Novelty of Implicative Filters in Lattice Pseudo Wajsberg Algebras

[1*]K. Jeya Lekshmi, [2] M. Indhumathi, [3]A. Ibrahim

- [1]Department of Mathematics, Rathnavel Subramaniam College of Arts and Science, Sulur, Affiliated to Bharathiar University, Coimbatore, Tamilnadu, India.
- [2] Department of Mathematics, Rathnavel Subramaniam College of Arts and Science, Sulur, Affiliated to Bharathiar University, Coimbatore, Tamilnadu, India.
- [3] P.G. and Research Department of Mathematics, H. H. The Rajah's College, Pudukkottai, Affiliated to Bharathidasan University, Tiruchirappalli, Tamilnadu, India.

Email: [1] jeyalekshmik@gmail.com, jeyalekshmi@rvsgroup.com, [2] indumathi@rvsgroup.com [3] dribrahimaadhil@gmail.com.

Abstract

The NIm.Fi (Normal Implicative Filter) and NFIm.Fi (Normal Fuzzy Implicative Filter) of LPWA (Lattice pseudo-Wajsberg Algebra) are introduced in this work, and we use its illustrations to explore some of their related properties.

Keywords: Flm.Fi, LPWA, NIm.Fi, FNIm.Fi, Cartesian product.

Mathematical Subject classification: 30G10

1. Introduction

PWA's were introduced by Rodica Ceterchi[1]. Wajsberg algebras give rise to PWA's(Pseudo-Wajsberg algebras). In this article, we define NIm.Fi's of LPWA and discuss their characteristics. We also look into the fuzzification of their Cartesian and normal product.

2. NIm.Fi OF LPWA

The references [1, 2, 3], [4, 5, 6, 7, 8], and [9, 10] are used for all of the fundamental definitions.

A NIm.Fi is a non-empty subset of LPWA \mathcal{A}_1 defined by \mathcal{F}_1 .Then it satisfies $\acute{x} \mapsto \acute{y}$ iff $\acute{x} \rightsquigarrow \acute{y} \in \mathcal{F}_1 \forall \acute{x}, \acute{y} \in \mathcal{A}_1$.

2.1. Example: The quasi complements and binary operations of the poset

 $\{0, p_1, q_1, 1\}$ with $0 \le p_1 \le q_1 \le 1$. (Refer table in [5])

The table [5] shows that, $\mathcal{F}_{1_1} = \{0,1\}$ is a NIm.Fi of \mathcal{A}_1 .

But $\mathcal{F}_{1_2} = \{p_1, q_1\}$ is not a NIm.Fi of \mathcal{A}_1 .

Since,
$$(p_1 \mapsto q_1) = 1 \notin \mathcal{F}_{1_2} \& (p_1 \rightsquigarrow q_1) = 1 \notin \mathcal{F}_{1_2}.$$

- **2.2. Proposition:** Let \mathcal{F}_1 be a non-empty subset of \mathcal{A}_1 and \mathcal{A}_1 be a LPWA. Then \mathcal{F}_1 is a NIm.Fi of \mathcal{A}_1 iff the following circumstances are true $\forall \ \acute{x}, \acute{y}, \acute{z} \in \mathcal{A}_1$.
- (i) $1 \in \mathcal{F}_1$
- (ii) $\dot{y} \in \mathcal{F}_1 \& \dot{x} \mapsto (\dot{y} \rightsquigarrow \dot{z}) \in \mathcal{F}_1 \Rightarrow \dot{x} \rightsquigarrow \dot{z} \in \mathcal{F}_1$
- (iii) $\dot{y} \in \mathcal{F}_1 \& \dot{x} \rightsquigarrow (\dot{y} \mapsto \dot{z}) \in \mathcal{F}_1 \Rightarrow \dot{x} \mapsto \dot{z} \in \mathcal{F}_1.$

Proof for (i): Fix, $\acute{x} \mapsto (\acute{y} \rightsquigarrow \acute{z}) \in \mathcal{F}_1$ and $\acute{y} \in \mathcal{F}_1$

We have
$$\dot{y} \rightsquigarrow (\dot{x} \mapsto \dot{z}) = \dot{x} \mapsto (\dot{y} \rightsquigarrow \dot{z}) \in \mathcal{F}_1$$

(By reference [1])

Thus $\acute{y} \rightsquigarrow (\acute{x} \mapsto \acute{z}) \in \mathcal{F}_1 \Rightarrow \acute{x} \rightsquigarrow \acute{z} \in \mathcal{F}_1$

(By reference [3])

In similar manner, $(\acute{x} \mapsto \acute{z}) \in \mathcal{F}_1$.

Conversely, suppose that \mathcal{F}_1 satisfies (i),(ii) and (iii)

 $A_1 =$

To prove \mathcal{F}_1 is a NIm.Fi of LPWA \mathcal{A}_1 .

Let
$$\dot{x} \in \mathcal{F}_1, \dot{x} \mapsto \dot{y} \in \mathcal{F}_1$$
 then both $\dot{x}, 1 \rightsquigarrow (\dot{x} \mapsto \dot{y}) \in \mathcal{F}_1$ (By reference [1])

From (ii), we have $1 \mapsto \circ \in \mathcal{F}_1$

So
$$\acute{y} \in \mathcal{F}_1$$
. (By reference [3])

Let $\dot{x} \mapsto \dot{y} \in \mathcal{F}_1$, to prove $\dot{x} \rightsquigarrow \dot{y} \in \mathcal{F}_1$

Let
$$\dot{x} \leq (\dot{x} \mapsto \dot{y}) \rightsquigarrow \dot{y}$$
 and by reference [1], we have $\dot{x} \mapsto ((\dot{x} \mapsto \dot{y}) \rightsquigarrow \dot{y}) = 1 \in \mathcal{F}_1$

From (ii), we have $\dot{x} \rightsquigarrow \dot{y} \in \mathcal{F}_1$

Let
$$\dot{x} \rightsquigarrow \dot{y} \in \mathcal{F}_1$$
; $\dot{x} \leq (\dot{x} \rightsquigarrow \dot{y}) \mapsto \dot{y}$ then by reference [1], $\dot{x} \rightsquigarrow ((\dot{x} \rightsquigarrow \dot{y}) \mapsto \dot{y}) = 1 \in \mathcal{F}_1$

From (iii), $\dot{x} \mapsto \dot{y} \in \mathcal{F}_1$

Thus \mathcal{F}_1 is a NIm.Fi of LPWA.

- **2.3. Proposition:** If an Im.Fi \mathcal{F}_1 of \mathcal{A}_1 is a NIm.Fi, then the following conditions hold $\forall \dot{x}, \dot{y} \in \mathcal{A}_1$
- (i) $\dot{x} \in \mathcal{F}_1 \& (\dot{x} \mapsto \dot{y}) \mapsto \dot{y} \in \mathcal{F}_1$
- (ii) $\dot{x} \in \mathcal{F}_1 \& (\dot{x} \leadsto \dot{y}) \leadsto \dot{y} \in \mathcal{F}_1.$

Proof for (i): If \mathcal{F}_1 is a NIm.Fi of LPWA \mathcal{A}_1 , $\acute{x} \in \mathcal{F}_1$ and $\acute{x} \leq (\acute{x} \leadsto \acute{y}) \leadsto \acute{y}$ then by reference [1], we have $(\acute{x} \leadsto \acute{y}) \leadsto \acute{y} \in \mathcal{F}_1$

From the definition of NIm.Fi, we have $(\acute{x} \mapsto \acute{y}) \mapsto \acute{y} \in \mathcal{F}_1$

In similar manner, we can prove that $(\acute{x} \leadsto \acute{y}) \leadsto \acute{y} \in \mathcal{F}_1$.

3. NFIm.Fi of LPWA

An Inconstant FIm.Fi ϕ_1 of LPWA \mathcal{A}_1 is known as a normal fuzzy, if $\phi_1(x) = \phi_1(1) \ \forall \ x_1 \in \mathcal{A}_1$.

- **3.1. Example:** Take the collection $\mathcal{A}_1 = \{0, s_1, t_1, u_1, 1\}$. Create a partial ordering " \leq " on \mathcal{A}_1 that includes the binary operations " \mapsto "," " \Longrightarrow " and quasi complements "=", "=" such that $0 \leq s_1 \leq t_1$, $u_1 \leq 1$.
- $\text{(i) Take into consideration a fuzzy } \phi_1 \text{ on } \mathcal{A}_1 \text{ as, } \phi_1(\acute{x}) = \begin{array}{ll} 1 & \text{if } \ \acute{x} = 1 \\ 0.4 & \text{Otherwise} \end{array} \forall \ \acute{x} \in \mathcal{A}_1.$

Then, ϕ_1 is a NIm.Fi of LPWA \mathcal{A}_1 . Refer table in [5]

(ii) If
$$\phi_1(\acute{x}) = \left\{ egin{array}{ll} & \text{if} & \acute{x} = 1 \\ 0.2 & \text{Otherwise} \end{array} \right. \ \, \forall \ \acute{x} \in \mathcal{A}_1.$$
 Then, ϕ_1 is not a NFIm.Fi of LPWA \mathcal{A}_1 .

Refer table in [5]

3.2. Proposition: Define a fuzzy set ϕ_1^* in \mathcal{A}_1 as $\phi_1^*(x) = \phi_1(x) + 1 - \phi_1(1) \ \forall \ x \in \mathcal{A}_1$. Then ϕ_1^* is NFIm.Fi ϕ_1 of \mathcal{A}_1 such that $\phi_1 \subseteq \phi_1^*$ with ϕ_1 is a NFIm.Fi of LPWA.

Proof. To demonstrate that, ϕ_1^* is NFIm.Fi of LPWA \mathcal{A}_1 .

(i) Let
$$\phi_1^*(1) = \phi_1(1) + 1 - \phi_1(1) = 1 \ge \phi_1^*(x)$$

$${\phi_1}^{\star}(1) \ge {\phi_1}^{\star}(\acute{x})$$

(ii) To prove $\phi_1^*(\dot{y}) = \phi_1(\dot{y}) \ge \min \{ \phi_1^*(\dot{x} \mapsto \dot{y}), \phi_1^*(\dot{x}) \}$

Now $\phi_1^*(\dot{y}) = \phi_1(\dot{y}) + 1 - \phi_1(1)$

$$\geq \min \left\{ \left(\phi_1(\dot{x} \mapsto \dot{y}), \phi_1(\dot{x}) \right) \right\} + 1 - \phi_1(1)$$

$$= \min \left\{ \phi_1(\dot{x}) + 1 - \phi_1(1), \phi_1(\dot{x} \mapsto \dot{y}) + 1 - \phi_1(1) \right\}$$
(By reference [4])

Thus $\phi_1^*(\dot{y}) = \min \{ \phi_1^*(x_1 \mapsto y_1), \phi_1^*(\dot{x}) \}$

(iii) To prove that $\phi_1^*(\dot{y}) = \phi_1(\dot{y}) \ge \min \{\phi_1^*(\dot{x} \leadsto \dot{y}), \phi_1^*(\dot{x})\}\$

Now $\phi_1^*(\dot{y}) = \phi_1(\dot{y}) + 1 - \phi_1(1)$

$$\geq \min \left\{ \left(\phi_1(\acute{x} \leadsto \acute{y}), \phi_1(\acute{x}) \right) \right\} + 1 - \phi_1(1)$$
 (By reference [4])
$$= \min \left\{ \phi_1(\acute{x}) + 1 - \phi_1(1), \phi_1(\acute{x} \leadsto \acute{y}) + 1 - \phi_1(1) \right\}$$

 $\phi_1^*(\acute{y}) = \min \{ \phi_1^*(\acute{x} \leadsto \acute{y}), \phi_1^*(\acute{x}) \}$

Thus ϕ_1^* is a FIm.Fi of LPWA \mathcal{A}_1 .

Clearly $\phi_1^*(\dot{x}) = \phi_1^*(1) \ \forall \dot{x} \in \mathcal{A}_1$.

 ϕ_1^* is NFIm.Fi of LPWA \mathcal{A}_1 .

Thus, it is obvious that $\phi_1(x) \subseteq {\phi_1}^*(x) \ \forall \ x \in \mathcal{A}_1$.

- **3.3. Remark:** Let $(\mathcal{A}_1, \mapsto, \neg, \uparrow)$, (1) be a LPWA and $\mathcal{M}_1: X_1 \mapsto Y_1$ be an onto homomorphism for any FIm.Fi of ϕ_1 in Y, define a mapping $\phi_1^{\mathcal{M}_1}: X_1 \mapsto [0,1]$ such that $\phi_1^{\mathcal{M}_1}(x) = \phi_1(\mathcal{M}_1(x)) \forall x \in \mathcal{A}_1$.
- **3.4. Proposition:** Let \mathcal{A}_1 be a LPWA and $\mathcal{H}_1: X_1 \mapsto Y_1$ be an onto homomorphism for any FIm.Fi of ϕ_1 in Y_1 , define a mapping $\phi_1^{h_1}: X_1 \mapsto [0,1]$ such that $\phi_1^{h_1}(\dot{x}) = \phi_1(h_1(\dot{x})) \quad \forall \ \dot{x} \in \mathcal{A}_1$. Then ϕ_1 is a NFIm.Fi of LPWA \mathcal{A}_1 iff $\phi_1^{h_1}$ is a NFIm.Fi of LPWA \mathcal{A}_1 .

Proof.

(i)
$$\phi_1^{h_1}(1) = \phi_1(h_1(1)) = \phi_1(1) \ge \phi_1(h_1(x)) = \phi_1^{h_1}(x) \ \forall \ x \in \mathcal{A}_1$$

$$(\mathrm{ii})\phi_1^{\,\ell_1}(\circ) = \phi_1\big(\ell_1(\circ)\big) \ge \min\big\{\phi_1\big(\ell_1(\circ) \mapsto \ell_1(\circ)\big), \phi_1\big(\ell_1(\circ)\big)\big\}$$

$$=\min\left\{\phi_1\big(\hbar_1(\acute{x} \mapsto \acute{y})\big),\phi_1\big(\hbar_1(\acute{x})\big)\right\}$$

$$\phi_1^{\ \hbar_1}(\circ) = \min \left\{ \phi_1^{\ \hbar_1}(\circ \mapsto \circ), \phi_1^{\ \hbar_1}(\circ) \right\} \forall \ \circ, \circ \in \mathcal{A}_1$$

$$\begin{aligned} (\mathrm{iii})\phi_1^{\ \ \hbar_1}(\circ) &= \phi_1\big(\hbar_1(\circ)\big) \geq \min\big\{\phi_1\big(\hbar_1(\circ) \rightsquigarrow \hbar_1(\circ)\big), \phi_1\big(\hbar_1(\circ)\big)\big\} \\ &= \min\big\{\phi_1\big(\hbar_1(\circ \rightsquigarrow \circ)\big), \phi_1\big(\hbar_1(\circ)\big)\big\} \end{aligned}$$

$$\phi_1{}^{\hbar_1}(\circ) = \min\left\{\phi_1{}^{\hbar_1}(\circ \leadsto \circ), \phi_1{}^{\hbar_1}(\circ)\right\} \forall \circ \circ, \circ \in \mathcal{A}_1.$$

Hence $\phi_1^{h_1}$ is a FIm.Fi of LPWA \mathcal{A}_1

To prove $\phi_1^{\ \ell_1}$ is a NFIm.Fi of LPWA \mathcal{A}_1 , We have $\phi_1^{\ \ell_1}(\circ) = \phi_1(\ell_1(1)) = \phi_1^{\ \ell_1}(1) = 1$

Thus $\phi_1^{h_1}$ is NFIm.Fi of LPWA \mathcal{A}_1

Conversely, suppose $\phi_1^{h_1}$ is a NFIm.Fi of LPWA \mathcal{A}_1

To prove ϕ_1 is a NFIm.Fi of LPWA \mathcal{A}_1

(i) If h_1 is onto, then there exist $\dot{x} \in A_1$ such that $h_1(\dot{y}) = \dot{x}$.

We have

$$\phi_1(1) = \phi_1(h_1(1)) = \phi_1^{h_1}(1) \ge \phi_1^{h_1}(\dot{y}) = \phi_1^{h_1}(h_1(\dot{y})) = \phi_1(\dot{x}) \forall \dot{x}, \dot{y} \in \mathcal{A}_1$$

(ii) If h_1 is onto, then there exist $\dot{x}, \dot{y} \in \mathcal{A}_1$ such that $h_1(a) = \dot{x}$ and $h_1(a) = \dot{y}$

We have
$$\phi_1(\circ) = \phi_1(\hbar_1(b)) = \phi_1^{\,\,\hbar_1}(b) \ge \min\{\phi_1^{\,\,\hbar_1}(a \mapsto b), \phi_1^{\,\,\hbar_1}(a)\}$$

$$= \min \left\{ \phi_1 (\hbar_1(a) \mapsto \hbar_1(b)), \phi_1 (\hbar_1(a)) \right\}$$

$$\phi_1(\acute{y}) = \min \left\{ \phi_1(\acute{x} \mapsto \acute{y}), \phi_1(\acute{x}) \right\} \forall \acute{x}, \acute{y} \in \mathcal{A}_1.$$

(iii) If
$$h_1$$
 is onto, then there exist $\dot{x}, \dot{y} \in \mathcal{A}_1$ such that $h_1(a) = \dot{x}$ and $h_1(a) = \dot{y}$

We have
$$\phi_1(\acute{y}) = \phi_1(\hbar_1(b)) = \phi_1^{\hbar_1}(b) \ge \min\{\phi_1^{\hbar_1}(a \leadsto b), \phi_1^{\hbar_1}(a)\}$$

$$= \min \left\{ \phi_1 \left(h_1(a) \rightsquigarrow h_1(b) \right), \phi_1 \left(h_1(a) \right) \right\}$$

$$\phi_1(\circ) = \min \left\{ \phi_1(\circ \leadsto \circ), \phi_1(\circ) \right\} \forall \ \acute{x}, \circ \in \mathcal{A}_1.$$

Hence ϕ_1 is FIm.Fi of LPWA \mathcal{A}_1 .

We have $\phi_1(1^1) = \phi_1((1)) = \phi_1^{h_1}(1) = 1$ (since $\phi_1^{h_1}$ is normal)

Thus ϕ_1 is NFIm.Fi of LPWA \mathcal{A}_1 .

4. Cartesian product of FIm.Fi

4.1. Proposition: Let ϕ_1 and ψ_1 be two FIm.Fi 's of a LPWA \mathcal{A}_1 . Then $\phi_1 \times \psi_1$ is a FIm.Fi in $\mathcal{A}_1 \times \mathcal{A}_1$. *Proof.*

Let $(\dot{x}, \dot{y}) \in \mathcal{A}_1 \times \mathcal{A}_1$. Since ϕ_1 and ψ_1 be two FIm.Fi 's in \mathcal{A}_1 .

We have $(\phi_1 \times \psi_1)(1,1) = \min\{\phi_1(1), \psi_1(1)\} \ge \min\{\phi_1(\hat{x}), \psi_1(\hat{y})\} \ \forall \ \hat{x}, \hat{y} \in \mathcal{A}_1$

$$(\phi_1\times\psi_1)(1,1)=(\phi_1\times\psi_1)(\dot{x},\dot{y})$$

Let $(\dot{x}, \dot{x}^*), (\dot{y}, \dot{y}^*) \in \mathcal{A}_1 \times \mathcal{A}_1$

Clearly
$$(\dot{x} \mapsto \dot{y}, \dot{x}^* \mapsto \dot{y}^*) = (\dot{x}, \dot{x}^*) \mapsto (\dot{y}, \dot{y}^*); (\dot{x}, \dot{x}^*) \rightsquigarrow (\dot{y}, \dot{y}^*)$$

$$(\phi_1 \times \psi_1)(\dot{x}, \dot{y}) = \min\{\phi_1(\dot{x}), \psi_1(\dot{y})\}\$$

$$(\phi_1 \times \psi_1)(\dot{y}, \dot{y}^*) = \min\{\phi_1(\dot{y}), \psi_1(\dot{y}^*)\}$$

$$= \min \{ \min \{ \phi_1(\dot{x}), \phi_1(\dot{x} \mapsto \dot{y}) \}, \min \{ \psi_1(\dot{x}^*), \psi_1(\dot{x}^* \mapsto \dot{y}^*) \} \}$$

$$= \min \{ \min \{ \phi_1(\dot{x}), \psi_1(\dot{y}^*) \}, \min \{ \phi_1(\dot{x} \mapsto \dot{y}), \psi_1(\dot{x}^* \mapsto \dot{y}^*) \} \}$$

Vol. 44 No. 6 (2023)

$$= \min\{(\phi_1 \times \psi_1)(\acute{x}, \acute{x}^\star), (\phi_1 \times \psi_1)(\acute{x} \mapsto \acute{y}, \acute{x}^\star \mapsto \acute{y}^\star)\}$$

$$(\phi_1 \times \psi_1)(\acute{y}, \acute{y}^\star) = \min\left\{(\phi_1 \times \psi_1)(\acute{x}, \acute{x}^\star), (\phi_1 \times \psi_1)\left((\acute{x}, \acute{x}^\star) \mapsto \left((\acute{y}, \acute{y}^\star)\right)\right)\right\}$$
 Similarly,

$$(\phi_1 \times \psi_1)(\dot{y}, \dot{y}^*) = \min\{(\phi_1 \times \psi_1)(\dot{x}, \dot{x}^*), (\phi_1 \times \psi_1)((\dot{x}, \dot{x}^*) \rightsquigarrow (\dot{y}, \dot{y}^*))\}$$

Thus $\phi_1 \times \psi_1$ is a FIm.Fi of LPWA \mathcal{A}_1 .

4.2. Proposition: Let ϕ_1 be a FIm.Fi of a LPWA \mathcal{A}_1 and $\phi_{1\psi_1}$ be the strongest fuzzy relation on \mathcal{A}_1 . Then ψ_1 is a FIm.Fi of a LPWA \mathcal{A}_1 iff $\phi_{1\psi_1}$ is a FIm.Fi of a LPWA of $\mathcal{A}_1 \times \mathcal{A}_1$.

Proof.

(i)
$$\phi_{1\psi_1}(\acute{x}, \acute{y}) = \min\{\psi_1(\acute{x}), \psi_1(\acute{y})\} \le \min\{\psi_1(1), \psi_1(1)\}$$

$$\phi_{1\psi_1}(\acute{x}, \acute{y}) \le \phi_{1\psi_1}(1,1)$$

$$\begin{split} \text{(ii)} \qquad & \text{Let } (\acute{x}, \acute{x}^{\star}), (\acute{y}, \acute{y}^{\star}) \in \mathcal{A}_{1} \times \mathcal{A}_{1} \\ \phi_{1_{\psi_{1}}}(\acute{y}, \acute{y}^{\star}) &= \min\{\psi_{1}(\acute{y}), \psi_{1}(\acute{y}^{\star})\} \geq \min\{\min\{\psi_{1}(\acute{x}), \psi_{1}(\acute{x} \mapsto \acute{y})\}, \min\{\psi_{1}(\acute{x}^{\star}), \psi_{1}(\acute{x}^{\star} \mapsto \acute{y}^{\star})\}\} \\ &= \min\{\min\{\psi_{1}(\acute{x}), \psi_{1}(\acute{x}^{\star})\}, \min\{\psi_{1}(\acute{x} \mapsto \acute{y}), \psi_{1}(\acute{x}^{\star} \mapsto \acute{y}^{\star})\}\} \\ &= \min\left\{\phi_{1_{\psi_{1}}}\big((\acute{x}, \acute{x}^{\star})\big), \phi_{1_{\psi_{1}}}(\acute{x} \mapsto \acute{y}, \acute{x}^{\star} \mapsto \acute{y}^{\star})\right\} \\ &= \min\left\{\phi_{1_{\psi_{1}}}\big((\acute{x}, \acute{x}^{\star})\big), \phi_{1_{\psi_{1}}}(\acute{x} \mapsto \acute{y}; \acute{x}^{\star} \mapsto \acute{y}^{\star})\right\} \end{split}$$

$$\phi_{1\psi_{1}}(\acute{y},\acute{y}^{\star}) = \min \left\{ \phi_{1\psi_{1}}(\acute{x},\acute{x}^{\star}), \phi_{1\psi_{1}}((\acute{x},\acute{x}^{\star}) \mapsto (\acute{y},\acute{y}^{\star})) \right\}$$

Similarly,
$$\phi_{1\psi_1}(\acute{y}, \acute{y}^*) = \min \left\{ \phi_{1\psi_1}(\acute{x}, \acute{x}^*), \phi_{1\psi_1}((\acute{x}, \acute{x}^*) \rightsquigarrow (\acute{y}, \acute{y}^*)) \right\}$$

Therefore $\phi_{1\psi_1}$ is a FIm.Fi of LPWA of $\mathcal{A}_1 \times \mathcal{A}_1$.

Conversely, suppose $\phi_{1_{\psi_1}}$ is a FIm.Fi of LPWA of $\mathcal{A}_1 \times \mathcal{A}_1$.

Then

(i)
$$\psi_1(1) \le \min\{\psi_1(1), \psi_1(1)\}$$

$$\phi_{1\psi_{1}}(1,1) \geq \phi_{1\psi_{1}}(\acute{x},\acute{x}) = \min\{\psi_{1}(\acute{x}),\psi_{1}(\acute{y})\} = \psi_{1}(\acute{x})$$

$$\psi_1(1) \geq \psi_1(\dot{x}) \ \forall \dot{x} \in \mathcal{A}_1.$$

$$\begin{split} (ii) \qquad & \psi_1(y_1) \leq \min\{\psi_1(\circ), \psi_1(1)\} = \phi_{1\psi_1}(y_1, 1) \\ & \geq \min\left\{\phi_{1\psi_1}(\circ, 1), \phi_{1\psi_1}\big((\circ, 1) \mapsto (\circ, 1)\big)\right\} \\ & = \min\left\{\phi_{1\psi_1}(\circ, 1), \phi_{1\psi_1}\big((\circ, \circ) \mapsto (1, 1)\big)\right\} = \min\{\min\{\psi_1(\circ), \psi_1(1)\}, \min\{\psi_1(\circ, \psi), \psi_1(1)\}\} \\ & \psi_1(\circ) = \min\{\psi_1(\circ), \psi_1(\circ, \psi)\} \end{split}$$

$$\begin{split} (\text{iii}) \qquad & \psi_{1}(\circ) \leq \min\{\psi_{1}(\circ), \psi_{1}(1)\} = \phi_{1\psi_{1}}(\circ, 1) \\ & \geq \min\left\{\phi_{1\psi_{1}}(\circ, 1), \phi_{1\psi_{1}}\big((\circ, 1) \rightsquigarrow (\circ, 1)\big)\right\} \\ & = \min\left\{\phi_{1\psi_{1}}(\circ, 1), \phi_{1\psi_{1}}\big((\circ, \circ) \rightsquigarrow (1, 1)\big)\right\} \\ & = \min\{\min\{\psi_{1}(\circ), \psi_{1}(1)\}, \min\{\psi_{1}(\circ \rightsquigarrow \circ), \psi_{1}(1)\}\right\} \\ & \psi_{1}(\circ) = \min\{\psi_{1}(\circ), \psi_{1}(\circ \rightsquigarrow \circ)\} \end{split}$$

Hence ψ_1 is a FIm.Fi of LPWA \mathcal{A}_1 .

4.3. Proposition: Let ψ_1 be a FIm.Fi of a LPWA \mathcal{A}_1 and $\phi_{1\psi_1}$ the strongest fuzzy relation on \mathcal{A}_1 . If ψ_1 is NFIm.Fi of a LPWA \mathcal{A}_1 , then $\phi_{1\psi_1}$ is NFIm.Fi of a LPWA $\mathcal{A}_1 \times \mathcal{A}_1$.

Proof.

$$\begin{split} \phi_{1_{\psi_{1}}}(1,1) &= \min\{\psi_{1}(1),\psi_{1}(1)\} \geq \min\{\psi_{1}(\acute{x}),\psi_{1}(\acute{y})\} = \phi_{1_{\psi_{1}}}(\acute{x},\acute{y}) \\ \phi_{1_{\psi_{1}}}(1,1) &= \phi_{1_{\psi_{1}}}(\acute{x},\acute{y}) \\ \text{Let } (\acute{x},\acute{y}) &\in \mathcal{A}_{1} \times \mathcal{A}_{1} \\ \phi_{1_{\psi_{1}}}(z_{1},w) &= \min\{\psi_{1}(\acute{z}),\psi_{1}(w)\} \geq \min\{\min\{\psi_{1}(x_{1}),\psi_{1}(\acute{x} \mapsto \acute{z})\},\min\{\psi_{1}(\acute{y}),\psi_{1}(\acute{y} \mapsto w)\} \end{split}$$

ISSN: 1001-4055 Vol. 44 No. 6 (2023)

$$= \min \bigl\{ \min \bigl\{ \psi_1(\acute{x}), \psi_1(\acute{y}) \bigr\}, \min \bigl\{ \psi_1(\acute{x} \mapsto \acute{z}), \psi_1(\acute{y} \mapsto w) \bigr\} \bigr\}$$

$$= \min \left\{ \phi_{1\psi_1}(\acute{x}, \acute{y}), \phi_{1\psi_1}(\acute{x} \mapsto \acute{z}, \acute{y} \mapsto w) \right\}$$

$$\phi_{1\psi_1}(\acute{z}, w) = \min \bigl\{ \phi_{1\psi_1}(\acute{x}, \acute{y}), \phi_{1\psi_1}\bigl((\acute{x}, \acute{y}) \mapsto (\acute{z}, w)\bigr) \bigr\}$$
Let $(\acute{x}, \acute{y}) \in \mathcal{A}_1 \times \mathcal{A}_1$

$$\phi_{1\psi_1}(\acute{z}, w) = \min \bigl\{ \psi_1(\acute{z}), \psi_1(w) \bigr\} \geq \min \bigl\{ \min \bigl\{ \psi_1(\acute{x}), \psi_1(\acute{x} \leadsto \acute{z}) \bigr\}, \min \bigl\{ \psi_1(\acute{y}), \psi_1(\acute{y} \leadsto w) \bigr\} \bigr\}$$

$$= \min \bigl\{ \min \bigl\{ \psi_1(\acute{x}), \psi_1(\acute{y}) \bigr\}, \min \bigl\{ \psi_1(\acute{x} \leadsto \acute{z}), \psi_1(\acute{y} \leadsto w) \bigr\} \bigr\}$$

$$= \min \bigl\{ \phi_{1\psi_1}(\acute{x}, \acute{y}), \phi_{1\psi_1}(\acute{x} \leadsto \acute{z}, \acute{y} \leadsto w) \bigr\}$$

$$\phi_{1\psi_1}(\acute{z}, w) = \min \bigl\{ \phi_{1\psi_1}(\acute{x}, \acute{y}), \phi_{1\psi_1}\bigl((\acute{x}, \acute{y}) \leadsto (\acute{z}, w)\bigr) \bigr\}$$
Therefore, $\phi_{1\psi_1}$ is FIm.Fi of LPWA $\mathcal{A}_1 \times \mathcal{A}_1$.
Also $\phi_{1\psi_1}(1, 1) = \min \bigl\{ \psi_1(1), \psi_1(1) \bigr\} = \min \bigl\{ 1, 1 \bigr\} = 1$.
Hence $\phi_{1\psi_1}$ is a NFIm.Fi of LPWA $\mathcal{A}_1 \times \mathcal{A}_1$.

References

- [1] Ceterchi Rodica, *The Lattice Structure of Pseudo-Wajsberg Algebras*, Journal of universal Computer Science, 6 (2000), 22-38.
- [2] Font, J. M., Rodriguez, A. J., and Torrens, A., Wajsberg algebras, Stochastica, 8 (1984), 5-31
- [3] Ibrahim, A., and Jeya Lekshmi, K., *Implicative Filters of lattice pseudo-Wajsberg Algebras*, Global Journal of Pure and Applied Mathematics, 14(2018), 1-15
- [4] Ibrahim, A., and Jeya Lekshmi, K., *Fuzzy Implicative Filters of lattice pseudo-Wajsberg Algebras*, International Journal of Mathematical Archive, 5(2018), 42-48.
- [5] Ibrahim, A., and Jeya Lekshmi, K., *Pseudo-Boolean and Fuzzy Pseudo-Boolean Implicative Filters of Lattice Pseudo-Wajsberg Algebras*, Advances in Mathematics: Scientific Journal,8 (2019), 307-316.
- [6] Ibrahim, A., and Jeya Lekshmi, K., *Intuitionistic Fuzzy Pseudo-Boolean Implicative Filters of Lattice Pseudo-Wajsberg Algebras*, International Journal of Engineering and Advanced Technology, 9 (2019), 246-250.
- [7] Ibrahim, A., and Indhumathi., *PWI-Ideals of lattice pseudo-Wajsberg Algebra*, Advances in Theoretical and Applied Mathematics, 13(2018), 1-14.
- [8] Ibrahim, A., and Indhumathi., *Classes of p-ideals of lattice pseudo-Wajsberg Algebra*, International Journal of Research in Advent Technology, 7(2019).
- [9] Wajsberg, M., Beiträge zum Metaaussagenkalkül I, Monat. Mat. Phys. 42, (1935), 221-242.
- [10] Zadeh, L. A., *Fuzzy sets*, Information Control 8 (1965), 338-353.