvements in classification 

performance. 

Another embedded technique, Probably Approximately Correct (PAC)-Bayes feature selection, was presented by 

Shah, Marchand, and Corbeil (2011) [66]. PAC-Bayes provides viable classification performance using fewer 

significant features. 

Iterative Perturbation Method (IFP), introduced by Canul-Reich et al. (2012), is an embedded gene selector [67]. 

It detects the less important features using a method that eliminates features in reverse order, focusing on classifier 

performance when features are perturbed by noise. Characteristics are deemed important if their inclusion of 

random or extraneous data significantly alters the performance of the classifier. The IFP algorithm exhibited 

comparable or better overall accuracy within individual classes when contrasted with SVM-RFE across three of 

four datasets. 

In another approach, Wang, Song, Xu, and Zhou (2013) [71] introduced the First Order Inductive Learner (FOIL) 

Rule-based feature subset selection algorithm (FRFS). FRFS initially generates FOIL classification rules using a 

modified propositional implementation of the FOIL algorithm. It merges subset features obtained from rule 

antecedents, eliminating redundant features while preserving interactive and informative ones. FRFS assesses the 

importance of features within the chosen subset using a fresh measurement termed Cover Ratio and removes 

unimportant features. 

E. Label Methods 

In the intricate realm of feature selection (FS), categorization based on label status provides a foundational 

framework for understanding the diverse array of methods at our disposal. These methods operate under the 

guidance of sample labels, where the presence of explicit information empowers the selection of pertinent features 

to discriminate between various sample classes. This categorical foundation leads us to a trichotomy of supervised, 

semi-supervised, and unsupervised FS methods, each carving its own path in the quest for feature optimization. 

Within the realm of labeled data, supervised FS methods [68][69] reign supreme. Armed with the knowledge of 

explicit sample labels, these methods meticulously curate feature subsets that distinguish samples across diverse 

classes. The universe of label-aware FS methods traverses an expansive terrain, leveraging well-defined class 

boundaries to unveil the most informative features. 

Intriguingly, semi-supervised FS methods tread a delicate balance between the known and the unknown. Here, a 

fraction of data is endowed with labels, while the rest linger in the realm of the unlabeled. Drawing inspiration 

from the realm of graph theory, many semi-supervised FS method sculpt feature selection landscapes guided by 

the intricate dance of similarity matrices and graph structures. This category thrives on harnessing the duality of 

labeled and unlabeled data to optimize feature selection. 

On the contrary, unsupervised FS methods navigate the labyrinth of feature optimization without the beacon of 

labeled data. Resourceful and ingenious, these methods employ cunning strategies to sift through unlabeled 

datasets, illuminating the path toward the most relevant features. In a world devoid of labels, unsupervised FS 

techniques take center stage, proving that sometimes, the absence of guidance can spark the most innovative 

solutions [70]. 

In its most elemental form, FS revolves around the meticulous evaluation of individual features, each vying for a 

place of prominence in the grand tapestry of data. These features are appraised for their correlation with class 

labels, a fundamental tenet in the quest for the most informative feature subsets [70] Nevertheless, echoing the 
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wisdom of Hall (1999), we recognize that the most powerful feature subsets are those in which the features 

harmonize, avoiding the cacophony of strong inter-correlations. 

F. Supervised Methods 

In the intricate tapestry of feature selection (FS), supervised methods stand as sentinels of label-rich data, weaving 

a narrative that hinges upon the vital presence of explicit sample labels. These methods, underpinned by the 

bedrock of labeled data, embark on a quest to distill the essence of feature relevance, serving as indispensable 

tools for predictive analytics. 

In the realm of supervised FS, a spectrum of approaches unfolds, each tethered to the rich tapestry of labeled data 

points. The conservative guardians of this domain, like the venerable Fisher Score, undertake the arduous task of 

individually ranking features, each in isolation, with little heed to feature interplay. In their pursuit of feature 

distinction, these methods pay homage to classical techniques. 

Linear discriminant analysis (LDA), tracing its origins back to the work of Fisher in 1936, casts its discerning eye 

on the heart of feature selection. It aspires to craft feature subsets that maximize the delicate balance between 

'between-class scatter and within-class scatter.' However, when faced with the limitations of small-scale data, 

LDA encounters significant obstacles [72]. To circumvent these limitations, ingenious solutions arise. Enter the 

maximum margin criterion (MMC), a harbinger of transformation, as demonstrated by Li, Jiang & Zhang (2004) 

[73]. It ingeniously transforms the calculation of the ratio between 'between-class scatter and within-class scatter' 

into a form based on subtraction, transcending the shackles of small sample size. 

However, it's imperative to recognize that supervised methods, while potent, possess an insatiable appetite for 

appropriately labeled data. The efficacy of these methods hinges upon the richness of labels. When the wellspring 

of labeled data runs dry, as elegantly expounded by Luo et al. (2013), the performance of these methods wanes, a 

stark reminder of their data-dependent nature [74]. The fickle dance of feature selection thrives on the nuances of 

labeled data, emphasizing the symbiotic relationship between supervised methods and their labeled companions. 

G. Unsupervised Methods 

Within the labyrinthine realm of feature selection (FS), the enigmatic domain of unsupervised methods unveils 

itself as a daunting challenge. Devoid of the guiding beacon of labelled data, unsupervised FS grapples with the 

formidable task of navigating the intricate landscape of data without a roadmap. This challenge has propelled it 

into the spotlight as an intriguing frontier of exploration [70]. 

In this uncharted territory, the quest for informative features unfolds along diverse criteria, reflecting the ingenuity 

of FS researchers. A notable method entails choosing characteristics that maintain the inherent structure of the 

initial data manifold. Other avenue, often traversed, embarks on the quest to uncover cluster indicators through 

the lens of clustering algorithms, eventually converging with a supervised approach to problem-solving. 

Unsupervised FS manifests itself in two distinct forms. The first approach intertwines the pursuit of cluster 

indicators with supervised feature selection. Exemplifying this fusion, Yang et al. (2011) fashioned a 

comprehensive framework, combining nonnegative spectral clustering and structural learning to distinguish 

characteristics from the data. [75]. 

The second approach follows a hierarchical trajectory. It initiates by seeking cluster indicators, then delves into 

the depths of feature selection, and culminates with iterative cycles of these stages as far as a specified condition 

is satisfied. In their 2011 work, Zhao et al. introduced Similarity Preserving Feature Selection (SPFS), a proficient 

approach adept at managing feature redundancy concerns [76]. This category encompasses various methods such 

as Joint Embedding Learning and Sparse Regression (JELSR) [79], Nonnegative Discriminative Feature Selection 

(NDFS), Unsupervised Discriminative Feature Selection (UDFS), Embedded Unsupervised Feature Selection 

(EUFS) [77], and multi-cluster feature selection (MCFS) [78]. 

Recent forays into this domain have witnessed a convergence of learning mechanisms and manifold structures, 

resulting in a fascinating blend of techniques. Prominent methodologies in this domain consist of Laplacian Score 

(LapScor) [40], PCA Score (PcaScor) [80], Minimum Redundancy Spectral Feature Selection (MRSF) [58], 
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MCFS [78], and Spectral Feature Selection (SPEC) [50]. These techniques embark on the intriguing journey of 

employing manifold structures, complemented by diverse metrics, to rank each feature's significance. The 

embellishment of limited restrictions in multi-output regression as witnessed in the MCFS and MRSF approaches 

[79], marks a pivotal stride in this expedition through the terra incognita of unsupervised feature selection. 

H. Semi-Supervised Methods 

In the intricate confluence of feature selection methods, semi-supervised approaches emerge as a bridge between 

the worlds of labeled and unlabeled data. Like skilled cartographers and researchers chart a course through the 

uncharted territory, demonstrating their prowess in selecting features from the vast expanses of unlabeled data, 

even when provided with only a limited compass of labeled samples. 

At the heart of these semi-supervised techniques lies the notion that data samples predominantly reside on a low-

dimensional manifold. This hypothesis paves the way for the application of graph Laplacian-based methods, 

exemplified by the likes of semi-supervised Discriminant Analysis (SDA) [81]. These approaches leverage the 

graph Laplacian matrix to harness the latent information harbored in unlabeled samples. 

One notable protagonist in this semi-supervised saga is the trace ratio criterion for feature selection (TRCFS), a 

potent algorithm celebrated for its effectiveness in discerning informative features [82]. However, it is crucial to 

highlight that the semi-supervised facet of feature selection, while potent, is not without its challenges. Its 

computational demands, particularly when confronted with vast datasets, can be a formidable hurdle to overcome. 

The cost of computation time associated with the intricate graph structures poses a formidable challenge [83]. 

This characteristic reinforces the notion that while semi-supervised methods possess the ability to navigate the 

interface of labeled and unlabeled data, their effectiveness in the realm of immense datasets is a frontier that 

remains to be fully conquered. 

4. Hybrid Methods 

In the dynamic realm of microarray gene profiling, the focus has transitioned from conventional feature selection 

(FS) methods mentioned earlier to an increasing surge of hybrid and ensemble approaches. These avant-garde 

strategies harmonize the strengths of diverse FS methods, orchestrating a symphony of choosing characteristics 

in datasets with numerous dimensions, particularly in the realm of Microarray datasets.  

Hybrid techniques, a contemporary paradigm, marry the virtues of filter and wrapper approaches. Their genius 

lies in their ability to balance feature reduction's time complexity and the quest for an optimal feature subset. The 

core philosophy of hybrid methods is to employ a filter approach initially, eradicating irrelevant features and 

diminishing the dimensionality of the original dataset. Subsequently, a wrapper technique takes the stage, seeking 

the finest features within the curated pool, thereby accelerating the feature selection process. Advocates of this 

approach posit that the filter's threshold for feature ranking can be set low, minimizing the risk of discarding 

valuable predictors. 

In recent overtures, researchers have introduced their own virtuoso performances. In 2007, Wang et al. executed 

a paired-step Microarray data analysis, merging T-test and Class Separability (CS) grading to pick genes and a 

refined classifier for categorization [84]. They utilized a K-nearest neighbors (KNN) algorithm to manage absent 

values and contrasted the outcomes against both KNN and Support Vector Machine (SVM) classifiers. 

Rangasamy (2009) developed a framework that prioritized genes using conventional statistical techniques and 

two distinct machine learning algorithms for diverse datasets [85]. Martín-Merino & De Las Rivas (2009) 

presented Kernel Alignment KNN for categorizing cancer using gene expression profiles, surpassing traditional 

KNN [86]. Revathy & Amalraj (2011) merged SVM with an enrichment score for categorizing cancer in 

Microarray data [87]. 

Ghorai, Mukherjee, Sengupta & Dutta (2010) crafted a hybrid computer-aided diagnosis (CAD) framework based 

on filter and wrapper techniques, employing Minimum Redundancy Maximum Relevance (MRMR) ranking for 

feature selection [88]. El Akadi, Amine, El Ouardighi & Aboutajdine (2011) introduced a two-stage approach 
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with MRMR for gene filtering and GA for gene subset generation, combined with Naïve Bayes (NB) and support 

vector machine (SVM) classifiers [89]. 

Rajeswari & Reena (2011) harnessed Support Vector Machine (SVM) and Fuzzy Neural Network (FNN) for 

tumor cell identification, demonstrating superior diagnostic accuracy compared to conventional methods [90]. 

Sahu & Mishra (2012) innovatively used Signal-to-Noise Ratio (SNR) score, coupled with Particle Swarm 

Optimization (PSO), to reduce dimensionality before employing K-nearest neighbor (KNN), Probabilistic Neural 

Network (PNN), and Support Vector Machine (SVM) as classifiers [91]. 

Swathi, Babu, Sendhilkumar & Bhukya (2012) devised an Adaptive Resonance Theory (ART1) a network 

framework for identifying breast cancer, yielding outstanding outcomes for datasets in unsupervised machine 

learning. Dev, Dash, Dash & Swain (2012) ventured into the world of three classifiers: Backpropagation network 

(BPN), Functional Link Artificial Neural Network (FLANN), and PSO-FLANN, showcasing PSO-FLANN's 

remarkable classification prowess [93]. 

Abeer, Basma, El-Sayed & Abdel-Badeeh (2013) examined differentially expressed genes (DEGs) in Microarray 

data, using t-tests and KNN to assess their influence on learning accuracy [94]. Shreem, Abdullah & Nazri (2014) 

[95] introduced the hybridization of the Harmony Search Algorithm (HSA) and Markov Blanket (MB) as HSA-

MB, performing gene selection in classification tasks. Abeer & Basma (2014) masterfully combined gene ranking 

methods with KNN and SVM classifiers, achieving remarkable results [96]. 

Alshamlan, Badr & Alohali (2015) introduced the Genetic Bee Colony (GBC) algorithm, showcasing its high 

classifier accuracy with a compact gene subset [97]. Doreswamy & UmmeSalma in 2016 orchestrated a Binary 

Bat Algorithm (BBA)-based Feedforward Neural Network (FNN) hybrid model, achieving excellent accuracy for 

breast cancer classification [3]. Alomari et al. (2017) harmonized Minimum Redundancy Maximum Relevancy 

(MRMR) with the Bat Algorithm (BA) and a support vector machine (SVM), demonstrating the robustness of 

their approach on diverse Microarray datasets [13]. 

In conclusion, the stage is set for hybrid feature selection approaches, a symphony of innovation, where the union 

of filter and wrapper techniques yields both elegance and efficiency in the realm of Microarray data analysis. 

Researchers continue to explore new melodies, seeking the perfect harmony between feature reduction and 

optimal subset selection. 

5. Units Some more works in the fields of Feature Selection  

 

Fig.4. Diagrammatic representation of the basic Genetic Algorithm 
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Within the captivating realm of hybrid feature selection methodologies, an ensemble of brilliant duets and 

harmonious ensembles have graced the stage, each offering a unique blend of techniques and approaches. Here, 

we spotlight these noteworthy compositions: 

a. Chi-Squared statistics with Genetic Algorithm (GA): This duo combines the statistical power of chi-squared 

analysis with the evolutionary prowess of genetic algorithms to create a powerful hybrid [98]. 

b. Information gain with a novel memetic algorithm: Information gain, a staple in feature selection, finds a 

partner in a novel memetic algorithm, resulting in a fresh take on feature subset optimization [99]. 

c. A novel similarity scheme with Artificial Bee Colony (ABC): In this innovative ensemble, a novel similarity-

based approach joins forces with the collective intelligence of artificial bee colonies [100]. 

d. MRMR with GA: The Minimum Redundancy Maximum Relevance (MRMR) method pairs with genetic 

algorithms to create an efficient and effective feature selection partnership [89]. 

e. Discrete Wavelet Transform (DWT) and modified genetic algorithm: This modern ensemble leverages the 

signal processing capabilities of Discrete Wavelet Transform (DWT) alongside the adaptability of a modified 

genetic algorithm [101]. 

f. Entropy and Signal-to-Noise Ratio (EnSNR): In this innovative composition, the information theory concept 

of entropy joins forces with the Signal-to-Noise Ratio (SNR) to create a feature selection synergy [102]. 

g. Large Margin Hybrid Algorithm for Feature Selection (LMFS): A novel feature selection technique, the 

Large Margin Hybrid Algorithm for Feature Selection (LMFS), is introduced. LMFS employs a distance-

based evaluation function and weighted bootstrapping to identify candidate feature subsets. These subsets 

are then assessed using a specific classifier and cross-validation to select the final features. LMFS was 

validated on six vibrational spectroscopic datasets with three classifiers, demonstrating its capacity to 

mitigate overfitting. It outperformed filter and wrapper methods, yielding features with superior 

classification performance and interpretability. LMFS also effectively managed computational time with 

varying classifier complexity, showing a preference for distance-based classifiers in the final feature subset 

selection [104]. 

h. Hybrid of multiple filters and GA wrapper-based approach (MF-GARF): A masterful blend of multiple 

filtering techniques and the power of a genetic algorithm wrapper delivers a compelling feature selection 

strategy [103].  

These hybrid symphonies represent the cutting edge of feature selection, each offering a unique and harmonious 

fusion of methodologies to tackle the challenges of high-dimensional data analysis. 

 

Fig.5. Large Margin Hybrid Algorithm for Feature Selection (LMFS) 
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6. Conclusion 

In the culmination of our expedition through the intricate realm of feature selection for cancer prediction via 

Microarray gene profiles, a striking tapestry of progress unfolds. Beyond a mere reduction in feature dimensions, 

we immerse in the profound impact of this vital pre-processing tool. Its merits extend to taming the computational 

colossus, amplifying classification precision, and an array of consequential facets. The advent of DNA Microarray 

data has ushered in formidable machine learning challenges. The juxtaposition of numerous features with scarce 

samples poses a formidable foe. Researchers grapple not only with the enigma of countless features and meager 

samples but also contend with the intricacies of class imbalances, shifts between testing and training datasets, and 

the elusive presence of outliers. 

In the face of these multifaceted trials, a procession of novel techniques unfurls year by year. Their goal transcends 

mere enhancements in classification precision, reaching towards the unraveling of the intricate nexus connecting 

gene expression to diseases. They serve as guiding lights, steering biologists on their quest for comprehension. In 

this odyssey, three techniques have commanded the spotlight: filter, wrapper, and embedded approaches. Filter 

methods, renowned for their computational efficiency, have been the stalwarts of choice. Meanwhile, the resource-

intensive wrapper and embedded methods have been navigated with finesse. Yet, the crescendo of research 

reverberates with the harmonious cadence of hybrid feature selection methods. These hybrids, celebrated for their 

tenacious gene selection and the consequential augmentation of cancer classification accuracy, are harbingers of 

promise. Moreover, a groundswell of endeavors to amalgamate heterogeneous data sources, interweaving 

genomic, proteomic, clinical data, and beyond, signals a shift towards a holistic panorama of cancer classification. 

This zenith signifies not just an evolution but a revolution in our quest to fathom and predict cancer via Microarray 

gene profiles. The symphony of feature selection serenades a promising era where the genome's secrets and its 

profound connection to disease are unveiled, note by note. These scholarly works collectively underscore the 

significance of gene expression analysis in biomedical and disease-related research. They delve into various 

techniques and methodologies, underscoring the importance of feature selection, dimensionality reduction, and 

machine learning methods in addressing the challenges posed by high-dimensional data. Cancer detection emerges 

as a prevalent application, with machine learning at the forefront. The advent of deep learning in identifying gene 

patterns associated with different cancer types signals the evolving landscape of cancer classification. 

Dimensionality reduction methods are crucially essential when addressing datasets with numerous dimensions, 

especially in the context of gene expression microarray data. The taxonomy of dimension reduction methods 

underscores the importance of benchmarking various approaches to determine their suitability for different data 

types. In the realm of survival data analysis, the benchmarking of 14 filter methods for feature selection in high-

dimensional gene expression data reveals the standout performance of variance and carss filters, emphasizing the 

need for effective feature selection in biomedical applications. 

Hybrid feature selection methods gain prominence in biomedical data processing. A novel three-stage gene 

selection approach, amalgamating various techniques for handling high-dimensional data efficiently, aims to 

enhance classifier accuracy while reducing computational complexity. The study on malaria detection exemplifies 

the application of machine learning to single-cell transcriptomics, showcasing the potential in biomarker and drug 

target identification. Cancer classification and the use of microarray data remain central themes. The anticipation 

of continued use and fusion of the Whale Optimization Algorithm (WOA) with genetic algorithms for gene 

selection suggests promising prospects. Lastly, the introduction of a novel feature selection method, WSNR, 

validated on benchmark problems, demonstrates its effectiveness, particularly in high-dimensional settings. 

Collectively, these investigations enrich the dynamic landscape of biomedical data analysis by providing valuable 

perspectives on navigating the complexities of high-dimensional data. They underscore the significance of 

dimensionality reduction, feature selection and machine learning in effectively confronting these challenges. 
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