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Abstract: Anomaly detection is an essential subject with numerous applications and has thus been 

investigated for decades in numerous research fields, including cyber security, finance, healthcare, social 

networks, etc. In recent years, numerous strategies have been utilized to detect anomalies in unstructured or 

multidimensional data. Graphs have the expressive capacity to model data from several domains, including 

social networks. Literature has a significant amount of research on finding anomalies utilizing structural 

attributes, ego nets for subspace selection/community analysis. These learning techniques are called shallow 

mechanisms because they do not completely understand graph structures or patterns. This technique cannot 

capture the intricate interaction between network nodes and other information modalities. Therefore, the 

capability of deep learning to solve the challenge of detecting anomalies in social networks was utilized. This 

article provides a methodology for detecting anomalies in graph data, such as social networks, using graph 

neural networks' robust representation capability. This paper proposed a model for identifying anomalous 

connections between social network nodes and edges using deep learning techniques. Clustering and 

traditional One-class SVM graph neural networks for node anomaly identification was used, and tuned the 

graph neural networks for edge anomaly detection. The proposed framework produces superior outcomes in 

comparison to previous baseline models.  

 

Keywords - Social Networks, Anomaly Detection, Deep Learning, Graph Representation Learning, Graph 

Neural Networks. 

 

 

1. Introduction 

The network is a powerful tool for locating objects and relationships and connecting them meaningfully 

to portray real-time entities as objects. There are many examples of interconnected systems in the real world: 

road networks that link cities, financial networks that link banks worldwide, and social networks that link users, 

businesses, and customers through relationships such as friendship. This can be conveniently modeled as graphs, 

with the real-time entities serving as the graph's nodes. These kinds of networks are sometimes referred to as 

attributed networks because, in addition to the network structure, the objects in real-time also have attributes or 

characteristics. The expressive capability of graphs allows them to be used to model and analyze data from 

many other domains; for instance, in a social network like Facebook or Twitter, where the nodes are simply 

users and the edges are the relationships between them.  

In such networks, anomaly detection, the process of identifying objects or relationships that differ from 

the remainder, is a significant challenge. Sharing, communication, and collaboration are facilitated by social 
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media platforms. Numerous malicious activities, such as cyber bullying, the planning of terrorist attacks, and the 

dissemination of fraudulent information, are highly likely. Consequently, it is essential to detect these 

anomalous actions as quickly and precisely as feasible in order to reduce their occurrence.  

 Many statistical and machine learning [4][14][26] approaches have been proposed to tackle this issue, 

but they are ineffective because these rely on superficial learning techniques that are incapable of understanding 

the interconnections and relationships found in graph organized (non-euclidean) data. Several methods exist in 

traditional machine learning for spotting anomalies, such as Principal Component Analysis (PCA) [17] and one-

class SVM [15]. For this outlier detection task, SVM’s of a certain type have seen extensive use. It is necessary 

to generalize these traditional methods to this graph structured data to perform anomaly detection jobs. One of 

the most powerful machine learning methods to separate typical data from outliers is Support Vector Data 

Description (SVDD) [23]. However, these techniques are only used to Euclidean data in the literature. Many 

connections between nodes and node/edge attributes play an important role in the learning phase of graph 

structured data. Traditional graph learning algorithms like DeepWalk. [20] Often overlook feature information, 

which focus instead on acquiring the graph's structural information.  

Graph embedding has recently proven to be an effective strategy to learn low-dimensional network 

representations that capture and retain graph structure. As a result, there is a lot of focus on graph representation 

learning, with methods from several types of neural networks being applied. The standard method involves 

training an anomaly detection model with a feature vector of fixed length for each node, where each feature 

represents the structural information of the node's immediate neighbor in the graph. 

Both DeepWalk [20] and node2vec [9] are static graph embedding methods that rely on random walks. 

These methods are effective at resolving the neighbourhood structure and providing a more complete image of a 

node. In contrast, this ignores feature information, which is a major flaw of such superficial learning 

approaches. Recent advances in graph representation learning include Graph Neural Networks (GNNs) [25], 

which are able to overcome the drawbacks of shallow learning approaches while still yielding many superior 

results. These methods, which borrow heavily from the concept of message forwarding, can be applied straight 

to graph information. In order to build a new embedding, each node takes the vectors it receives from its 

neighbours and uses a variety of techniques to aggregate them. After several iterations, each node has a feature 

vector that details the local environment in terms of structure and attributes. These methods, such as GCN [13] 

and GAT [24], are becoming increasingly popular in various tasks, such as node classification, thus it is 

essential to take advantage of their potential to address GAD issues. This paper discusses graph neural network 

techniques, which have proven effective at simultaneously representing graph structure and attributes in recent 

years. 

In this research, the powerful representation of GNNs, the idea of one-class SVM and clustering to 

identify anomalous nodes was used. 

 

2. Literature Survey 

This section provides a quick overview of the research conducted in this field. First, a complete 

description of traditional graph anomaly detection methods is provided, followed by a discussion of graph 

representation learning and deep learning techniques for anomaly detection.  

 

2.1 Anomaly detection with traditional statistical and machine learning techniques 

In conventional anomaly detection with non-euclidean data, such as graphs, the only available 

information is the data's structure and, in some cases, the node/edge properties. Therefore, anomaly detection 

systems must rely on the network's structural information to identify patterns that may be anomalous. Without 

explicit characteristics, these algorithms must use the graph representation to derive a usable collection of 

features connected to the graph structure. Several characteristics related to nodes, ego nets [1][2] and global 

graph structure can be constructed and utilized for anomaly detection activities. Node-level characteristics may 

include, for instance, node degrees, closeness, betweenness centralities, number of common neighbors, etc.  

One of the most well-known structure-based methods is ODDBALL, which was introduced by [1]. To 

quickly find ego nets that don't follow the same patterns (called Anomalous ego nets), this method uses the 

extracted ego net attributes to try to uncover patterns that most ego nets adhere to.  Many community-based 
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methods, like [3][4] Local Outlier Factor and [14] Isolation Forest, relied on the local point density to generate 

their predictions. 

One can find regions with a similar density and places with a significantly lower density than their 

neighbors, referred to as outliers. AUTOPART is one such method based on the notion that nodes with different 

representations/neighborhoods will be clustered separately from nodes with the same 

representation/neighborhood. In [26] SCAN, vertices that share numerous neighbors are sorted into the same 

clusters; vertices that serve as a bridge between many clusters are referred to as hubs, and vertices that do not 

belong to any of the communities are identified as outliers.  

[19] Divide this anomaly identification problem into two subproblems: identifying abnormal 

substructures in graph data and identifying abnormal subgraphs among a specified set of subgraphs whose nodes 

and edges have characteristics. Occasionally, some characteristics are more significant or contribute to making a 

node unusual. [16][17][18] Developed a system (GOUTRANK) for outlier detection that ranks every node. 

EdgeCentric: [21][22]. In this study, rather than relying excessively on node attributes or graph structural 

information, the authors utilize edge attributes/information to identify edge-attributed anomalies in graph data. 

Specifically, this method uses Minimum Description Length (MDL) to score abnormalities of nodes based on 

unsupervised patterns of edge-attribute activity.  

 

2.2 Graph Neural Networks 

GNNs generalize the application of deep learning to graph data. To graph-structured data, GNNs have 

been derived from the concept of convolutional neural networks. It employs a message-passing architecture in 

which messages are sent between graph nodes, and neural networks are used for updating. Each node compiles 

data from its neighbors and develops a new feature vector. This procedure is repeated k times for a node to 

obtain structural information from its k-hop neighbors. Therefore, these latent representations of nodes, learned 

by GNNs, are employed for tasks such as node classification, link prediction, etc. [13] The Graph Convolutional 

Network (GCN) model introduced by [12] is the state-of-the-art GNN model. GCN produced better outcomes 

than conventional shallow graph representation learning algorithms like DeepWalk. [24] Graph Attention 

Network (GAT) introduced GCN's masked self-attention layers. This alters how GCN aggregates data from its 

neighbors. GAT specifies a mechanism to give local neighbors weight by assigning them various weights 

without bias. [10][11] GraphSAGE is an additional inductive GNN-based technique that works well with new, 

unseen points. It can forecast the embeddings of new nodes without the need for retraining. All current GNN 

approaches, however, are focused on learning embedded representations of nodes, and it is unclear how to 

utilize the potential of GNNs for GAD.  

 

2.3 Anomaly Detection with Deep Learning Techniques 

Deep learning and graph representation learning techniques have been used to solve anomaly detection 

problems in recent years. These methods substantially outperform the prior benchmarks established by the Local 

outlier factor. Four LOF or twenty-six SCAN algorithms. DOMINANT combines these unsupervised Graph 

convolutional networks with an autoencoder to find anomalies in attributed networks. The inaccuracy in graph 

reconstruction is minimized, and an anomaly score is computed for each node. [8] Anomaly DAE A concept 

comparable to DOMINANT that employs a dual auto-encoder-based system for anomaly identification. Also, at 

the encoding phase, a self-attention mechanism has been implemented so that various weights will be assigned 

to neighborsto effectively capture the structural patterns of the network. [5][6][7] As a semi-supervised learning 

technique, Castellini built a de-noising Autoencoder for anomaly identification. This semi-supervised learning 

with an autoencoder does not require overtly aberrant training samples. StreamSpot detects anomalies in a 

stream of heterogeneous graphs with diverse types of nodes and edges. They have developed a new similarity 

function for comparing two heterogeneous graphs based on the relative frequency of their local substructures 

and a centroid-based clustering technique for capturing the typical Behaviors. Again, MIDAS focuses on the 

stream of edges and assigns them anomaly ratings in real-time and with constant memory. In network traffic 

data, they mostly detect micro-clusterabnormalities, sudden clusters of suspiciously similar edges, such as 

lockstep behavior and denial of service attacks. [27] NETWALK is a further proposed Auto Encoder based 

approach for dynamic networks that encodes graph data by producing random network walks. These 
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nodes/edges are then grouped to identify data anomalies.  

3. Proposed Methodology 

Complex systems are modelled extensively using graph-structured data in multiple domains. While 

there are ways to identify anomalous instances in Euclidean data, discovering anomalies in graph structured data 

is a possible issue. This section focuses on developing a model to detect anomalous nodes and edges in social 

networks. To service this anomaly detection goal, the power of approaches was utilized in graph representation 

learning, such as GCN. First, it was provided a complete description of node anomaly detection, followed by the 

task of edge anomaly detection.  

a. In this entire work, let G be an attributed graph such as G= (V , E) where V = v1, v2, ..., vN is the set 

of N = |V | nodes and E ⊆V X V is the set of edges (M  = |E |) with the associated binary adjacency 

matrix, mainly named as A∈R|n×n| where Aij = 1 if there is an edge between vertex vi and vj else 0. 

b. It also assumed that the techniques require (not mandatory) a real-valued matrix of node 

features/attributes X ∈R|n×f| (e.g. Bag of words representation of the text features in case of citation 

networks or the individual attributes in case of social networks like Facebook). The aim is to use the 

information contained in A and X to map each node to a vector z ∈R|f|, where f « | V |. Table 1 

show the notations used in node and edge anomaly detection. 

 

3.1 Problem and Notations 

Given the anomaly-free training dataset xi, i= 1, ..., K, the model is trained to cluster the normal data 

together, and then the model produces the anomaly score Sxu for an unseen data point xu. A data point with a 

high anomaly score is defined as ananomaly. All nodes for training belong to one class (normal), while the 

remaining validation and testing nodes are unlabelled. On the other hand, given the trainingdataset with positive 

edges and the same number of anomalous edges, the model is trained to learn these embeddings to differentiate 

between anomalous and non-anomalous data and verify the results during the testing and validation datasets, 

including unseen edges and anomalous edges. 

 

Table 1 Notation for Graph-based Anomaly Detection 

 

 

 

 

 

 

 

 

 

 

 

 

3.2 Anomalous Node Detection 

The overall framework of node anomaly detection has been divided into two phases: The graph 

embedding phase and then the clustering phase.  

Graph Embedding Phase 

The adjacency and the feature matrix are fed into this step. The strength of graph neural networks was 

used to incorporate the graph. It was tested three cutting-edge graph neural networks, including GCN, GAT, and 

GraphSAGE. These methods take the input as graph depicted in Figure 1 and output embeddings for each node. 

Now it is seen that normal data is all required during training for a one-class SVM. After obtaining all of the 

nodes' embeddings, it is then hided the original embeddings during training. 

Notations Description 

V=v1,v2,..,vN These to f  N nodes in a graph 

Vtr ⊆V, | Vtr| =K The set of K training nodes 

X ∈RN×F Node feature matrix 

A ∈RN×N Adjacency matrix 

Z ∈RN×F Node embedding matrix 

g(H(l),AW(l)) GCN propagation rule at layer 

θk Slack variable 

R Radius to determine the anomaly   
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Figure 1 Overall framework of the proposed methodology 

 Clustering Phase 

The normal data embeddings from phase 1 are now available. Now, the attempt is to group these points 

into a cohesive whole by bringing them as close as possible to the cluster's epicentre. Since, the data get 

partitioned during training; it has only typical data points to work with. To do this, the model was given with 

both typical and out-of-the-ordinary data points during the evaluation phase, and then the attempt was made to 

squeeze all the points into the cluster. After training is complete, this model should be able to tell the difference 

between typical and out-of-the-ordinary node embeddings. 

 

3.2.1 Learning Objective 

The application of node anomaly detection uses only typical nodes as training data points. Therefore, 

all those data points can be clustered together, and this model can determine a boundary. The original goal of 

SVDD learning was to decrease the hypersphere's radius by as much as possible around the normal points. 

𝑚𝑖𝑛𝑟 (𝑟2 +
1

𝛽𝐾
∑ 𝜉𝑖𝑘

𝑖=1 )                           (1) 

Such that 

‖𝜃𝑘(𝑥𝑖) − 𝑐 ‖
2

𝐹𝑘 ≤  𝑟2 + 𝜉𝑖𝜉𝑗 ≥ 0, ∀𝑖 

Where, ξi is a slack variable to allow some of the boundary points to be termed as outliers in the 

training dataset to avoid overfitting the data. The data points θk(xi)  Fk are not all strictly inside the 

hypersphere, but the data located too far away must be penalised which is the purpose of this slack variable 𝛽 ∈

0,1. After minimizing the equation (1), center c and the radius r can be obtained. Data points that lie outside the 

hypersphere ,‖𝜃𝑘(𝑥𝑖) − 𝑐 ‖
2

𝐹𝑘 ≤  𝑟2, are outliers. 

Now this was the learning objective of the classic SVDD. We need to incorporate the graph neural 

network while finding out the embeddings and the clustering part to find the radius. GCN takes the input matrix 

A and the node features X to get the embeddings. This has layer wise trainable weights in GNN W 1, W 2. . . Wl 

where l belongs to the number of hidden layers. For lth layer, the forward propagation rule is defined by the 

equation (2). 

                              H(l+1) = g(H(l), A; W (l)) (2) 

The aim of the model is to jointly learn the network parameters W, minimise the distance of the data 

points inside the cluster characterised by the radius r and the centroid c. Given a graph defined by (X, A) and the 

set of K training nodes, 

𝐿(𝑟, 𝑊) =
1

𝛽𝐾
∑ [‖𝑔(𝑋, 𝐴: 𝑊)𝑣𝑖 − 𝑐‖2

− 𝑟2] + + 𝑟2 + 𝜆
2⁄ ∑ ‖𝑊(𝑙)‖ 2𝐿

𝑡=2𝑣𝑖∈𝑣𝑡𝑟
                                       (3) 

The first term in equation (3) is the penalty for nodes lying on/outside the radius, if the distance 

between an embedding vector and the center c is greater than the radius r. As in classical SVDD, the second 

term, minimizing 𝑟2, is to minimize the volume of sphere. The last term is the weight decay regularizer on the 

network parameters W with a hyperparameter λ > 0. The objective lets the network learn to map the node 

embeddings that are closed to the center c of the sphere. Since the training nodes are all normal, the model will 

extract the common factors of the given nodes. As a result, the description boundary of normal nodes can be 

obtained and the anomalous nodes can be detected. For a node 𝑣𝑖 in the given graph, its anomaly score S (𝑣𝑖) 

can be defined by the location of the embedding respect to the sphere: S (𝑣𝑖) =  ||g(X, A;  W)𝑣𝑖 −
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 c|| 2r2 . If S (𝑣𝑖) >  0, the node vi is anomalous, otherwise it is a normal node. In the validation and the test 

dataset, this has anomalous and non - anomalous nodes. So the model performance can be evaluated on these 

validation and test datasets. Like other standard neural networks, this use SGD to optimize the parameters of 

GNN. 

The initial center of the cluster is determined by the K- means clustering algorithm, where the initial 

embeddings are given to the algorithm to find out the centroid. Since, radius r is not an inner parameter of the 

network, r and W can not be optimized synchronously by the BP algorithm. Instead, we update the r and W 

alternately during the training phase. First, we train W for 𝜃 ∈  𝑁 epochs while r is fixed. After every θ the 

epochs, r can be solved by simple linear percentile search. That is, for the training node set 𝑉𝑡𝑟 , we can obtain a 

distance set 𝑑𝑉𝑡𝑟 ∈ 𝑅𝐾 . Afterward, we can sort 𝑑𝑉𝑡𝑟 from small to large, and the radius r can be defined via 

(1 −  𝛽 ) percentile of 𝑑𝑉𝑡𝑟 

 

3.3 Anomalous Edge Detection 

Graph Neural Networks (GNN’s) like Graph Convolutional Networks (GCN’s) are demonstrated on 

the task of node classification in citation networks. While in this work, these GNN are tuned to solve the edge 

detection problem by modeling them as a supervised learning algorithm. This task of edge anomaly detection is 

primarily divided into 3 stages: 

1. Graph Embedding Algorithms 

2. Edge Embedding Algorithms 

3. Link Classification Layer 

As it is shown that, the best results come from graph neural networks like GCNs and GATs regarding 

graph embedding. In this work, the same method has been applied to learning graph structured data. The source 

destinations pairs of an edge was passed to GNNs to obtain the source and destination embeddings. Once the 

embeddings of the nodes in the graph is obtained, it is needed to generate the edge embeddings in order to pass 

it to the next stage. To generate the edge embeddings from source and destination nodes, two standard 

techniques was used that have been found in the literature: 1. Hadamard Product. 2. Concatenation of source and 

destination nodes. Once the edge embeddings were obtained, these edges were passed embeddings to the dense 

classification layer, which will obtain the probabilities of the possible edge existence between it. 

Experimentally, concatenation of source and destination vertices found to be slightly better than the hadamard 

product. The overall architecture is seen in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Each and every part of the model was trained by minimizing the loss function. The ADAM algorithm 

adjusts the model parameters based on a training set of links, allowing for binary cross entropy to be calculated 

between the predicted link probabilities and the genuine link labels. 

 

4. Implementation Details And Results 

This section discusses the specifics of the experiments that have been performed on the suggested 

models. This model is divided into two parts: experiments aimed at detecting anomalies at nodes and 

experiments aimed at detecting anomalies at edges. 

Figure 2 Edge Anomaly Detection Architecture 
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4.1 Node Anomaly Detection 

To evaluate the model’s performance, the standard citation networks like CORA, and PubMed II was 

taken. Citation networks are nothing but papers citing other papers in the network. Each scientific publication is 

represented as a node in the graph, and the citations between two publications are the edges / relationship 

between the nodes. These networks also have associated node features, which are the bag of word 

representations computed from the dictionary of total words.  

 

Table 2 Datasets for Node Anomaly Detection 

Datasets Nodes Edges Features Train/Val/Test 

Cora 2708 5429 1433 490/246/410 

PubMed II 19717 44338 500 4725/2364/3936 

 

The node anomaly detection datasets used in this work are generated from three plain node 

classification datasets by regarding one class as normal and the rest as anomalous. The normal classes in Cora 

and Pubmed datasets are “Neural Networks” and “Diabetes Mellitus Type 2”, respectively. All the nodes in the 

training set pertain to the normal class, while the validation and testing set has both normal and anomalous 

classes as well (50-50% each).  

 

Table 3 Performance of Node Anomaly Detection Models 

  Model CORA(AUC) PUBMED(AUC) 

Raw Features 

  

IForest 53.09 65.57 

OCSVM 54.05 45.5 

PCA 62.17 71.06 

AE 62.17 71.05 

DeepWalk 

IForest 57.87 60.73 

OCSVM 52.1 60.22 

PCA 55.9 61.66 

AE 55.91 61.66 

GAE Based 

GCN-AE 80.53 58.26 

GAE 60.15 54.27 

DOM 67.5 53.93 

GNN NA 

GCN NA 84.29 66.25 

GAT NA 93.17 64.54 

SAGE NA 87.01 76.12 

 

All three of the most cutting edge anomaly detection techniques in machine learning DeepWalk, 

principal component analysis, and isolation forest have been compared. It was also compared the model's results 

to those obtained using deep autoencoder based approaches, such as DOMINANT, simple GAE, and GCN-AE. 

Table 3 presents results for node anomaly identification on the CORA and PUBMED datasets using the 

suggested model. 
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Figure 3 Performance Comparison of Proposed Model with State of the art Models 

 

In this framework, three popular GNNs have been used to test the performance of the model, GCN 

[13,] GAT [24] and GraphSAGE [11] and the configurations for these three models are almost the same. Figure 

3 compares the proposed model's AUC performance to that of several state-of-the-art node anomaly detection 

models. The slack variable beta has been set to 0.1 in all the experiments. The initial weight matrices of the 

GNNs are initialized using glorot uniform weight initialization. ADAM optimizer is used with learning rate as 

0.001. This applies two layers GNN for cora dataset with hidden layer size as 16-16 and for pubmed dataset 32-

32. ReLU is used as an activation function in the GNN models with 0.5 dropout. Attention heads in GAT is set 

as 8. Aggregation method in GraphSAGE is pooling and LSTM aggregators for CORA and PubMed datasets 

respectively. Any other modification may lead to even better performance and still can be improved. 

 

4.2 Edge Anomaly Detection 

The models are trained on an incomplete version of the datasets where part of the citation links have 

been removed, while all the node features are kept as it is. Validation and test sets are formed from previously 

removed edges and the same number of randomly sampled pairs of unconnected nodes (Anomalous edges). 

Model comparison has been done basedon their ability to correctly classify non-anomalous edges and 

anomalous edges. 

 

Table 4 Datasets for Edge Anomaly Detection 

Datasets Nodes Edges Features 

Cora 2708 5429 1433 

Citeseer 3327 4732 3703 

 

Table 5 Performance of  Edge Anomaly Detection Models 

  CORA(AUC) Citeseer(AUC) 

Spectral Clustering (SC) 84.6 80.5 

DeepWalk 83.01 80.5 

VGAE 91.4 90.8 

GNN Edge Anomaly 
GCN EA  86.57 GCN EA 79.18 

GAT EA  93.20 GAT EA 91.19 
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Figure 4 Performance Comparison of Proposed Edge Anomaly Detection Model with State of the art Models 

 

Since, the framework is based on supervised learning, initially anomalous edges are randomly created 

in the training phase (equal to the number of normal edges). These edges, with the edges originally present in 

the graph are fed to the model in the training phase. This model has been tested on some standard link prediction 

work like spectral clustering, Deepwalk and variational graph autoencoder. Table 5 presents results for edge 

anomaly identification on the CORA and citeseer datasets using the suggested model. Figure 3 compares the 

proposed model's AUC performance to that of several state-of-the-art edge anomaly detection models. 

 

5. Conclusion 

In this work, a model is proposed for node and edge anomaly detection in social networks using deep 

learning approaches. This also did a comprehensive analysis of the anomalies exist in the graph data like social 

networks and the work that has been done in this area of study. The node anomaly detection approach was based 

on classic One-class SVM graph neural networks and clustering, while the edge anomaly detection was 

achieved by tuning the graph neural networks for anomaly detection. The results from the extensive experiments 

demonstrate that proposed models achieves significant improvements. This work is done assuming the data in 

hand is a static graph data. In the future, it can be generalized to finer graph level and dynamic node / edge 

anomaly detection task. 
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