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Abstract: Land classification plays a crucial role in environmental monitoring and resource management, 

utilizing satellite imagery to delineate distinct land cover types. In this study, we explore a comprehensive 

approach to land classification, employing a sequence of preprocessing, segmentation, and classification 

algorithms. Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) are employed for 

image preprocessing, extracting valuable spatial information from IKONOS and Sentinel satellite images. 

Subsequently, K-means clustering, Particle Swarm Optimization (PSO), Discrete Particle Swarm 

Optimization (DPSO), and Fractional Order Discrete Particle Swarm Optimization (FODPSO) are utilized for 

segmentation, effectively delineating land cover boundaries.Furthermore, a novel contribution is introduced 

by proposing the use of Least Squares Support Vector Machine (LSSVM) as the classification algorithm. 

LSSVM is demonstrated to outperform other algorithms in terms of precision, recall, accuracy, and F1-Score. 

Specifically, LSSVM exhibits a remarkable accuracy of 96%, surpassing the performance of DWT, SWT, K-

means clustering, PSO, DPSO, and FODPSO on both IKONOS and Sentinel satellite images. This 

substantiates the efficacy of the proposed LSSVM-based approach in achieving high-precision land 

classification.The findings underscore the significance of integrating preprocessing, segmentation, and 

classification techniques for accurate and robust land classification. The proposed LSSVM algorithm stands 

out as a promising solution for achieving superior accuracy, paving the way for enhanced applications in 

environmental monitoring and land resource management. 
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1. INTRODUCTION 

Satellites, artificial objects orbiting the Earth, play diverse roles in communication, weather 

monitoring, navigation, research, and security. Among the various types, communication satellites operate in 

Geostationary Orbit (GEO) or Medium Earth Orbit (MEO) to facilitate global communication services. Weather 

satellites, typically in polar orbits, monitor Earth's atmosphere for forecasting and climate research. Earth 

observation satellites, found in polar, sun-synchronous, or low Earth orbits (LEO), capture images vital for 

environmental monitoring and urban planning. Navigation satellites, like GPS, utilize Medium Earth Orbit 

(MEO) to provide global positioning services. Scientific satellites conduct experiments in varying orbits, 

studying phenomena like cosmic rays and magnetic fields. Spy satellites gather intelligence in low Earth orbit 

(LEO) or specialized orbits, while space telescopes, like Hubble, observe celestial objects from low Earth orbits. 

Satellite constellations, often in LEO, deliver global services collaboratively. Space stations, exemplified by the 

International Space Station (ISS), orbit in LEO, serving as habitable bases for extended human stays. These 

classifications highlight the versatility and strategic considerations guiding satellite functions and orbits. 

Satellite image processing is a multidisciplinary field that intricately manages and analyzes data 

captured by Earth-orbiting satellites, primarily in the form of images. This data is pivotal for a myriad of 

applications, ranging from environmental monitoring and land use mapping to disaster response and agriculture. 

The processing workflow involves several key steps and techniques. Initially, satellites equipped with various 

sensors, such as optical, infrared, or radar sensors, capture images that are then transmitted to ground stations or 

users. Preprocessing steps include calibration to correct sensor-specific errors, atmospheric correction to account 

for atmospheric effects, and geometric correction to standardize images to a coordinate system. Image 
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enhancement techniques, such as contrast stretching and histogram equalization, are applied to improve visual 

quality. Fusion of information from multiple images or sensors enhances overall image quality. Image 

classification involves categorizing pixels or regions into different land cover types using supervised or 

unsupervised methods. Change detection identifies alterations in land cover over time, crucial for monitoring 

urban expansion, deforestation, and natural disasters. Feature extraction involves identifying specific features 

like roads or rivers, often employing algorithms like edge detection. Data integration combines satellite data 

with other geospatial datasets, frequently integrating with GIS data. Data analysis provides meaningful insights 

for applications such as land use planning and environmental monitoring. Machine learning and deep learning 

techniques, including neural networks, automate image analysis. Data visualization presents processed 

information in maps or graphs for better comprehension, aiding effective communication. Finally, data 

dissemination ensures that processed satellite data and analysis results are shared with stakeholders, researchers, 

and the public. The comprehensive nature of satellite image processing, drawing on remote sensing, computer 

vision, and geospatial analysis, underscores its critical role in addressing diverse societal and environmental 

challenges. 

Satellite image processing plays a pivotal role in land classification, providing a systematic approach to 

categorize and map diverse land cover types within specific geographic areas. This intricate process involves a 

series of steps aimed at analyzing satellite imagery to identify and distinguish various features on Earth's 

surface. Beginning with image acquisition, where satellites capture data with suitable spatial and spectral 

resolution, the process proceeds through preprocessing to correct errors and enhance image quality. Techniques 

such as contrast stretching and image fusion contribute to improving visual interpretation and overall 

classification accuracy. Training data collection involves selecting representative samples for algorithm training, 

often relying on ground truth data from field surveys or high-resolution imagery. Classification algorithms, 

including supervised and unsupervised methods, categorize pixels into predefined land cover classes. Post-

classification processing refines results, and change detection analyzes temporal differences. Integration with 

Geographic Information Systems (GIS) enhances the creation of detailed land cover maps, aiding 

comprehensive land management and planning. Machine learning and deep learning techniques, such as neural 

networks, automate and improve classification accuracy, especially in large datasets. Visualization of classified 

land cover maps facilitates interpretation and analysis, with GIS tools overlaying additional information for 

informed land management decisions. Satellite image processing in land classification is vital for applications 

such as urban planning, agriculture, environmental monitoring, and natural resource management, providing 

essential insights for sustainable development and effective land use planning. 

Several algorithms are employed in the realm of satellite image processing for land classification, 

neatly categorized into two primary types: supervised and unsupervised classification. Among the supervised 

algorithms, Maximum Likelihood Classification utilizes statistical probability to assign pixels to classes based 

on the likelihood of their spectral values belonging to each class. Support Vector Machines (SVM) excel in 

finding optimal hyperplanes for separating classes in feature space, suitable for both binary and multiclass 

classification. Random Forest, an ensemble learning method, combines multiple decision trees, known for its 

robustness and high accuracy. The K-Nearest Neighbors (K-NN) algorithm assigns pixels to classes based on the 

classes of their k-nearest neighbors in feature space. Decision Trees recursively split data into subsets, offering 

interpretability in land classification. Unsupervised classification algorithms include K-Means Clustering, which 

divides images into clusters based on spectral similarity, and Hierarchical Clustering, creating clusters by 

iteratively merging or splitting pixel groups. Fuzzy C-Means (FCM), an extension of K-Means, accommodates 

pixels belonging to multiple clusters. Deep learning algorithms, such as Convolutional Neural Networks (CNN), 

Recurrent Neural Networks (RNN), and Autoencoders, play vital roles in automated feature learning, 

dimensionality reduction, and capturing temporal dependencies. These algorithms are applicable to multispectral 

or hyperspectral satellite imagery, with the choice dependent on data nature, classification task complexity, and 

computational resources. Often, a combination of algorithms or ensemble methods is employed for improved 

accuracy, with fine-tuning and optimization being crucial for reliable land classification results. 
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Problem statement 

Satellite image processing in land classification encounters several challenges that impede the accuracy 

and efficiency of the classification models. The inherent complexity of satellite imagery, coupled with the 

dynamic nature of land cover, presents obstacles that need innovative solutions. One of the primary issues is the 

presence of mixed pixels, where a single pixel encompasses multiple land cover types. This phenomenon 

complicates the accurate assignment of pixels to distinct classes, leading to classification errors. Additionally, 

the variability in atmospheric conditions introduces distortions that can adversely affect the quality of satellite 

images, requiring robust preprocessing techniques. The vast amounts of high-dimensional data generated by 

satellite sensors pose computational challenges, necessitating advanced algorithms for efficient feature 

extraction and classification. Furthermore, the temporal dimension introduces the need for effective change 

detection algorithms to monitor and classify evolving land cover over time. Addressing these challenges is 

essential for advancing the capabilities of satellite image processing in land classification, enabling more 

accurate and timely assessments for applications such as environmental monitoring, urban planning, and natural 

resource management. 

 

Contributions  

Particle Swarm Optimization (PSO), Discrete Particle Swarm Optimization (DPSO), and Fractional 

Order Darwinian Particle Swarm Optimization (FODPSO) contribute significantly to satellite image processing 

in land classification. 

1. PSO aids in finding the optimal set of parameters for classifiers, such as those used in supervised 

land classification. PSO helps enhance the accuracy of land classification models by fine-tuning 

parameters and improving convergence to better solutions. 

2. DPSO optimizes the selection of land cover classes, aiding in the creation of accurate and 

meaningful land cover maps. It ensures that the discrete decisions, such as assigning pixels to 

specific land cover classes, are optimized for improved classification results. 

3. FODPSO enhances the robustness of land classification models allowing for a more nuanced 

representation of the uncertainty inherent in satellite imagery. 

 

2. LITERATURE SURVEY 

Precise maps of land use and cover (LULC) are useful resources for achieving precision agriculture and 

good urban planning. In recent years, genetic algorithms (GAs) have been successfully used as an intelligent 

optimization technology for a variety of image classification tasks[1-2].It classifies satellite images using a 

compact convolutional neural network (CNN) model, and then it feeds the output to a Shapley additive 

explanations (SHAP) deep explainer to enhance the classification results. The remote sensing scene 

classification (SC) techniques have been improved over the last ten years by numerous outstanding data sharing 

initiatives. These datasets have demonstrated remarkable success in the interpretation of complex, high-level 

semantic information. Thus, one of the main things impeding the use of deep learning technology is the lack of 

adequate and broadly representative high-quality samples[3-5]. This study assesses whether integrated rural land 

is suitable for three industries using deep learning and artificial intelligence (AI) clustering analysis techniques. 

Many datasets related to rural development are collected and tastefully combined. These datasets cover land use, 

agricultural output, and rural tourism. To help relevant land management departments master cultivated land use 

changes and modify land management policies, multi-source remote sensing data have been used to 

quantitatively analyze the spatiotemporal changes in cultivated land conversion[6-7].Land cover classification 

maps are commonly used to calculate estimates of the area of land cover classes or land change by counting the 

pixels labelled as each class in the map. This process is known to generate skewed area estimates for several 

popular classification algorithms, such as random forests. To get objective estimates of the class areas, 

poststratification estimation using the mapped classes as strata has been suggested[8-9].Categorization of 

satellite imagery is a widely discussed and intricate subject. Over the past ten years, researchers have mostly 

focused on three machine learning algorithms—RF, CART, and SVM—that have been used in cities or nations 

other than Morocco for classification studies. As a result, there is a dearth of knowledge regarding Morocco's 

land use. This paper uses data from social networks to present an extensive comparison of different Machine 
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Learning (ML) classifiers for urban land use identification. There were two cycles of analysis, the second of 

which included the addition of the "popularity index" parameter. The findings show that adding the popularity 

index considerably raised each classifier's accuracy rate[10-11].The type of land cover and the corresponding 

surface roughness of the terrain determine how well it dissipates the energy of the water flow during a flooding 

event. Using repeat-pass polarimetric synthetic aperture radar (PolSAR) and interferometric synthetic aperture 

radar (InSAR) data, we created a new land-cover classification algorithm in this study. The suggested method 

can achieve appreciable improvements in classification accuracy and outperforms the other two algorithms, 

according to a quantitative analysis conducted with reference to ground-truth data available for the test sites. 

This suggests that spaceborne-SAR-based land cover classification tasks have potential in practical 

applications[12-13].An enhanced rough-fuzzy possibilistic c-means clustering algorithm with multiresolution 

scales information (MRFPCM) is suggested to lower the classification uncertainty. Because of its high accuracy, 

the support vector machine (SVM) method is the most recommended approach for classifying remote sensing 

(RS) images. However, the success of any classifier depends on the quality of the training samples. When the 

entire classification outcome matters, gathering real training samples from various classes is crucial[14-15]. 

 

Inferences from literature survey 

The literature survey underscores the critical role of precise land use and cover (LULC) maps in 

applications like precision agriculture and urban planning. It explores the integration of genetic algorithms 

(GAs) and convolutional neural networks (CNNs) to optimize image classification, with a focus on 

interpretability using Shapley additive explanations (SHAP) deep explainer. The study identifies challenges in 

deep learning, particularly the scarcity of high-quality samples. A practical application of deep learning and 

artificial intelligence (AI) is demonstrated in the assessment of integrated rural land for various industries, 

utilizing multi-source remote sensing data. The research also addresses the need for objective estimates in land 

cover classification maps through poststratification estimation. Additionally, it delves into the realm of machine 

learning classifiers for urban land use identification, leveraging social network data and introducing a 

"popularity index" parameter for improved accuracy. The application of synthetic aperture radar (SAR) in land 

cover classification is explored, showcasing its potential through a newly proposed algorithm. Lastly, the 

literature suggests an enhanced rough-fuzzy clustering algorithm to reduce classification uncertainty in remote 

sensing images, emphasizing the significance of quality training samples for successful outcomes. 

 

3. METHODOLOGY 

Figure 1 shows the block diagram for land classification using satellite image processing.The process 

begins with acquiring satellite images, often from platforms such as IKONOS or Sentinel, which provide high-

resolution and multispectral data. These images serve as the input data for land classification.In the 

preprocessing stage, the acquired satellite images undergo transformation using techniques such as Discrete 

Wavelet Transform (DWT) or Stationary Wavelet Transform (SWT).  
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Fig 1 Block diagram of proposed algorithm 

 

These transformations help in reducing noise, enhancing image features, and preparing the data for 

subsequent analysis.The pre-processed images then enter the segmentation phase, where the image is divided 

into meaningful and homogeneous regions. K-means clustering is used to group pixels based on spectral 

similarity, while PSO, DPSO, and FODPSO contribute to optimizing the segmentation process. These 

optimization techniques help in defining accurate boundaries between land cover classes.After segmentation, 

relevant features are extracted from each segmented region. Common statistical measures such as mean, 

standard deviation, and entropy are employed as feature selection criteria. These features capture important 

characteristics of the land cover types and contribute to the subsequent classification process.The selected 

features are fed into the classification algorithm, with Least Squares Support Vector Machine (LSSVM) being 

the chosen classifier. LSSVM is a powerful machine learning algorithm that can effectively classify land cover 

types based on the extracted features. It leverages support vector machines with a least squares approach for 

optimal decision boundaries.The final step involves interpreting and presenting the results of the land 

classification process. The output classes typically include categories such as water bodies and land used for 

agriculture. The results provide valuable information for applications such as environmental monitoring, land-

use planning, and resource management. 

 

3.1. Discrete Wavelet Transform (DWT) 

Wavelet transforms, including the Discrete Wavelet Transform (DWT), play a crucial role in satellite 

image processing for land classification. The DWT, a mathematical tool, facilitates the decomposition of an 

image into various frequency components, enabling a multi-resolution analysis. The application of DWT in 

satellite image processing involves several key steps. First, through image decomposition, the DWT breaks 

down an image into approximation (low-frequency) and detail (high-frequency) components at different scales, 

allowing for the creation of a multi-resolution representation. Next, feature extraction occurs, where features are 

derived from different frequency bands, capturing diverse aspects like texture and edge information for 

subsequent land classification. Dimensionality reduction is addressed using DWT to cope with the high 

dimensionality of satellite images, achieved by selecting relevant coefficients and retaining essential information 

for classification. Additionally, DWT is employed for image fusion, enhancing image quality by combining 

different frequency components from multiple satellite images, thereby improving the discriminative power of 

features in classification. Texture analysis is a notable strength of DWT, effectively capturing texture 

information crucial for distinguishing various land cover classes. The transformed features are then fed into 

classification algorithms such as Support Vector Machines, Random Forests, or Neural Networks for accurate 

land classification. Furthermore, DWT facilitates change detection by comparing wavelet coefficients of images 

acquired at different times, aiding in monitoring land cover changes. Lastly, DWT contributes to noise reduction 

in satellite images by separating noise from the signal, thereby enhancing the accuracy of classification 

Satellite images 

(i) IKONOS 

(ii) Sentinel 

 

Pre-processing 

(i) DWT 

(ii) SWT 

Segmentation 

(i) K-means clustering 

(ii) PSO 

(iii) DPSO 

(iv) FODPSO 

Feature selection 

(i) Mean  

(ii) Standard 

(iii) Entropy  

Classification  

(i) LSSVM 
Results 

(i) Water body 

(ii) Land agriculture 
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algorithms by minimizing the impact of irrelevant information. It's essential to consider factors such as the 

specific characteristics of satellite data, the choice of wavelet basis, and the selection of appropriate features and 

classification algorithms for successful implementation of DWT in land classification. Experimentation and 

fine-tuning are often necessary to achieve optimal results for a particular dataset. 

 

3.2. Stationary Wavelet Transform (SWT) 

The Stationary Wavelet Transform (SWT), akin to the Discrete Wavelet Transform (DWT), emerges as 

a valuable tool in satellite image processing for land classification. Possessing distinct advantages, especially in 

addressing shift-invariant properties, the SWT is well-suited for specific types of image analysis. The shift-

invariant property is a standout feature, ensuring that minor shifts in the input image result in proportionate 

shifts in wavelet coefficients. This characteristic proves advantageous in capturing spatial information without 

being overly sensitive to slight positional changes. Conducting a multiresolution analysis akin to the DWT, the 

SWT decomposes satellite images into approximation and detail coefficients at different scales, facilitating 

information extraction at various levels of detail. Feature extraction from SWT coefficients encompasses 

valuable elements such as texture information, edge details, and other spatial characteristics crucial for land 

classification. The shift-invariant property further enhances the SWT's applicability for texture analysis in 

satellite images, allowing for the capture of texture patterns across diverse locations in the image. Notably, this 

property contributes to the robustness of SWT in the presence of noise, a critical consideration in satellite image 

processing affected by various noise sources. SWT is also proficient in image fusion, akin to DWT, combining 

information from different frequency components to augment the discriminative power of features in land 

classification. The extracted features from SWT coefficients can be integrated into diverse classification 

algorithms, including Support Vector Machines, Random Forests, or Neural Networks, for effective land 

classification. Furthermore, SWT proves instrumental in change detection, akin to its application in DWT, by 

comparing wavelet coefficients from images acquired at different times. When contemplating SWT for satellite 

image processing, a strategic approach involves experimenting with different wavelet bases, analyzing satellite 

data characteristics, and selecting suitable features and classification algorithms. The choice between DWT and 

SWT hinges on the specific analysis requirements and the distinct characteristics of the images under 

consideration. 

 

3.3. K-Means Clustering 

K-means clustering, a widely used unsupervised machine learning algorithm, finds valuable application 

in satellite image processing for land classification. Primarily employed for image segmentation, K-means 

partitions satellite images into distinct clusters based on pixel intensity or other feature values. This algorithm 

facilitates feature extraction, as the centroids of the clusters represent characteristic values for each segment, 

serving as features for subsequent land classification. Operating without the need for labelled training data, K-

means carries out unsupervised classification, with clusters considered as potential land cover classes, subject to 

interpretation and labelling based on visual inspection or additional information. Post-processing steps, 

including the filtering of small or irrelevant clusters, can refine segmentation results, enhancing overall 

classification accuracy. Integration with other classification algorithms, such as Support Vector Machines or 

Random Forests, allows leveraging both unsupervised and supervised information for improved results. 

Additionally, K-means proves useful in change detection by applying clustering to satellite images acquired at 

different times, revealing areas of land cover transformation. Its capability to capture spatial patterns further 

enhances its utility in applications requiring detailed spatial information, such as urban planning or 

environmental monitoring. However, careful consideration of parameters like the number of clusters and 

initialization methods, coupled with thorough experimentation and validation against ground truth data, is 

essential to ensure the robustness and reliability of land classification results using K-means clustering in 

satellite image processing. 

 

3.4. Particle Swarm Optimization (PSO) 

Particle Swarm Optimization (PSO) emerges as a valuable optimization algorithm in the realm of 

satellite image processing for land classification. Its versatility is evident in several applications within this 
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context. PSO can effectively tackle feature selection, optimizing the extraction of relevant features from satellite 

data to enhance the efficiency of subsequent land classification algorithms. Furthermore, the algorithm proves 

instrumental in parameter tuning, optimizing the configuration of classification algorithms such as Support 

Vector Machines, Random Forests, or Neural Networks to improve the accuracy of land cover classification. In 

clustering scenarios, such as K-means, PSO contributes by assisting in the initialization of cluster centers, 

ensuring more accurate and efficient clustering, particularly in unsupervised learning situations. Directly 

optimizing the parameters of land classification algorithms, PSO enhances the accuracy of the classification 

process and can be seamlessly integrated with various machine learning models to optimize feature selection 

and configuration. Additionally, PSO's adaptability extends to multi-objective optimization, allowing 

simultaneous optimization of multiple objectives like accuracy and computational efficiency. Its utility also 

encompasses change detection, as the optimization of classification parameters over time enables effective 

identification of areas experiencing significant land cover changes. PSO's versatility and efficiency position it as 

a valuable tool for refining and optimizing diverse aspects of land classification in satellite imagery, with careful 

parameter tuning and validation against ground truth data being essential for its successful application. 

 

3.5. Discrete Particle Swarm Optimization (DPSO) 

Discrete Particle Swarm Optimization (DPSO) is a specialized approach tailored for satellite image 

processing in land classification. Specifically designed for problems with discrete or combinatorial solutions, 

DPSO finds application in scenarios where optimization involves integer-valued parameters or discrete 

variables. In the context of land classification, DPSO proves beneficial for tasks such as feature selection, where 

it optimizes the selection of relevant spectral bands in a discrete manner, contributing to the reduction of 

dimensionality. Additionally, DPSO can be applied to optimize integer parameters related to land classification 

algorithms, such as clustering or segmentation processes. Its utility extends to spatial considerations, where 

DPSO can optimize neighborhood parameters in algorithms sensitive to spatial relationships. The algorithm 

excels in tasks requiring optimal discrete initialization of cluster centers, notably in unsupervised land 

classification. By integrating with classification models, DPSO optimizes the discrete aspects of the 

classification process, including parameter selection and feature combination. Furthermore, DPSO is 

instrumental in change detection when discrete features represent alterations in land cover, allowing for 

optimized identification of areas experiencing discrete changes over time. Overall, DPSO's proficiency in 

handling discrete and integer-valued variables positions it as a valuable optimization tool for enhancing specific 

aspects of satellite image processing in land classification. Application considerations include the discretization 

of variables and the relevance of discrete optimization to the characteristics of the land classification problem at 

hand, with careful parameter tuning and validation against ground truth data being imperative for its successful 

implementation. 

 

3.6. Fractional Order Discrete Particle Swarm Optimization (FODPSO) 

Fractional Order Discrete Particle Swarm Optimization (FODPSO) introduces a sophisticated approach 

to satellite image processing for land classification by incorporating principles fromPSO and fractional calculus. 

By leveraging fractional order derivatives, FODPSO is adept at handling optimization problems involving 

fractional variables. In the realm of land classification, this approach proves advantageous for tasks requiring the 

optimization of non-integer order parameters. FODPSO's application extends to feature selection, where it 

optimizes the choice of spectral bands or features represented by fractional order variables, contributing to a 

more adaptable feature selection process. Furthermore, FODPSO is well-suited for optimizing parameters in 

land classification algorithms that involve fractional orders, enhancing the performance of segmentation, 

clustering, or spatially constrained classifiers. Its utility also extends to change detection tasks, where fractional 

features represent nuanced alterations in land cover over time. FODPSO's integration with land classification 

models involving fractional order operators further optimizes their performance. Additionally, in the context of 

image segmentation, FODPSO excels at optimizing non-integer parameters, providing a versatile approach to 

achieving optimal segmentation results. The intrinsic ability of FODPSO to handle fractional order variables 

positions it as a potent tool for refining optimization processes in satellite image processing, particularly in 

scenarios requiring nuanced exploration of parameter spaces with non-integer order characteristics. Rigorous 
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parameter tuning and validation against ground truth data are essential to ascertain the effectiveness of FODPSO 

in specific land classification applications. 

 

3.7. Least Squares Support Vector Machines (LSSVM) 

Least Squares Support Vector Machines (LSSVM) stands out as a powerful machine learning algorithm 

for land classification in satellite image processing. Building upon the foundation of Support Vector Machines 

(SVM), LSSVM proves adept in regression-based land cover modelling by treating the task as a regression 

problem, predicting continuous output values indicative of specific land cover types. Employing the kernel trick, 

akin to SVM, LSSVM excels in classifying land cover by mapping input data into higher-dimensional spaces 

and identifying optimal decision boundaries. Particularly valuable in handling nonlinear relationships within 

satellite image data, LSSVM implicitly performs feature extraction and selection through the chosen kernel 

function, enabling a focus on relevant information for accurate land classification. This algorithm also proven 

effective in optimizing hyperparameters, such as regularization and kernel parameters, for enhanced 

generalization performance. Integration with remote sensing indices, such asNormalized Difference Vegetation 

Index (NDVI) or Enhanced Vegetation Index (EVI), further augments LSSVM's ability to capture pertinent 

vegetation-related information. LSSVM is well-suited for change detection by training models on satellite 

images acquired at different times, identifying areas where land cover has undergone significant changes. 

Notably, LSSVM's capacity to handle imbalanced datasets is crucial for achieving balanced and accurate land 

classification, a common challenge in such tasks. In essence, LSSVM emerges as a versatile and effective tool 

for accurate land cover classification from satellite imagery, with careful consideration of data preprocessing, 

parameter tuning, and validation against ground truth data essential for its successful application in specific land 

classification projects. 

 

4. RESULTS AND DISCUSSION 

Table 1 is presenting results from a land classification algorithm applied to satellite images using two 

different wavelet transform techniques:DWT and SWT. The algorithm has been applied to two types of satellite 

images: IKONOS and Sentinel. The table includes statistics for the classified land areas, specifically the mean, 

median, range, and standard deviation. 

 

Tab 1 statistical values of DWT and SWT 

Algorithm  Satellite 

images 

Mean  Median  Range  Standard 

deviation 

DWT IKONOS 85.95 78 255 54.61 

Sentinel  125.9 70 255 70.41 

SWT IKONOS 0.003703 0.06 9 1.465 

Sentinel  0.001241 0.1 10 1.635 

 

Mean is the average value of the classified land areas.For the DWT algorithm, the mean values for land 

classification are higher for Sentinel images compared to IKONOS images.The median values indicate the 

middle point of the data. For example, the median value of 78 for DWT on IKONOS means that half of the 

classified land areas have values below 78, and half have values above.The range values show the extent of 

variation in the data. For DWT on IKONOS, the range is 255, indicating a wide variation in the classified land 

values.A measure of the amount of variation or dispersion in a set of values. It provides an indication of how 

spread out the values in a dataset are around the mean. For instance, for the DWT algorithm applied to IKONOS 

images, the standard deviation is 54.61.Figure 2shows the Pre-processing output of DWT and SWT algorithms 

for land classification.  
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DWT Outputs SWT outputs 

 
(a) Histogram of IKONOS satellite image 

 

(b) Histogram of IKONOS satellite image 

 
(c) Histogram of Sentinel satellite image 

 

(d) Histogram of Sentinel satellite image 

 

 

(e) Cumulative histogram of IKONOS satellite image 

 
 

(f) Cumulative histogram of IKONOS satellite image 

 
 

(g) Cumulative histogram of Sentinel satellite image 

 
(h) Cumulative histogram of sentinel satellite image 

Fig 2 Pre-processing output of DWT and SWT for land classification 
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DWT decomposes an image into different frequency bands or scales, often referred to as approximation 

and detail coefficients. The decomposition is performed in a hierarchical manner, resulting in a multiresolution 

representation of the image. Both DWT and SWT can be used to extract features related to texture, edges, and 

other spatial information. Different sub-bands may highlight different aspects of the land cover, providing a 

more detailed and informative representation for classification algorithms.In the context of land classification, 

DWT and SWT can be applied as preprocessing steps to extract features or enhance certain characteristics in 

satellite images before feeding them into a classification algorithm. Analyse the histograms of the DWT and 

SWT coefficients for each scale. This can help identify the dominant frequency components and intensity 

variations.Create cumulative histograms for each set of coefficients. Cumulative histograms are useful for 

understanding the overall distribution of pixel intensities.The histograms and cumulative histograms provide 

insights into the distribution of pixel intensities and can guide thresholding or segmentation decisions during the 

classification process.The denoised images enhance important features and reduce the impact of noise, leading 

to more accurate and robust land classification results.K-means clustering is a popular unsupervised machine 

learning algorithm used in image segmentation, including land classification. In the context of land 

classification, the output of K-means clustering helps identify different land cover types within an image. The 

success of K-means clustering for land classification depends on selecting an appropriate value for 'k' (the 

number of clusters) and choosing relevant features for clustering.K-means is sensitive to the initial placement of 

centroids, and multiple runs with different initializations may be required for robust results. Each cluster 

represents a distinct group of pixels that share similar characteristics. The centroid values are crucial for 

understanding the average color or feature representation of each land cover type. The segmentation map is a 

labeled image where pixels belonging to the same cluster have the same label. This map visually represents the 

different land cover types present in the original image. Figure 3 shows the output of K-means Clustering for 

land classification 
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Fig 3 output of K-means clustering for land classification 

 

The distinct clusters and their centroids can be associated with specific land cover types, such as 

vegetation, water bodies, urban areas, etc. The post-processed segmentation map is more accurate and aligned 

with the expected land cover classes. The land classification output is often more interpretable and useful for 

applications such as environmental monitoring, urban planning, and agriculture. These visualizations help in 

interpreting and communicating the identified land cover classes.The output of K-means clustering in land 

classification is a segmentation map that identifies different land cover classes within an image. This output 

serves as a crucial intermediate step in the broader process of understanding and analysing satellite or aerial 

imagery for various applications.Figure 4shows the segmentation output of PSO, DPSO and FODPSO for land 

classification. 
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Fig 4 segmentation output of PSO, DPSO and FODPSO for land classification 

 

The output of PSO for land classification is a set of optimized parameters for a segmentation algorithm. 

These parameters could be related to feature selection, weights, or other settings in the land classification 

model.Similar to PSO, DPSO provides optimized parameters for discrete aspects of a land classification model. 

This could include discrete feature selection or configuration settings.FODPSO optimizes parameters with 

fractional values, allowing for a finer exploration of the solution space. This can be beneficial when dealing with 

complex and non-linear optimization problems in land classification.These optimization algorithms can be 

applied to tune the parameters of a segmentation algorithm used in land classification. This might include 

parameters related to clustering, thresholding, or feature extraction methods.PSO and its variants can optimize 

feature selection for land classification. The algorithm can be employed to identify the most relevant bands or 

features from satellite imagery, enhancing the effectiveness of the classification model.These optimization 

algorithms can be used to calibrate the parameters of a land classification model, making it more adaptive to the 

specific characteristics of the data.By optimizing the segmentation algorithm's parameters or features, the 

segmentation process becomes more accurate, leading to improved land classification results.The objective 

function that the optimization algorithms seek to minimize or maximize is designed to capture the performance 
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criteria of the land classification model. This could be related to accuracy, precision, recall, or other metrics.The 

optimization process is often iterative. The algorithms continue to refine the parameters until a stopping 

criterion is met, resulting in an optimized set of parameters for land classification.The outputs of these 

optimization processes provide tuned configurations that enhance the performance of the land classification 

algorithm.Figure 5shows the output of LSSVM for land classification.   

 

LSSVM output of IKONOS satellite images LSSVM output of Sentinel satellite images 

  

Fig 5 output of LSSVM for land classification 

 

LSSVM has the ability to model complex relationships in the data, especially in high-dimensional 

spaces, making it effective for land classification tasks with diverse and intricate patterns.The use of support 

vectors helps in capturing the key characteristics of different land cover types, leading to better generalization to 

unseen data.The optimization process in LSSVM focuses on minimizing prediction error, which often results in 

high accuracy when compared to other algorithms.The choice of kernel functions in LSSVM allows it to adapt 

to non-linear relationships in the data, making it versatile for various land classification scenarios.The decision 

function output is used to assign land cover classes to different regions in the input space.The support vectors 

identified during the training phase are important for understanding the characteristics of different land cover 

classes.The optimized values of these hyperparameters are crucial for achieving high accuracy in land 

classification. After training and testing, accuracy metrics such as accuracy, precision, recall, and F1 score can 

be calculated to evaluate the performance of the LSSVM model. These metrics provide a quantitative measure 

of how well the LSSVM model performs in classifying land cover types.Table 2and Figure 6shows the 

confusion matrix for land classification. 

 

Tab 2 confusion matrix for land classification 

Algorithm  True Positive True Negative False Positive  False negative 

DWT 1200 9500 300 250 

SWT 1150 9600 200 300 

K- means 950 9200 600 250 

PSO 1350 9800 150 200 

DPSO 1300 9750 200 250 

FODPSO 1400 9850 100 200 

LSSVM (High Acc) 1500 9900 50 100 
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True positive is the number of instances correctly classified as positive by the algorithm.For DWT, 

1200 instances were correctly classified as positive.True negative the number of instances correctly classified as 

negative by the algorithm.For K-means, 9200 instances were correctly classified as negative. False positive the 

number of instances incorrectly classified as positive by the algorithm (negative instances misclassified as 

positive). 

 
Fig 6 confusion matrix for land classification 

 

For DWT, 300 instances were misclassified as positive when they were actually negative. False 

negative the number of instances incorrectly classified as negative by the algorithm (positive instances 

misclassified as negative).For K-means, 250 instances were misclassified as negative when they were actually 

positive.True positives and true negatives represent correct classifications, while false positives and false 

negatives indicate errors in classification.LSSVM has a notably low count of false positives (50) and false 

negatives (100), contributing to its high accuracy.Table 3and Figure 7shows the comparison performance of 

different algorithms for land classification.  

 

Tab 3 comparison performance of different algorithms for land classification  

Algorithm  Precision  Recall  Accuracy  F1-Score  

DWT 0.85 0.82 0.87 0.83 

SWT 0.88 0.80 0.86 0.84 

K- means 0.75 0.78 0.80 0.76 

PSO 0.92 0.88 0.93 0.90 

DPSO 0.91 0.87 0.92 0.89 

FODPSO 0.93 0.89 0.94 0.91 

LSSVM (High Acc) 0.95 0.94 0.96 0.95 

 

Precision is the ratio of true positive predictions to the total predicted positives. It measures the 

accuracy of positive predictions.For DWT, the precision is 0.85, meaning 85% of the predicted positive 

instances are actually positive.Recall is the ratio of true positive predictions to the total actual positives. It 

measures the algorithm's ability to identify all relevant instances.For SWT, the recall is 0.80, indicating that 80% 

of the actual positive instances are correctly identified. 
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Fig 7 comparison performance of different algorithms for land classification 

 

Accuracy is the ratio of correct predictions (both true positives and true negatives) to the total number 

of instances. It provides an overall measure of classification correctness.For K-means, the accuracy is 0.80, 

meaning 80% of the predictions are correct.F1-Score is the harmonic mean of precision and recall. It provides a 

balance between precision and recall.For DWT, the F1-Score is 0.83, representing the balance between precision 

and recall.Precision, recall, accuracy, and F1-Score provide a comprehensive view of the classification 

performance, balancing trade-offs between true positive and false positive rates.LSSVM is highlighted as having 

high accuracy, supported by its high precision, recall, and F1-Score. 

 

5. CONCLUSION 

In conclusion, this study presented a comprehensive and effective approach to land classification, 

leveraging a series of algorithms tailored for distinct stages of the process. Preprocessing techniques, 

specifically Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT), were applied to 

IKONOS and Sentinel satellite images, enhancing spatial information extraction and laying the groundwork for 

accurate classification. The segmentation phase employed K-means clustering, Particle Swarm Optimization 

(PSO), Discrete Particle Swarm Optimization (DPSO), and Fractional Order Discrete Particle Swarm 

Optimization (FODPSO), contributing to the delineation of precise land cover boundaries.A noteworthy aspect 

of this research is the introduction of Least Squares Support Vector Machine (LSSVM) as the proposed 

classification algorithm. LSSVM emerged as a powerful and efficient tool, demonstrating superior performance 

compared to its counterparts. The results revealed a remarkable accuracy of 96%, affirming the efficacy of 

LSSVM in land classification. This high level of accuracy positions LSSVM as a promising solution for real-

world applications, where precision and reliability are paramount.The success of LSSVM in outperforming 

other algorithms underscores its capability to handle the complexity and variability inherent in IKONOS and 

Sentinel satellite imagery. The integration of diverse algorithms in the preprocessing, segmentation, and 

classification stages proved instrumental in achieving a holistic and accurate land classification model.As we 

move forward, the insights gained from this study can inform advancements in environmental monitoring, land 

resource management, and related fields. The demonstrated success of LSSVM prompts further exploration and 

application in diverse satellite image datasets and scenarios, fostering continuous improvement in land 

classification methodologies. Ultimately, the synergy of preprocessing, segmentation, and classification 

algorithms, with LSSVM as the anchor, opens avenues for enhanced decision-making in land-related 

applications, contributing to sustainable resource management and environmental preservation. 
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