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Abstract : This paper emphasizes the characteristics and effectiveness of PSQO in attaining the optimal solution
in economic dispatch of thermal units in a deregulated market. Economic dispatch plays a major role in the
arena of complex power system achieving minimum fuel costs of thermal units while satisfying the equality
and non-equality constraints. The merits of deregulation due to competitive bidding like market efficiency and
cost minimization with faster time is exclusively anticipated in the competitive system at present. The robustness
of the PSO is tested by altering the learning factors and inertia factors and the results are being assessed with
two test cases for 3 thermal units with population size of 1000 and 5000 using a demand of 850 MW and two
test cases with 1000 MW for 3 and 8 thermal units with a similar population size. The outcome show that PSO
has the ability and effectiveness in reaching optima by selecting proper learning and inertia weight factors.
Keywords: Economic Dispatch, particle swarm optimization, deregulation

1. INTRODUCTION

Exponentially increasing energy demand, scarcity of energy resources, depleting fossil fuels demands
economic dispatch in today’s power system[16]. Ever increasing electricity demand and a complex power system
need an open market resulting into a deregulated environment. The significance of deregulation in the power
system coupled with knowledge-based information and technologies can help to revive the benefits to the supplier
and the end user[24]. When the utility companies are no longer a monopoly due to deregulation, it exhibits a
competitive market for the participants and the consumers. It enables the market efficiency and reduces the costs
to the supplier directly benefitting end users with a reduced energy price[25].The thermal units competing in the
deregulated energy market are called as bidders which must meet the demand optimally through a process called
as auction. Auction based[21] economic dispatch necessitated to achieve the optimal solution while the bidder’s
minimum fuel requirements is fulfilled. In this context, solution for the operation power system by economic
dispatch forms an amicable part as visible by the interest shown by various researchers. Power systems analysis
combines a highly nonlinear and computationally difficult environment with a need for optimality. Heuristic
methods, has the apparent ability to adapt to nonlinearities and discontinuities found commonly in large systems.
Economic dispatch defines the necessity of the power system to commit the units within operating limits such
that the total cost is minimized while fulfilling the demand and satisfying the operating constraints both the
equality and non-quality [1] constraints. Any positive corrections in scheduling the units helps to save significant
amount which helps to transfer the savings to the consumers. Deregulated power system initiates a vital role in
achieving minimal costs offering a competitive bidding among the various bidders. The task of obtaining the
optimal solutions by the most available mathematical methods such as dynamic programming, linear
programming, homogenous linear programming, and nonlinear programming techniques[2], [3]-[7] requires the
cost characteristics of each generator to be approximated by a simple quadratic function. However, due to the
local optimality stucking of these methods deprive an optimal outcome and suffer from the distotions of
dimensionality and local optimality[1]. The resemblance of swarm of bird and fish schooling [8] was adopted by
Russell Eberhart and James Kennedy in the form of particle swarm optimization (PSO). The survival of the species
in a swarm is maximised by the PSO by mimicking the behaviour of the individuals. In PSO,own experience and
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others experience is used by the individual to make his decisions[8]. Compared to other conventional and heuristic
methods, PSO are assumed to be as easier concept, simpler implementation, stronger to control parameters,
effective memory capability, efficient in maintaining the diversity of the swarm[13] and computational efficiency.
As compared to other meta heuristic algorithms, PSO evaluation is simple as it takes no or fewer assumptions for
optimizing the solution process[14]. It takes measure of quality as improvement of the solution by taking a
iterative optimization[15] It is a stochastic-based search technique based on artificial life and social psychology,
as well as in engineering and computer science. The utilization of a “population,” called particles, which moves
through the problem search space with given velocities and in each iteration, velocities are randomly adjusted
considering the tangible best location for the particle itself and the surrounding best position [4,9] (both of them
expressed according to a predefined fitness function). Then, the flow of each particle naturally evolves to an
optimal or near-optimal solution. The existing property of the PSO does not require any crossover and mutation
probabilities. Speed of the particle pushes the search process and the most finer particle carries the information to
the next particle in the swarm[15] with a faster speed. Its ability to obtain faster convergence rate to global solution
and greater potential to achieve global solutions to economic dispatch problems is visible by the enormous work
and acknowledgements by the researchers worldwide[17,18].

This paper considers the effect of change of learning factors and inertia weight on the quality of the
convergence characteristics of PSO. The strength of the learning factors to replicate the enhanced features are
proven[19].The selection of identical learning factors to achieve successful convergence of the PSO is evident
in[19]. An extensive work needs to be extended to determine the nature of asymmetric learning factors. The effect
of addition of inertia weight factor to balance the global exploration and local exploitation was introduced[10]
and validated with decreasing inertia weights. Several authors have attempted to attain the fast convergence using
random inertia weights and decreasing inertia weights[20]. Two cases have been chosen in this paper by
considering two different population sizes. Case 1 is considered with similar and varying learning factors but with
increasing inertia weights. .Case 2 takes into account varying and similar learning factors and constant inertia
weights. Both the cases simulated with a population size of 1000 and 5000 respectively.

2. PROBLEM FORMULATION
In the bidding process of the deregulated market, the seller cost of the thermal plants is the bidden
cost[22,23] as given in equation (1) and the incremental cost function bidding cost is given in equation (2).

F(Pg) = a;+ bPy+ c,Pl, W

where @i, Biand €: are the coefficients of the cost of the ith generating system.
Bidden cost function or the incremental cost is

1¢(P,;) = b; +2c,P,, ®
The economic dispatch problem for deregulated environment can be defined as follows,
Minimize the bidden cost function,

B
F= 25:5'1 Fl’(Pgi] 3)
Where Ff[Pe’-‘fjis the bidden cost of the ith generating(seller)
unit,PSfthe real output of the ith unit, and Ng is the

number of (sellers)units in the system.

The net power generated by all units in the system is because of the total load in the system and the network loss.
The power generated by each unit should exist between its maximum output power and minimum output power,
that is:

N —
Xt Poi =Pp+ Py (@)
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Pimin<Pgi < Pimx 1E[LNg] )

P gi is the algebraic sum of the system generation, Pp is the total system demand, Py is the transmission losses.

Neglecting the transmission losses and considering the generator capacity limits, economic dispatch problem is
formulated[22].

3. SOLUTIONS METHODS USED: PARTICLE SWARM OPTIMIZATION

PSO algorithm with a predetermined amount of swarm or particles explore with certain position and
velocity move in a known search space. Each of the particle thus exploring is a possible solution. The objective
function has to utilise the optimization process such that each particle during the process knows its best positon
known as Personal Best(Pbest). Similarly, the best position attained by the group or the other particles is called as
Global Best(Gbest)
Velocity equation is given below,
V(i) = wV;(i —1) + ¢47 [Ppece; — X;(i —
D]+ corofGpese — X;(i —1)]

(6)

where,j =1,3..,.Ng

here

cl,c2 arecognitive andsocial

learning factors

r1,r2areuniformy distributed
randoms inrange0 and 1

wistheinertiaweight factor

Position update equation is given below
X:(0) = X;(i —1)+ V(i) @)

Here the particles (X) are the generator values and the fitness are the equation (1) which is cost minimization.
The global best value is identified using the PSO algorithm. The steps considered are

1. Initialize the swarm population (control variable ‘X’ (generated power Pg)) as Ng.

Take initial population of X within the power limit and initial velocity of the particle Vi

as zero.

Each population fitness (Fuel cost F) is calculated. Find the new velocities and increment the count.
The Personal Best (Pbest) of each population due to fitness are assigned to each X value. The lower
cost of X value is taken as Global Best (Gbest). Calculate the velocity function as represented by the
equation (6).

6. Update the value of X shown by equation (7).

7. Go to step 3 and repeat until the stop criteria. Stopping criteria is the total number of iterations. The

final result is the final Gbest value.

o~ wd

4. RESULTS AND DISCUSSION

This section presents the results of simulation of two sets of 3 and 8 test thermal units subjected to test
the performance of PSO in a deregulated set up. The effectiveness of the algorithm in the pursuit of optimal
solution is evaluated with two test cases of population size of 1000 and 5000 with 10 runs by taking constant
inertia weight factor and variable learning factors and variable learning and inertia weight factors. The thermal
units were subjected to a load demand of 850 MW, 1200 MW and 450 MW respectively.
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Case study 1

The thermal unit’s parameters used in the test case[21] are given in table 1 and table 2. .In this test case
the learning factors were varied from 0.5 to 1.25 and inertia weight factor was maintained constant at 0.1 with a
swarm population size(PS) of 1000 and with 1000 iterations and the results are examined with a population size
of 5000 maintaining the other factors similar. The total system load is 850 MW. It is evident from the results that
as the learning factors were reduced with a reduction in the learning factors (0.5) and irrespective of the inertia
weights, the saving in fuel will be little higher. However, at higher learning factors, the influence of inertia
weights does not affect the optimal solution much in multiple runs. As the population size is increased in the
search space to 5000, the algorithm gives similar effective optimal values for the other test factors considered. It
is evident that by a proper selection of the learning and inertia weight factors as done by various researchers,
optimal solution can be fine-tuned. Table 2 presents best optimal values of 3 seller systems with cost minimization
in a simulation process of 10 runs. Figures 1 to 8 show the convergence characteristics of the 3-seller system with
a constant inertia weight factor. It is seen that at lower learning factors and lesser population size, there is a
tendency of the algorithm deviating drastically from the least costs whereas as visible in the figures tested with
higher population deviation of the least costs across each runs are lesser and stable. The table 3 gives a
comparatively optimal cost for different learning factors while satisfying the constraints set by the experimental
set up for a demand of 850 MW. It can be inferred from the table 3 that the generating units share the load
optimally in addition to minimizing the cost as desired by the parameters concerned.

Table 1. 3 Seller Test System parameters

Unit Pgmi (MW) Pgmm (MW) a b ¢
$ | MW | $/MW2
1 100 600 562 | 7.92 | 0.001562
2 100 400 310 | 7.85 | 0.00194
3 50 200 78 | 7.97 | 0.00482
Table 2. 8 Seller Test System parameters
Unit | Pews (Mw) | Plmas My | 2 | P ¢
$ | MW | $/MW2
1 20 100 100 | 7.92 | 0.001562
2 20 100 100 | 7.92 | 0.001562
3 20 100 100 | 7.92 | 0.001562
4 20 100 100 | 7.92 | 0.001562
5 20 100 100 | 7.92 | 0.001562
6 20 100 100 | 7.92 | 0.001562
7 20 100 100 | 7.92 | 0.001562
8 20 100 100 | 7.92 | 0.001562

Case study 2

This test is done with variable learning factors and variable inertia weight factors. The two learning
factors were identical. The two sets of tests were done with population sizes of 1000 and 5000 respectively. The
system load taken is 850 MW. It is evident that higher values of learning factors(2) and higher inertia weight
factors(2) with a reduced population resulted in the requirement of higher runs to achieve the optimal value. The
mean value of the least cost was observed to be higher as compared with higher population. The best cost values
of the 3 seller system tested with 10 run are tabulated in table 3. Figure 9 to 14 show the convergence
characteristics of the PSO algorithm with higher learning factors and higher inertia weight factors. The table 4
records the optimal loads shared as obtained by the optimal schedule for the parameters shown in the table 1. The
optimal cost obtained with different learning factors satisfies the sharing of the load with different runs.
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Case study 3

In this scenario, the load has been increased to 1000 MW while the learning factors were kept identical
and inertial factor was maintained constant. The test results with lower learning factors tend to deviate the limits
set on the thermal units while the optimal values are achieved without local minima at most of the higher values.
The convergence characteristics of the 3-seller system with PSO algorithm with an increased load demand are
shown in the figures 15 to 18. il is evident from the convergence characteristics that higher learning factors
improve the search for optimality while at lower the learning factors with increased load, the systems tend to
deviate from the constraints set by the units.

Case study 4

The 8 seller systems are subjected to a load demand of 1000 MW with similar learning factors to observe
the effectiveness of the PSO algorithm in arriving at the optimal situation. It is to be noted that with the above
load, the 8-seller system in majority of the runs, converges optimally while giving the minimum costs. The
convergence characteristics of the 8-seller system are shown in the figures 19 to 25. The system parameters of the
8-seller system are shown in the table 2.
The table 5 gives the results obtained from the simulation of the 8 seller loads with optimal costs in different runs.

Table 3 Effect of learning factors and inertia weight factors in PSO with 3 seller test system with a load
demand, Pd=850 MW

Case Population cl c2 ® Pgl Pg2 Pg3 Cost
Mw) | vw) | (Mw) s

1 1000 0.5 05 0.1 349.4633 337.7681 162.799 8205.60

2 1000 075 | 075 | 01 371.9161 337.8086 140.3058 8196.90

3 1000 1 1 0.1 374.2324 346.5275 129.2707 8195.70

4 1000 1.25 1.25 0.1 374.8897 347.3022 127.8387 8195.60

5 5000 05 05 0.1 412.7588 313.1161 124.1556 8196.10

6 5000 075 | 075 | 01 383.5628 336.3891 130.0786 8195.10

7 5000 1 1 0.1 383.3596 332.6841 133.9868 8195.50

8 5000 125 | 125 | 01 402.1484 317.7843 130.0978 8195.60

Table 4 Effect of varying learning factors and inertia weight factors in PSO with 3 seller test system with a load

demand, Pd=850 MW

Case | Population cl c2 ® Pgl Pg2 Pg3 Cost
(MW) MW) | (Mw) $/hr
1 1000 0.75 0.75 0.09 304.5367 346.2911 | 125.5796 8195.30
2 1000 1 1 0.1 374.2324 346.5275 129.2707 8195.70
3 1000 1.25 1.25 0.15 375.6897 348.2449 126.0959 8195.50
4 1000 2 2 0.2 262.2838 399.9296 | 187.8171 8250.40
5 5000 0.75 0.75 0.09 387.8666 350.7525 111.4114 8195.70
6 5000 1 1 01 383.3596 332.6841 | 133.9868 8195.50
7 5000 1.25 1.25 0.15 387.747 350.5834 111.7001 8195.70
8 5000 2 2 0.2 387.8893 350.7846 111.3567 8195.80
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Table 5 Effect of learning factors and inertia weight factors in PSO with 3 seller test system with a load

demand, Pd=1000 MW.

Case | Population cl c2 ® Pg1 Pg2 Pg3 Cost
(MW) (MW) (MW) Shr
1 1000 05 05 01 475.6892 380.9801 143.3613 9583.8
2 1000 0.75 0.75 0.1 465.8433 291.2160 232.9712 9583.7
3 1000 1 1 0.1 469.3256 382.3542 148.3507 9583.6
4 1000 1.25 1.25 0.1 471.3374 381.9198 146.7733 9583.7
5 5000 05 05 01 453.1545 406.832 140.0440 9584.1
6 5000 0.75 0.75 0.1 479.5230 379.2922 141.2154 9584.1
7 5000 1 1 0.1 480.0932 379.9268 140.0105 9584.2
8 5000 1.25 1.25 0.1 481.0384 380.9677 138.0345 9584.3

Table 6 Effect of learning factors and inertia weight factors in PSO with 8 seller test system with a load

demand, Pd=1000 MW.
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5. CONCLUSION

Particle Swarm Optimization is one of the simplest and efficient heuristic algorithms effectively
implemented in the economic dispatch to obtain optimal solutions. Modified by the researchers in the pursuit of
optimization over the years since its inception [26] PSO has shown encouraging results. The experimental
simulations carried out by the authors by randomly selecting the learning factors and inertia weight factors yielded
effective optimization in all the cases by considering the 3-seller system and 8 seller system in a deregulated
environment with the inclusion of 3 different load scenarios namely 450 MW, 850 MW and 1000 MW
respectively. The selection of the load plays an important criterion in the selection of learning factors as evident
from the convergence characteristics. The convergence characteristics does not have multiple local optima as the
increase in the learning factors. However, selection of the larger population resulted in a mean improvement in
the resultant minimized cost values. A comprehensive analysis can be done in the future work to relate this random
selection of factors through established mathematical relation and test for optimality and can be competitively
utilized in comparison to other available algorithms. A more meaningful response can be achieved by considering
the valve point effects with suitable samples selected from various test benches to improve the effectiveness.
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