
Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

3806 
 

2-D Scaling in Cloud computing 
 

[1] Aruna Mailavaram, [2] B. Padmaja Rani, 

 
[1]Asst. Prof. in CSE, Madanapalle Institute of Technology & Science,A.P. 

 [2]Prof. in CSE, JNTUHCEH, Hyderabad. 

 
Abstract: Two Dimensional scaling is increasing the resources of the cloud as per the requirements. In this 

paper we are discussing about the scaling in both vertical and horizontal as to fulfill the needs of the 

customers. Vertical scaling is increasing the specifications of existing infrastructure by adding or replacing 

CPU, HDD or other components, whereas horizontal scaling is adding new resources to the existing pool of 

resources. Increasing the resources in two-dimensional is known as Diagonal Scaling. 

 

Key Words: Deadline, scaling, cloud computing, performance, vertical scaling and horizontal scaling. 

 

 

Introduction  

Cloud Computing[6] is a huge source of resources where different organizations utilize them for their 

work. Since all the resources are globally spread through the internet, remotely many services can be accessed. 

Since the customers are not limited, day by day customers are increasing cloud has to be designed with no 

issues. But still we have few issues in cloud computing like security, scalability, performance, latency etc. To 

design a scalable[1] cloud system to improve performance and making all the tasks to reach within deadline 

time we are proposing a method, where all the tasks are reaching the deadlines. 

 

 
 

The above figure shows the architecture of the cloud, how the cloudlets[3] are being processed using 

cloud sim tool, this architecture provides the environment of cloud. The scheduling policies[4] will be mounted 

on scheduling policy in the architecture[5]. Here in this paper we are designing horizontal and vertical scaling 

algorithms and  compared with each other. We are trying to improve the performance of the system as well as 

the tasks should reach the deadline. So two parameters we are focusing on. In my next upcoming paper, we will 

focus on the combination of both vertical and horizontal scaling algorithms. 

 

 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

3807 
 

 

Design and Implementation: 

Here we are implementing both horizontal and vertical scaling[12] separately and compared with the 

previous algorithms and found better results in horizontal scaling[13]. Initially we are taking a data set of VMs, 

task lengths and deadlines as input and given to broker function for accessing all the tasks are arranged in 

ascending order and VMs in descending order. Allotting tasks to the VMs for processing if any leftover tasks are 

there we are implementing horizontal scaling[12]. 

Horizontal Scaling : Arrange all the VMs in descending order, and all tasks in ascending order 

associated with their deadlines according to the task length[9]. Here in this algorithm we are checking 

overloaded condition and under loaded condition of each VM. We are utilizing 80 percentage of each MV 

capacity in order to avoid overloaded condition. For example if we consider 720 MIPS capacity VM then we are 

utilizing 576 MIPS of its capacity. And we are seeing that tasks not reaching the deadline is less at the same 

time improving the performance of the system. 

Since this is horizontal scaling we can add resources to the pool of existing resources[8]. In the given 

data set we have taken ten VMs and arranged them in descending order. Two VMs with high capacity are kept 

in spare for further use to handle high length tasks. So we are starting from 720 MIPS Virtual Machine, and 

assigning  the tasks until it reaches 80 percentage of VM capacity[3], then task is being hand over to next VM, 

until all VMs get engaged. Check for the left over tasks, assign the tasks to the VMs which we kept in spare for 

further use to handle high length tasks. If further any tasks ae still left over then we have to implement 

horizontal scaling if the percentage of unprocessed tasks[10] are less than 10 percentage then increase VMs with 

10 percentage, if else the unprocessed tasks are between 10 to 25 percentage increase the VMs by 25 percentage 

else calculate Average Resource Utilization Ratio (ARUR). 

 

Problem formulation :  

Capacity of VM is CVM = p*q+BW{j,k} 

Where p is the processing speed and q is he umber cpu and BW is the band width between j and k virtual 

machines. 

Now we find out the load at the data center i.e.,   DC =∑i=1
mCVMj 

Load information at the VM can be found by LVM = number of task *∑task length/p*q. 

So, total load at Data Center is TL VM =∑j=1
mLVM. 

Expected Execution Time at Virtual Machine is calculated as  

EET = Task Length/p*q. 

Makespan Time = Max( ∑m
i=1ET. 

Algorithm for Horizontal Scaling : 

1.Generate n tasks T1,T2,T3,…Tn. 

2.Sort the tasks in ascending order. 

3. Generate m number of virtual machines and sort them in descending order. 

4. Consider VMs from m*0.2 to m-1, higher capacity VMs are kept in UVM list in increasing order to handle 

high length tasks. 

5. For loop for T i from 0 to n-1 and for all virtual machines Rj belongs to m-1. 

6. If(Tasks[i]!=Ø) then 

7. For loop Tasks[i] -> VM[j], i++ until 

        Total _time TT[j]<(VM[j]*0.8) 

8.Then allot tasks to next VM i.e., VM[j+1] 

9.Repeat step 7 and 8 until all VMs are engaged. 

10.If(Tasks[i]==Ø) then calculate makespan 

11.Else If  

      While (UVM !=0) 

       Tasks[i+1] -> VM[j] until UVM ==0 

12. Else calculate the left over tasks 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

3808 
 

       i. If (UT>0 && UT< m*0.1) increase VMs by 10 percentage 

       ii. Else If (UT>m*0.1) Increase VMs by 20 percentage 

       iii. Else UT==0 calculate ARUR. 

13. Repeat step 11 and step 12 until all tasks are completed. 

 

Vertical Scaling :  In vertical scaling[14]  initially we are using the same technique as we did in 

horizontal scaling to allot the tasks to the VMs. Once the left over tasks are available, then allot them to the VM 

which are in idle state, but these left over tasks has to wait until previous tasks allotted to the virtual machine is 

completed and then allot task to the VM so here we have to increase the VM capacity based on the deadline 

achievement. 

Increasing the power of the system is vertical scaling unlike horizontal scaling the system power in 

terms of cpu, RAM[11] we can increase in vertical scaling, many public clouds can also allow to increase the 

capacity of the system power (example AWS). But the Virtual machine has to stop running we can increase its 

power and start running with the new power to handle the task to complete within the deadline. 

In this scaling technique we are increasing the capacity of the VM based on the deadline, a new VM is 

generated to reach the task within the deadline and still increase the capacity of the VM by 25 percentage to 

overcome the overloaded condition and round off the capacity of the VM. 

 

Problem formulation : 

New_VM=Task[i]/Deadline[i] 

To avoid overload condition we are increasing the VM capacity by 25 percentage. 

VMIncrease = New_VM*25/100 

New_VM = New_VM + VMIncrease 

Algorithm : Vertical Scaling 

Input : VMs, Tasks and Deadline. 

Output : All tasks are being processed. 

1.Generate n tasks T1,T2,T3,…Tn. 

2.Sort the tasks in ascending order. 

3. Generate m number of virtual machines and sort them in descending order. 

4. Consider VMs from m*0.2 to m-1, higher capacity VMs are kept in UVM list in increasing order to handle 

high length tasks. 

5. For loop for T i from 0 to n-1 and for all virtual machines Rj belongs to m-1. 

6. If(Tasks[i]!=Ø) then 

7. For loop Tasks[i] -> VM[j], i++ until 

        Total _time TT[j]<(VM[j]*0.8) 

8.Then allot tasks to next VM i.e., VM[j+1] 

9.Repeat step 7 and 8 until all VMs are engaged. 

10.If(Tasks[i]==Ø) then calculate makespan 

11.Else If  

      While (UVM !=0) 

       Tasks[i+1] -> VM[j] until UVM ==0 

12.Else calculate the number of left over tasks. 

13. If UT!=Ø then 

14. Generate new VM based on the deadline for each task as New_VM=tasks[i]/Deadline[i] 

15.  To avoid overload condition increase the new VM by 25 percentage. 

Synthetic Data : 

Considering a dataset for both the algorithms. 

 

 

 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

3809 
 

 

Task ID Task Length(MI) Deadline of Task 

{ms) 

VMs (MIPS)  

17  98049  1050  760  

18  107218  300  740  

19  147281  1150  720  

15  153285  800  700  

7  182561  2000  680  

16  205633  600  660  

9  215744  1300  640  

13  222784  550  620  

10  253197  1250  600  

14  253745  1000  580  

4  325750  420  560  

3  325800  410   

5  325970  700   

6  333911  660   

11  334013  450   

2  339760  920   

12  344630  400   

0  381771  400   

1  392397  745   

8  396156  300   

After implementing Horizontal and vertical scaling we are getting the result as follows: 

Results 

Horizontal Scaling: 

Task ID Task Length Deadline of Task Execution Time  

17  98049  1050  136  

18  107218  300  284  

19  147281  1150  488  

15  153285  800  218  

7  182561  2000  478  

16  205633  600  302  

9  215744  1300  326  

13  222784  550  348  

10  253197  1250  408  

14  253745  1000  422  

4  325750  420  561  

3  325800  410  577  

5  325970  700  440  

6  333911  660  439  

11  334013  450  428  

2  339760  920  424  

12  344630  400  420  

0  381771  400  454  

1  392397  745  456  

8  396156  300  450  



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

3810 
 

 

There are five tasks which are not meeting the deadline[7] Task ID 4,3,12,0,8. 

Vertical Scaling: 

 

Task ID Task Length Deadline of Task Execution Time  

17  98049  1050  136  

18  107218  300  284  

19  147281  1150  488  

15  153285  800  218  

7  182561  2000  478  

16  205633  600  302  

9  215744  1300  326  

13  222784  550  348  

10  253197  1250  408  

14  253745  1000  422  

4  325750  420  420 

3  325800  410  410  

5  325970  700  756 

6  333911  660  978 

11  334013  450  946 

2  339760  920  878 

12  344630  400  848 

0  381771  400  863 

1  392397  745  1038 

8  396156  300  1038 

 

In vertical scaling there are total 8 tasks which are not reaching the deadlines[2] they are Task ID 

5,6,11,2,12,0,1,8. 

ARUR(Average Resource Utilization Ratio) : 

Average Resource Utilization Ration(ARUR) for Vertical Scaling  

ARUR = (Mean Time / Make Span )* 100 

Mean Time = ∑ Total Time taken by resource VMj to finish all the job / No. of resources. 

 

Parameters in Horizontal Scaling : 

Parameters Values 

No. of Overloaded Machines 2 

No. of Under loaded Machines 0 

Tasks not reaching deadline 5 

Makespan 577ms 

ARUR 75.65 

 

Parameters  in Vertical Scaling : 

Parameters Values 

No. of Overloaded Machines 8 

No. of Under loaded Machines 0 

Tasks not reaching deadline 8 

Makespan 1038 ms 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

3811 
 

ARUR 83.01 

Comparison (ms) : 

Horizontal Scaling 577 

Vertical Scaling 1038 

 

 
 

Number of Overloaded machines : 

Horizontal Scaling 2 

Vertical Scaling 8 

 

 
 

Number of tasks not reaching deadline : 

Horizontal Scaling 5 

Vertical Scaling 8 

 

 
 

ARUR : 

Horizontal Scaling 75.65 

Vertical Scaling 83.01 

 

70
72
74
76
78
80
82
84

Horizontal
Scaling

Vertical Scaling

Series1

70
72
74
76
78
80
82
84

Horizontal
Scaling

Vertical
Scaling

Series1

70
72
74
76
78
80
82
84

Horizontal
Scaling

Vertical
Scaling

Series1



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

3812 
 

 
 

Conclusion 

We have discussed about both vertical and horizontal scaling in cloud computing separately, scale out 

is horizontal scaling on x-axis and scale up vertical scaling on y-axis. In my next coming papers we will 

combine horizontal and vertical scaling. But according to this paper we concluded that in horizontal scaling we 

were able to achieve more number of tasks meeting the deadlinewhen compared with vertical scaling. 

 

References  

[1] Dynamic load balancing algorithm for balancing the workload among virtual machine in cloud 

computing   Mohit Kumara,*,S.C.Sharma.https://doi.org/10.1016/j.procs.2017.09.141. 

[2] Deadline constrained based dynamic load balancing algorithm with elasticity in cloud environment. 

https://doi.org/10.1016/j.compeleceng.2017.11.018..  

[3] Elastic and flexible deadline constraint load Balancing algorithm for Cloud 

Computing.https://doi.org/10.1016/j.procs.2017.12.092 

[4] Dynamic load balancing algorithm to minimize the makespan time and utilize the resources effectively 

in cloud environment. 

https://doi.org/10.1080/1206212X.2017.1404823. 

[5] Load balancing  algorithm to minimize the  make span time in cloud environment. ISSN1746-

7233,England,UK World Journal of  Modelling and Simulation. Vol.14(2018)No.4,pp.276-288. 

[6] A comprehensive survey for scheduling techniques in cloud computing.  

https://doi.org/10.1016/j.jnca.2019.06.006. 

[7] Dynamic Auto-scaling and Scheduling of Deadline ConstrainedService Workloads on IaaS Clouds. 

10.1016/j.jss.2016.05.011 

[8] Optimized Task Scheduling and ResourceAllocation on Cloud Computing EnvironmentUsing 

Improved Differential Evolution Algorithm. http://dx.doi.org/10.1016/j.cor.2013.06.012 

[9] Heuristic-based load-balancing algorithm for IaaS cloud.https://doi.org/10.1016/j.future.2017.10.035. 

[10] Load balancing in cloud computing: A big picture. https://doi.org/10.1016/j.jksuci.2018.01.003 

[11] A Priority Based Job Scheduling Algorithm Using IBA and EASY Algorithm for 

Cloud Metaschedularhttps://www.researchgate.net/publication/312814322 

[12] Horizontal and Vertical Scaling of Container-Based Applications Using Reinforcement Learning. 

https://doi.org/10.1109/CLOUD.2019.00061 

[13] Vertical Scaling of Virtual Machines In Cloud Environment. 

https://doi.org/10.1109/RTEICT52294.2021.9573715 

 

[14] Vertical/Horizontal Resource Scaling Mechanism for Federated Clouds. 

https://doi.org/10.1109/ICISA.2014.6847479. 

 

 

 

 

70
72
74
76
78
80
82
84

Horizontal
Scaling

Vertical
Scaling

Series1

https://doi.org/10.1016/j.procs.2017.09.141.
https://doi.org/10.1016/j.compeleceng.2017.11.018
https://doi.org/10.1016/j.procs.2017.12.092
https://doi.org/10.1080/1206212X.2017.1404823
https://doi.org/10.1016/j.jnca.2019.06.006
http://dx.doi.org/10.1016/j.cor.2013.06.012
https://doi.org/10.1016/j.future.2017.10.035
https://doi.org/10.1016/j.jksuci.2018.01.003
https://www.researchgate.net/publication/312814322
https://doi.org/10.1109/CLOUD.2019.00061
file:///C:/Users/User1/Downloads/Paper2.docx
file:///C:/Users/User1/Downloads/Paper2.docx
file:///C:/Users/User1/Downloads/Paper2.docx
file:///C:/Users/User1/Downloads/Paper2.docx

