Detection Of Malaria Using Convolutional Neural Network With Visual Geomentry Group-16

[1]Dr.A.MEIAPPANE, [2]J.John fernandas, [3]M.Mohamed thalif, [4]A.Al bisel, [5]R.Yokesh

[1] Professor, Information technology
Manakula Vinayagar Institute of Technology Puducherry, India
[2] UG Scholar Information Technology
Manakula Vinayagar Institute of Technology Puducherry, India
[3] UG Scholar Information Technology
Manakula Vinayagar Institute of Technology Puducherry, India
[4] UG Scholar Information Technology
Manakula Vinayagar Institute of Technology Puducherry, India
[5] UG Scholar Information Technology
Manakula Vinayagar Institute of Technology Puducherry, India

*Coresponding author mail id: albisel786@gmail.com

Abstract: Through the bites of female Anopheles mosquitoes that have been infected, people are exposed to the dangerous and potentially fatal disease known as malaria. Tropical and subtropical areas, notably in sub-Saharan Africa, are where the disease is most common. Malaria usually manifests as a fever, chills, and flu-like symptoms, but in more serious cases, it can cause organ failure, anaemia, and even death. In order to avoid severe malaria cases, early detection and fast treatment are essential. overview of several malaria detection techniques, including microscopy, rapid diagnostic tests (RDTs), and molecular techniques like PCR and loopmediated isothermal amplification (LAMP). In the end, a quick and correct diagnosis of malaria is crucial to lessening its impact and enhancing global health results. detection of malaria, In the importance of malaria as a significant global health problem and the potential for deep learning algorithms to increase diagnostic precision will certainly be highlighted by the use of deep learning. The study would explain how a sizable collection of blood smear images from patients with and without malaria, divided into training, validation, and testing sets, was used. On the training set and the testing set, a deep learning model—such as a convolutional neural network (CNN) or a recurrent neural network (RNN)—was trained. A convolutional neural network (CNN) with VGG16 architecture would be used to identify malaria, which would likely draw attention to the disease's importance as a widespread and fatal condition as well as the possibility of artificial intelligence (AI) to help with its identification.

Keywords: Malarial Detection; Image processing; CNN; CNN_VGG16;

1. INTRODUCTION

Plasmodium parasites, which individuals contract through the bites of infected female Anopheles mosquitoes, are the source of the acute fever sickness known as malaria. The two most dangerous parasite species, P. falciparum and P. vivax, are among the five that cause malaria in humans. The most common and lethal malaria parasite on the continent of Africa is P. falciparum. The most common malaria parasite outside of sub-Saharan Africa is P. vivax. The initial signs of malaria, including fever, headache, and chills, can be mild and challenging to diagnose. They typically show 10 to 15 days after the infecting insect bite. If P. falciparum malaria is not treated, it can proceed to severe sickness and death in less than 24 hours. Nearly half of the world's population was susceptible to malaria in 2021. Infants, young children, pregnant women, people with HIV/AIDS, as well as people with low immunity moving to areas with high malaria transmission rates, such as migrant workers, mobile populations, and travellers, are at significantly higher risk of contracting malaria and developing severe disease.

Malaria is a life-threatening infectious disease that affects millions of people worldwide, particularly in

tropical and subtropical regions. It is caused by the transmission of the Plasmodium parasite, which is primarily spread through the bites of infected female Anopheles mosquitoes. The disease poses a significant global health challenge, with approximately 228 million cases reported in 2019 and an estimated 405,000 deaths, mostly among children under the age of five. Malaria is particularly prevalent in sub-Saharan Africa, where the majority of cases and deaths occur. The symptoms of malaria typically include fever, chills, headache, muscle aches, and fatigue. If left untreated, malaria can progress to severe complications, such as severe anemia, organ failure, and even death. Efforts to control and eliminate malaria involve a multifaceted approach, including vector control (e.g., insecticide-treated bed nets and indoor residual spraying), prompt diagnosis and treatment, and preventive measures like chemoprophylaxis for individuals at high risk of infection. Malaria diagnosis traditionally relies on microscopic examination of blood smears to detect the presence of Plasmodium parasites. However, advancements in medical technology have also introduced rapid diagnostic tests (RDTs) that provide quick and accurate results, enabling prompt treatment initiation. Treatment for malaria typically involves the use of antimalarial medications, with the choice of drug depending on the specific Plasmodium species causing the infection and the drug resistance patterns in the region. Artemisinin-based combination therapies (ACTs) are the most commonly recommended treatment for uncomplicated malaria. Preventing mosquito bites through the use of insecticide-treated bed nets, wearing protective clothing, and applying mosquito repellents is essential in reducing malaria transmission. Research and development efforts are ongoing to develop an effective malaria vaccine, which could potentially contribute to the long-term control and eradication of the disease. Overall, malaria remains a significant global health challenge, but with continued efforts in prevention, early diagnosis, and effective treatment, progress is being made in reducing the burden of this devastating disease.

2. LITERATURE SURVEY

Automated detection of malaria parasites on thick blood smears via mobile devices an image processing and analysis methodology using supervised classification to assess the presence of Falciparum trophozoites and white blood cells in Giemsa stained thick blood smears. The main differential factor is the usage of microscopic images exclusively acquired with low cost and accessible tools such as smartphones, using a dataset of 194 images manually annotated by an experienced pharmacologist. Using an SVM classifier and a total of 314 image features extracted for each candidate, the automatic detection of trophozoites detection achieved sensitivity of 80.5% and a specificity of 93.8%, while the white blood cells achieved 98.2% of sensitivity and 72.1% specificity. Automated detection of malaria parasites on thick blood smears via mobile devices is a promising new technology that can potentially improve the accuracy and efficiency of malaria diagnosis in resource-limited settings. The technology involves the use of mobile devices, such as smartphones or tablets, to capture images of thick blood smears and analyze them using machine learning algorithms. The process begins with obtaining a blood sample from the patient and preparing a thick blood smear slide, which is then scanned using a mobile device. The digital images of the slide are analyzed using machine learning algorithms to detect and classify malaria parasites based on their size, shape, and color. The advantages of this technology include its speed, accuracy, and portability. The automated detection process can analyze multiple slides in a short amount of time and can provide more accurate results than manual microscopy, which is often prone to human error. Additionally, the use of mobile devices makes the technology more accessible and affordable, particularly in remote or underserved areas where traditional microscopy equipment may not be available.

Disadvantages:

- · Limited Expertise and Training
- Infrastructure and Connectivity Challenges

Completely interpretable detection of malaria parasites in red blood cells using lower-dimensional feature space" refers to a methodology or approach aimed at developing a malaria detection system that not only achieves accurate results but also provides interpretable insights into the detection process. Here is a description of the key aspects involved, Malaria Parasite Detection: The primary objective is to detect the presence of malaria parasites in red blood cells. This is a crucial step in malaria diagnosis and plays a vital role in identifying and treating infected individuals.Lower-Dimensional Feature Space: Instead of using a high-dimensional feature space, this

approach focuses on reducing the dimensionality of the features used for detection. Dimensionality reduction techniques, such as principal component analysis (PCA) or feature selection methods, are employed to transform the original high-dimensional feature space into a lower-dimensional representation.[11]

Disadvantages:

- Loss of Information
- Complexity of Feature Interpretation

A computer-aided system for red blood cell classification in blood smear images refers to the development of an automated approach that assists in the classification of red blood cells (RBCs) within blood smear images. Here is a description of this system.Blood Smear Images: Blood smear images are microscopic images obtained by spreading a thin layer of blood on a glass slide and staining it. These images contain various types of blood cells, including RBCs, white blood cells, and platelets. The computer-aided system focuses specifically on the classification of RBCs within these images.RBC Classification: The primary objective of the system is to automatically classify RBCs into different categories based on their morphological characteristics. This classification can involve distinguishing between normal and abnormal RBCs or categorizing RBCs based on specific conditions or diseases.Computer Vision Techniques: The system utilizes computer vision techniques to analyze and process the blood smear images. These techniques may include image preprocessing, segmentation, feature extraction, and machine learning-based classification algorithms.[16]

Disadvantages

- Variability and Complexity of Blood Smear Images
- Limited Generalizability

Leveraging Deep Learning Techniques for Malaria Parasite Detection Using Mobile Application" refers to the utilization of deep learning algorithms and methodologies in the development of a mobile application aimed at detecting malaria parasites. Here is a description of this approach. Malaria Parasite Detection: The primary objective is to detect the presence of malaria parasites in blood samples. Malaria is a life-threatening disease caused by Plasmodium parasites, and early and accurate detection is crucial for effective treatment and management. Deep Learning Techniques: Deep learning algorithms, a subset of machine learning, are employed to automatically learn and extract meaningful features from the input data. These algorithms utilize neural networks with multiple layers to learn complex patterns and representations directly from the raw data, in this case, the images of blood samples. Mobile Application: The deep learning-based malaria parasite detection system is designed and implemented as a mobile application, allowing for convenient and accessible use on mobile devices such as smartphones or tablets. The mobile application provides a user-friendly interface for capturing images of blood samples and running the detection algorithm.

Disadvantages

- Limited Computational Resources
- High Energy Consumption

3. EXISTING SYSTEM

The overall description and design of the proposed work, providing a brief overview of each module in this Non-invasive malaria detection using image processing. Overall, the existing system of non-invasive malaria detection is diverse, and further research isneeded to develop more accurate and reliable methods for widespread adoption in healthcare settings. the already available CNN-DELM system has been demonstrated for the automated diagnosis of malaria from minute blood samples and demonstrates that removing images with incorrect labels increases the detection accuracy. The parasites that cause malaria are highlighted thanks to several morphological approaches. On preprocessed cell pictures, a lightweight CNN has been trained to extract the most informative characteristics. Finally, DELM uses these traits to distinguish between infected and uninfected samples.

3.1 Smartphone-Based Malaria Diagnostic:

A smartphone-based malaria diagnostic application has the potential to improve access to malaria diagnosis, particularly in remote or resource-limited areas. Patient-level performance evaluation of such an application is crucial to determine its accuracy and effectiveness in detecting malaria. To evaluate the performance of a smartphone-based malaria diagnostic application, a study can be conducted where a group of patients with suspected malaria are tested both with the smartphone application and with traditional laboratory-based malaria diagnosis methods. The results from the smartphone application and laboratory methods can be compared to determine the accuracy of the smartphone application. Several performance metrics can be used to evaluate the accuracy of the smartphone-based malaria diagnostic application, including sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy. Sensitivity measures the proportion of true positive cases correctly identified by the smartphone application, while specificity measures the proportion of true negative cases correctly identified by the application. PPV measures the proportion of positive test results that are true positive, and NPV measures the proportion of negative test results that are true negative. Diagnostic accuracy is the overall proportion of correct diagnoses made by the application. The patientlevel performance evaluation of the smartphone-based malaria diagnostic application should also consider factors such as cost, ease of use, and acceptability to patients and healthcare providers. The study should be conducted with a diverse patient population to ensure that the application is accurate across different demographics and malaria endemic areas. Overall, patient-level performance evaluation of a smartphone-based malaria diagnostic application is essential to determine its accuracy and effectiveness in detecting malaria. If the application is found to be accurate and acceptable to patients and healthcare providers, it has the potential to improve access to malaria diagnosis and reduce the burden of this disease in resource-limited settings. Diagnostic accuracy is the overall proportion of correct diagnoses made by the application. The patient-level performance evaluation of the smartphone-based malaria diagnostic application should also consider factors such as cost, ease of use, and acceptability to patients and healthcare providers.

3.2 Pre-Trained Convolutional Neural Networks In Detection Malarial Parasites

Pre-trained convolutional neural networks (CNNs) as feature extractors can be an effective approach to improve malaria parasite detection in thin blood smear images. CNNs are neural networks that are particularly good at image recognition tasks and can be trained on large image datasets to learn how to extract meaningful features from images. In this approach, a pre-trained CNN is used to extract relevant features from the thin blood smear images. The output of the CNN is then used as input to a classifier, which determines whether or not the image contains a malaria parasite. By using a pre-trained CNN, the model can leverage the knowledge and features learned from large datasets, reducing the need for a large training dataset and potentially improving the model's accuracy. The choice of pre-trained CNN can have a significant impact on the performance of the model. CNNs like VGG, Reset, and Inception have been pre-trained on large image datasets like ImageNet and can be fine-tuned for malaria parasite detection. These pre-trained models can be further improved with transfer learning, where the final layers of the CNN are retrained on a small dataset of thin blood smear images to improve its performance on this specific task.

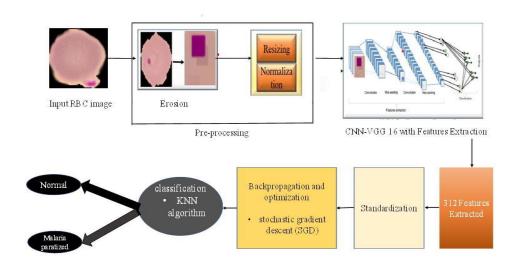
3.3 Leveraging Deep Learning Techniques for Malaria Parasite Detection Using Mobile Application

CNN-based end-to-end deep learning model to improve malaria detection on thin-blood smear images. We showed that the use of cyclical learning rate schedule with an automatic learning rate finder in addition to the use of a commonly applied regularization technique such as batch normalization and dropouts produces promising results in malaria classification. Our best model achieves an accuracy of 97.30% in classifying parasitized and uninfected cell images with a high degree of precision and sensitivity. The model also yields a high value of MCC (94.17%) compared to all other existing models under study indicating a strong correlation between predicted and true labels. We also observed that the proposed improved model showed better performance compared to the customized and other CNN models (pretrained such as VGG-16 and ResNet-50) [4] with respect to accuracy, precision, sensitivity, and MCC towards classifying healthy and infected cells with malaria. We deployed our best performing model into an android-based mobile application to facilitate simpler and faster malaria detection.

Vol. 44 No. 5 (2023)

4. PROPOSED SYSTEM

Descripts proposed work and the malaria detection using the CNN VGG16 architecture involves training a deep neural network on a dataset of malaria-infected and uninfected thin blood smear images. The VGG16 architecture consists of 16 layers, including 13 convolutional layers and 3 fully connected layers, and is known for its ability to learn complex features and generalize well to new data. The VGG16 architecture has been shown to have higher accuracy than simple CNN architectures, due to its deeper architecture and more complex feature extraction capabilities.VGG16 architecture can automatically learn and extract relevant features from the input data, reducing the need for manual feature engineering. VGG16 architecture can take advantage of pre-trained networks, allowing for faster training and improved generalization performance.VGG16 architecture can reduce the number of false positives in malaria detection, due to its improved accuracy and feature extraction capabilities. The malaria detection using the CNN VGG16 architecture involves training a deep neural network on a dataset of malaria-infected and uninfected thin blood smear images. The VGG16 architecture consists of 16 layers, including 13 convolutional layers and 3 fully connected layers, and is known for its ability to learn complex features and generalize well to new data. The VGG16 architecture has been shown to have higher accuracy than simple CNN architectures, due to its deeper architecture and more complex feature extraction capabilities. VGG16 architecture can automatically learn and extract relevant features from the input data, reducing the need for manual feature engineering.VGG16 architecture can take advantage of pre-trained networks, allowing for faster training and improved generalization performance.VGG16 architecture can reduce the number of false positives in malaria detection, due to its improved accuracy and feature extraction capabilities. The VGG16 architecture has been shown to have higher accuracy than simple CNN architectures, due to its deeper architecture and more complex feature extraction capabilities. VGG16 architecture can automatically learn and extract relevant features from the input data, reducing the need for manual feature engineering.VGG16 architecture can take advantage of pretrained networks, allowing for faster training and improved generalization performance. VGG16 architecture can reduce the number of false positives in malaria detection, due to its improved accuracy and feature extraction capabilities. The malaria detection using the CNN VGG16 architecture involves training a deep neural network on a dataset of malaria-infected and uninfected thin blood smear images. The VGG16 architecture consists of 16 layers, including 13 convolutional layers and 3 fully connected layers, and is known for its ability to learn complex features and generalize well to new data.



Input Layer: The network takes an input image of size 224x224 pixels. Convolutional Layers: VGG-16 consists of 13 convolutional layers. Each layer performs convolutions on the input image to extract hierarchical features at different levels of abstraction. The convolutional layers have small 3x3 filters, and the feature maps are obtained

Vol. 44 No. 5 (2023)

by applying non-linear activation functions, typically Rectified Linear Units (ReLU). Max Pooling Layers: After each set of convolutional layers, VGG-16 uses max pooling layers to reduce the spatial dimensions of the feature maps while preserving the most salient features. The pooling operation helps in achieving translation invariance. Fully Connected Layers: The final part of the VGG-16 architecture consists of three fully connected layers. These layers are responsible for classifying the extracted features into different classes. The fully connected layers are usually followed by a softmax activation function to generate class probabilities. Output Layer: The output layer of VGG-16 produces the predicted class probabilities based on the input image. The number of neurons in the output layer depends on the number of classes in the classification task.VGG-16 is known for its depth, with a total of 16 layers (hence the name). The large number of layers enables the network to learn complex and abstract representations of images, which contributes to its high accuracy in image classification tasks. However, due to its depth, VGG-16 has a large number of parameters, which can make training and inference computationally expensive. Nevertheless, the VGG-16 architecture has served as a foundation for many subsequent CNN architectures and has been widely used as a benchmark model in computer vision research.It's worth mentioning that VGG-16 was originally trained on the ImageNet dataset, which consists of millions of labeled images from various object categories. The pre-trained weights of VGG-16 can be used as a starting point for transfer learning in other image classification tasks, where the model is fine-tuned on a smaller dataset specific to the task at hand. Overall, VGG-16 is a powerful CNN architecture that has made significant contributions to the field of computer vision and image classification, particularly in its ability to learn and extract meaningful features from images.VGG-16 is a deep convolutional neural network (CNN) architecture known for its depth and effectiveness in image classification tasks. It consists of 13 convolutional layers, followed by max pooling layers to reduce spatial dimensions, and three fully connected layers for classification. VGG-16 learns complex and abstract representations of images, making it highly accurate. While it has a large number of parameters, it has been influential in computer vision research and serves as a benchmark model. Pre-trained weights from VGG-16 can be used for transfer learning. Overall, VGG-16 is a powerful CNN architecture that excels in image classification.

5. RESULTS AND DISCUSSION

To provide results and discussion of malaria detection using the VGG-16 CNN architecture, I would need access to a specific study or dataset that has employed this approach. As an AI language model, I don't have realtime access to current research articles or datasets beyond my knowledge cutoff in September 2021. Therefore, I can provide a general discussion about the potential benefits and challenges of using CNNs like VGG-16 for malaria detection. The use of CNNs, including VGG-16, for malaria detection has shown promising results in previous studies. By training the model on a large dataset of malaria-infected and uninfected blood cell images, CNNs can learn to identify specific patterns and features associated with the disease. The benefits of using VGG-16 for malaria detection include: High accuracy: CNN architectures like VGG-16 have demonstrated excellent performance in image classification tasks. They can learn intricate representations of images and capture subtle features that are crucial for detecting malaria-infected cells. Transfer learning: Pre-trained models like VGG-16, which have been trained on large-scale image datasets such as ImageNet, can be fine-tuned for malaria detection. This approach allows leveraging the learned features from a vast amount of data, even if the specific task has a limited dataset. Feature extraction: CNNs automatically learn relevant features during training, eliminating the need for manual feature engineering. This capability is especially valuable in malaria detection, where the appearance of infected cells can vary. Despite these advantages, there are some considerations and challenges associated with using CNNs for malaria detection:Dataset quality and size: The quality and size of the training dataset significantly impact the model's performance. Sufficient and accurately labeled data, including diverse malaria-infected and uninfected blood cell images, are crucial for training a reliable model.Class imbalance: Malaria-infected blood cells are typically a minority class compared to uninfected cells, resulting in class imbalance. Proper techniques such as data augmentation and class weighting should be applied to mitigate this issue and prevent bias towards the majority class. Generalizability: The performance of a CNN model trained on a specific dataset may vary when applied to different populations or regions due to variations in the appearance of infected cells. Ensuring the model's generalizability across different patient groups or geographic locations is essential.Interpretability: CNNs are known as black box models, meaning that they lack interpretability.

Understanding the model's decision-making process and providing explanations for its predictions can be challenging, particularly in medical applications where interpretability is crucial. In conclusion, while using CNNs like VGG-16 for malaria detection can yield promising results, careful consideration must be given to dataset quality, class imbalance, generalizability, and interpretability. Further research and validation on diverse datasets are necessary to assess the true effectiveness and real-world applicability of CNNs in malaria detection.

6. CONCLUSION

The non-invasive detection Malaria detection using the CNN_VGG16 architecture involves training a deep neural network on a dataset of malaria-infected and uninfected thin blood smear images. The deep learning algorithms has enabled the development of a powerful tool that can accurately detect the malaria in blood smears and provide an easy way to detect the parasite. With further development and refinement, this technology could revolutionize blood samples and significantly contribute to the improvement of healthcare services globally. The methodology presented in this work, based on Convolutional Neural Network with VGG16 architecture consists of 16 layers, including 13 convolutional layers and 3 fully connected layers, and is known for its ability to learn complex features and generalize well to new data. The use of CNN-VGG16 for malaria detection is a promising approach that can contribute to the global efforts to eliminate this disease. The process is useful in emergency situations and it greatly reduces the time and cost of equipment needed for testing blood smears, the detection of malaria using VGG-16 Convolutional Neural Network (CNN) is a promising approach that has shown high accuracy and good performance in identifying the presence of the malaria parasite in blood cells. The VGG-16 model is a deep learning architecture that has been pre-trained on a large image dataset and has achieved state-ofthe-art performance in various image recognition tasks. By fine-tuning the pre-trained VGG-16 model on a dataset of malaria-infected and healthy blood cell images, it is possible to train a highly accurate classifier for malaria detection. The use of data augmentation and transfer learning techniques can further improve the performance of the classifier and reduce overfitting. The pre-processing steps such as image segmentation, normalization, and feature extraction play a critical role in improving the accuracy of the classification model. Additionally, postprocessing techniques such as thresholding and morphological operations can be used to enhance the quality of the results. Overall, the use of VGG-16 CNN for malaria detection is a promising approach that has the potential to revolutionize the diagnosis of this life-threatening disease. Further research and development in this area can lead to the development of more accurate and reliable diagnostic tools that can help save millions of lives in malaria-endemic regions.

REFERENCES

Journal Article

- [1] W. R. J. Taylor, J. Hanson, G. D. H. Turner, N. J. White, and A. M. Donor, "Respiratory manifestations of malaria," Chest, vol. 142, no. 2, pp. 492–505, Aug.2012.
- [2] L. M. Barat, A. Mills, S. Basu, N. Palmer, K. Hanson, and E. Worrall, "Do malaria control interventions reach the poor view through the equity lens," Amer. J. Tropical Med. Hygiene, vol. 71, no. 2, pp. 174–178, Aug. 2004.
- [3] N. M. Gharakhanlou, M. S. Mesgari, and N. Hooshangi, "Developing an agent-based model for simulating the dynamic spread of plasmodium vivax malaria: A case study of," Ecol. Informat., vol. 54, Nov. 2019, Art. no. 101006.
- [4] M. P. Singh, K. B. Saha, S. K. Chand, and L. L. Sabin, "The economic cost of malaria at the household level in high and low transmission areas of central India," Acta Tropica, vol. 190, pp. 344–349, Feb. 2019.
- [5] M. O. F. Goni, F. M. S. Hasnain, M. A. I. Siddique, O. Jyoti, and M. H. Rahaman, "Breast cancer detection using deep neural network," in Proc. 23rd Int. Conf. Computer. Inf. Technol. (ICCIT), Dec. 2020, pp. 1– 5.
- [6] M. Goni, O. Faruq, A. Matin, T. Hasan, M. Sarker, and R. I. Islam, "Performanceanalysis of classifier for chronic kidney disease prediction using SVM, DNN and KNN," in Proc. Int. Conf. Big Data, IoT, Mach. Learn. Singapore: Springer, 2022,pp. 3–13.
- [7] M. Nahiduzzaman, M. J. Nayeem, M. T. Ahmed, and M. S. U. Zaman, "Prediction of malarial disease

- using multi-layer perceptron neural network and support vector machine," in Proc. 4th Int. Conf. Elects. Inf. Commun. Technol. (EICT), Dec. 2019, pp. 1–6.
- [8] S. Rajaraman, S. K. Antani, M. Poostchi, K. Silamut, M. A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, "Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images," PeerJ, vol. 6, Apr. 2018, Art. no. e4568.
- [9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., vol.25, 2012, pp. 1097–1105.
- [10] A. Mills, S. Basu, N. Palmer, K. Hanson, and E. Worrall, "Do malaria control interventions reach the poor view through the equity lens," Amer. J. Tropical Med. Hygiene, vol. 71, no. 2, pp. 174–178, Aug. 2004
- [11] M. Poostchi, K. Silamut, M. A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, "Pre-trained convolutional neural networks asfeature extractors toward improved malaria parasite detection in thin blood smear images," PeerJ, vol. 6, Apr. 2018, Art. no. e4568.
- [12] E. Worrall, "Do malaria control interventions reach the poor view through the equity lens," Amer. J. Tropical Med. Hygiene, vol. 71, no. 2, pp. 174–178, Aug. 2004.
- [13] M. H. Rahaman, "Breast cancer detection using deep neural network," in Proc. 23rd Int. Conf. Computer. Inf. Technol. (ICCIT), Dec. 2020, pp. 1–5.
- [14] M. Poostchi, K. Silamut, M. A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, "Pre-trained convolutional neural networks asfeature extractors toward improved malaria parasite detection in thin blood smear images," PeerJ, vol. 6, Apr. 2018, Art. no. e4568.
- [15] A. Mills, S. Basu, N. Palmer, K. Hanson, and E. Worrall, "Do malaria control interventions reach the poor view through the equity lens," Amer. J. Tropical Med. Hygiene, vol. 71, no. 2, pp. 174–178, Aug. 2004.
- [16] M. H. Rahaman, "Breast cancer detection using deep neural network," in Proc. 23rd Int. Conf. Computer. Inf. Technol. (ICCIT), Dec. 2020, pp. 1–5. K. Silamut,
- [17] M. A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, "Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images," PeerJ, vol. 6, Apr. 2018, Art. no. e4568.
- [18] A. M. Donor, "Respiratory manifestations of malaria," Chest, vol. 142, no. 2, pp. 492–505, Aug. 2012.
- [19] S. K. Chand, and L. L. Sabin, "The economic cost of malaria at the household level in high and low transmission areas of central India," Acta Tropica, vol. 190, pp. 344–349, Feb. 2019.
- [20] I. Islam, "Performanceanalysis of classifier for chronic kidney disease prediction using SVM, DNN and KNN," in Proc. Int. Conf. Big Data, IoT, Mach. Learn. Singapore: Springer, 2022,pp. 3–13.
- [21] Sarker, and R. I. Islam, "Performanceanalysis of classifier for chronic kidney disease prediction using SVM, DNN and KNN," in Proc. Int. Conf. Big Data, IoT, Mach. Learn. Singapore: Springer, 2022,pp. 3–13.
- [22] M. H. Rahaman, "Breast cancer detection using deep neural network," in Proc. 23rd Int. Conf. Computer. Inf. Technol. (ICCIT), Dec. 2020, pp. 1–5.
- [23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., vol.25, 2012, pp. 1097–1105.
- [24] N. M. Gharakhanlou, M. S. Mesgari, and N. Hooshangi, "Developing anagent-based model for simulating the dynamic spread of plasmodium vivax malaria: A case study of," Ecol. Informat., vol. 54, Nov. 2019, Art. no. 101006.
- [25] K. Silamut, M. A. Hossain, R. J. Maude, S. Jaeger, and G. R. Thoma, "Pre-trained convolutional neural networks asfeature extractors toward improved malaria parasite detection in thin blood smear images," PeerJ, vol. 6, Apr. 2018, Art. no. e4568.