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Abstract: This paper studies two dimensional generalized magneto-thermoelastic problem under three theories
with microtemperature and voids. The thermoelastic half space problem under the magnetic field influence with
initial stress, internal heat source and modified Ohm’s law is considered. The solution is obtained analytically
by normal modes and expressions for temperature distribution, displacement, stress components,change in the
volume fraction field, microtemperature components and heat flux components are calculated. The comparison
is done for the internal heat source effect and modified Ohm’s law coefficient with three different theories. The
results are plotted graphically for all physical quantities and variation are done for initial stress,modified Ohm’s
law coefficient and velocity of moving internal heat source.
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1. Introduction

The heat equations are of form diffusion type which predict infinite heat wave propagation admits in
classical coupled thermoelasticity theories. In order to eradicate the principle of coupled thermoelasticity, Biot
(1939) has proposed the theory that elastic changes do not influence the temperature. The prediction of finite heat
wave propagation admits in generalized thermoelasticity theory called as second sound effect. Two different
generalized thermoelasticity theories are found. The first was proposed by Lord and Shulman (1967), and second
by Green and Lindsay (1972). Paria (1966) explained the concept of magneto-elasticity and magneto-
thermoelasticity.

According to the theory of microstructure of continuum, a thermoelastic body contains microelements
with different temperatures that are dependent homogeneously on microcoordinates of microelements. This theory
tackles the variation of thermal properties at microstructure level in a rigid thermocouple. Microtemperature
theory has widely useful in nano materials. Grot (1969) derived the theory of thermoelasticity with inner structure.
Riha (1976) applied micromorphic continua to the problem of heat conduction within a structure. Many
researcher’s such as Quintanilla (2000); Casas and Quintanilla (2005); Iesan (2001) discussed about the
microtemperature and microstructure of thermoelastic bodies. Svanadze (2004) explained the effect of
microtemperature on thermoelastic materials. Quintanilla (2009) have studied the uniqueness theorem of porous
media with microtemperatures in dynamical theory of thermoelasticity. Khochemane (2021) explained that
microtemperature is strong to produce exponential stability in the case of zero thermal conductivity which is new
and improves previous results in the literature.

Initial stresses arises due to many reasons such as temperature variation, quenching process,living tissues
growth and development and gravity variations etc. The study of initial stresses in thermal and mechanical
conditions is very important as earth consist of high initial stress due to gravity and has strong effect on
propogation of waves. Ames and Straughan (1992) proved the thermoelastic solids has continuous dependence if
it is initially pre-stressed. Biot (1939) studied the linear and nonlinear theory of elasticity under initial stress. The
hydrostatic initial stress studied by Montanaro (1999) in linear theory of thermoelasticity.

The voids are small pores distributed in elastic materials. It consist of volume and if it tends to zero
becomes the limiting case for the classical theory in terms of elasticity. Cowin and Nunziato (1983); Ies,an (1986);
Nunziato and Cowin (1979) developed the linear or nonlinear theory of elastic materials with voids. The
asymptotic spatial behaviour of material with voids in linear theory studied by Pompei and Scalia (2002) and Stan
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Chirita (2001). Concept of voids in a material distributed in the form granules introduced by Goodman and Cowin
(1972) and Jaric (1979). Othman et al. (2016) developed the mathematical model of thermelasticity with the
existance of initial stress, voids and microtemperature. Ailawalia et al. (2015) developed the two dimensional half
space problem with microtemperature. The Lord-Shulman model in generalized thermoelasticity with the effect
of moving heat source is studied by Chakravorty and Chakravorty (1998). Lorentz force arises due to the
interaction of magnetic, electric field and also due to Ohm’s law useful for the current density which describes
electric field induced due to the material particle velocity in a magnetic field. Modification in Ohm’s law is due
to addition of temperature gradient term. This modification states that the gradient of electric potential is
proportional to strength of the material at each point. Ezzat and Elall (2009), Sarkar (2014) and Bawankar and
Kedar (2021) extended the magneto-thermoelasticity work by using modified Ohm’s law and shows the effect of
it on three different theories. Different authors have applied microtemperature, voids, initial stress theory in
thermoelastic and magneto-thermoelastic problems. But the combination of this theories in magneto-thermoelastic
problem in addition to modified Ohm’s law and internal heat source is the novelty of this paper. Due to application
of this significant changes are also observed in graphical analysis.

This work based on the effect of modified Ohm’s law, velocity of moving heat source with voids and
microtemperature in magneto-thermoelastic problem under initial stress. The initially stressed linear, isotropic,
homogeneous half space problem with magnetic field is considered. The expressions for the desired variables are
derived under three theories namely Green Lindsay(G-L), Lord and Shulman(L-S), coupled theory(CT) and for
isothermal boundary conditions by using normal mode analysis. Estimations have been carried out numerically
and illustrated graphically for the three theories for time, presence and absence of coefficient of modified Ohm’s
law and internal heat source.

2. Problem Formulation
The basic equations for homogeneous thermoelastic material with microtemperature, initial stress and
voids is given in Iesan (2001), Ies,an (1986), Montanaro (1999)

gij = 2#61']' + (/\87-,» + /\0@)(55}‘ — p(c?ij + wij) — 3 (T + Tlft)(sij ’ (1)

Pt TG = Qijj — Qi @)

where,%ij» Qi, €iare the components of the first heat flux moment and mean heat flux, first moment of energy
vector, p is density, Q is the internal heat source.

The two-dimensional half-space (y > 0) of electrically and thermally conducting isotropic, homogeneous problem
is considered. For two dimensional problem, u; = (u,v,0) are the displacement vector and w; = (wi,w»,0) are
microtemperature vector respectively. The (0,0,Hy + h(x,y,t)) is magnetic field applied to the medium. The
governing Maxwell’s equations are considered for electromagnetic field of perfect homogeneous conducting solid
(see Paria (1966), Ezzat and Elall

(2009), Bawankar and Kedar (2021)),

In addition to this, the modified Ohm’s law is,

J = 60(E + uou’ x H) — koVT. 3)

where, E,H,J represents induced electric field, initial magnetic field, and current density. uo,00 denotes magnetic
permeability, and electric conductivity. ko is the coefficient connects the electric current density and temperature
gradient.

Using the heat conduction equation, equation of motion with Lorentz force, energy balance equation and Lorentz
force component, we obtain the linear partial differential equations with microtemperature, voids, modified Ohm’s
law under initial stress with three theories as: Equation of motion becomes:
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+ 5%, e1= M5!+ 52 nois a dimensionless constant. In classical coupled theory (0= 1,70= 71 = 0),
0) and Green-Lindsay theory (170= 0,70= 71 > 0).
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The magnetic field equation by using Maxwell’s equation and modified Ohm’s law is obtained as
Oe

Oh  Oh
*h—b —b——— =0
Vih=bogm —bigy — 5 =0 ®)

Using the non-dimensional relation equation (7) (dropping diamond for simplicity) in equations (4) to

(6) we get:
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The potential functions can be consider as qi(x,),7), g2(x,,1), Ni(x,y,£) and Na(x,),f) in dimensionless form as:

O 8 y -y Ox T 0 T oy T oy Ox

3. The solution by Normal mode Technique

The appropriate solution of the system are obtained by assuming the normal modes as:
[NLN2,h,0,q1,q2, T O1(x,3,t) = [N1*,N2%,h*,0*,q1%,q2*, T, O*|(y)ei(ax—C,t). (16)
where O* = Qovo.

Using equation (16) in equations (8) to (14) we obtain:

[D?* — Lo)h* + Li(D* — a*)N; =0 (17)
[D? — L3]NJ + Ly¢* — LsT* — Lgh* = 0 (18)
[D? — LNy — byT* =0 (19)
[D? — Lg|T* + b1y (D?* — a®)q} + Lio(D?* — a®)N} + L11¢* = Lya (20)
[D? — Ly3]o* — biz(D* — a®) Ny — big(D? — a*)qf + L T* =0 1)
[L15D? — Liglq} 4+ Li7T* + Lis¢™ = 0, (22)
[DQ — Llg; =0 (23)

All the constants by — by7and L — Lo are defined in Appendix A.
e NFUNEL R 0% g, g, T . . . . .
Eliminating £¥1, Y2, /0, @, 41,492, £ among equations (17) to (23) yields differential equation as
follows:

(D' — AD 4 BD* — CD® + ED* — FD? + G)(N;, N;.h*.¢*, 4}, T*) = 0. (24

where 4,B,C,E,F and G are constants. Equation (24) can be factored as:
(D? —a?)(D? —a3)(D* — a3 )(D2—04)(D2 a2)(D?* — )| (N7, N3, h*, ¢*, qf, T*) = 0. (25)

where the roots of the above equation are™n (n =1,2, 5 4,5, 6)
obtained from equation (24), bounds as y —o are:

The general solution of physical quantities

6
T*(y) = Mue™ + 7,
n—l . (26)
Ni(y Z Hy, MY + Z,
n=1 (27)
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6
qb*(y) = Z Hop M™% + Zg

n=1

6
qf(y) - Z Hy, M, e™ " + Z,

n=1

6
Ni(y) = HinMue™ + Zs

n=1

h?(y) = XH5nMne—any + Z6.
n=1

where M,(n = 1,2....6) are constants. H\,_s, are some parameters depending on a,¢ (see Appendix B) .

Equation (23) has solution as y —o as:
q2(x,y,t) = MTe—aTy+i(ax—(Y).
Using equations (27) and (30) in equation (15) we get,
6
(u,v)(x,3,t) = X[H6n,HTn|Mne—ony+i(ax—¢t) + (Z27,28).
n=1
Substituting equations (29) and (32) in equation (15) one obtained as,

(TUI ’ UIQ)(Ir Y, t) - |:Z(H8na Hgn)ﬁ'fnei””y o ((1'?': ia’)ﬂ'{'?'ei(hy ei(am*&) + (ZQ: 0)

n=1
Using equations (26), (28), (29) and (32) to (34) in equations (9) to (14) on solving we get,
6
(oxx,00y)(x,3,t) = —p + X[H10n,H1 1n]Mne—any+i(ax—¢t) + (Z£10,211),

oxy(x,y,t) = XH12nMne—ony+i(ax—¢ét) + Z12.

6

(Goa Qo) (7,9, 1) = [Z[me Hygn) Mpe= Y + [bas, bsg| Mye @7V | "5 4 (Z,3,0)

n=1

Now considering the electric and magnetic field intensities in free space denoted by

respectively. The non-dimensional field equations satisfied by these variables are given by:

on®  OE°

- =c

oy "ot
OhY OFE?
e
ox ot .

The relation between induced magnetic field and electric field is:
0 0 HE©
on’ _ OE) 0P,
ot dy or
h°, EX’and E,” can be decompose in normal modes in the following form:

[1°, BY, Eyl(x,y.t) = [b°", EY, B)"|(y)e' )

Using equation (40) to equations (37) to (39) and then solving, the solution obtained for x; < 0 as:

hO? — Q(a,@e—aSy,

W, EY ED

(28)

(29)

(30)

(€2

(32)

(33)

(34

(35)

(36)

(37

(3%)

(39)

(40)

(41)

(42)
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B = ("‘S.b**”) Qla, e

na

E)" = by Q(a,&)e™™.
, (43)
(44)
where O(a,¢) is the parameter depends on a,¢.

4. Application
To determine the parameter S and O we need to consider the following boundary condition at y = 0. The
boundary condition is considered in non-dimensional form as:
(1) Thermal Boundary condition: The surface is exposed to thermal shock in the form:
T(x,0,£) = 0. (45)
(2) Mechanical Boundary condition:
(a) The surface is stressed by constant force p;i.e.:

oyy(x,0,f) = —plei(ax—¢t) — p. (46)
(b) The traction free surface is:
0(x,0,0) = 0. (47)
(3) Electric Boundary condition: For y = 0, the component of electric field intensity vector are continuous i.e. :

E\(x,0,£) = E,%(x,0,7). (48)
(4) Magnetic Boundary condition: For y = 0, the component of magnetic field intensity vector are continuous i.e:
h(x,0,1) = h°(x,0,1). (49)

(5) Heat flux moments Boundary condition: The heat flux moments are free in normal and tangential direction :
qex(x,0,8) = g(x,0,£) = 0. (50)

Substituting the desired physical quantities into equations (45) to (50) and finding the value of constants by using
matrix inversion method we get:

Myl [ Hu Hue Hyg Hug Hys Hpg 0 0] [—=p1—Zu)
M, Hiyy Hipy Higg Hygy Hips Hygg 0 0 ~Zy
M, | | | | | [ 0 0 -7
My| | Hisn Hisy Hisz Hisw Hiss Higg 0 —by -2y
M B H,'.] H',g H: ]]f,| Hey Hipg 0 =1 — /5
M Hyy Hygy Hyy Hyy Hys Hige by 0 ~Z13
A Hiyyw Hyy Huys Huyy Hys Hyg by 0 0

| Q] Loy Hoy agHog Moy agHoy s Hoy agHog 0 0 | | Z3 |

In this work ,the following special cases are considered:
(1) Neglecting void: By taking (a = o= &= wo=m = u1 = y = 0) in equations (17) to (23).
(2) Absence of coefficient of modified Ohm’s law: The coefficient which connect temperature and
current density can be considered as zero(ko= 0) in equation (3).
(3) Absence of initial stress: Putting p = 0 in the constitutive equation (1).

5. Discussions and Numerical Results

For the numerical calculations magnesium material is chosen. According to Othman and AbdElaziz
(2018) the material constants are as follows:
2=9.4 x 10'°N/m?,p1=0.1K, p>=0.1K, =7.779 x 10N/m?, 11=0.1, k*= 1.7 x 10*N/sK, b=0.15 x 109N, aoTo
= 1.8 x 10%.m3deg™!, u1=18.5 x 10°°N, k1= 3.5 x 10°°N/s,k2= 4.5 x 10°N/s,
k3=5.5 x 10°N/s.K, ka= 6.5 x 10 N/sm?, ks= 7.6 x 10 °N/sm?,
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ke=9.6 x 10 °N/sm?, a,=7.4033 x 107K, p = 1.74 x 10%kg/m>, a = 2m, yo= 0.5rad/s, u =4 x 10'°°N/m?, 7= 0.3,
To=298K, Qo=1,

Parameters of voids are
&= 1.475 x 101°N/m?, m =2 x 10°N/m>deg, w = 1.753 x 107 m?,
wo=0.0787 x 103 N/m?s, o= 3.688 x 107N, Zo= 1.13349 x 10'°N/m?.

The numerical calculations are done and results are presented in graphical form. The time and space
variable are chosen as t=0.1 and x = 0.1 also ¢ is chosen as &= yo+ iy1 but for small time & = yo. The calculations
are done and the results presented in graphical form. The physical quantities are compared for time, absence and
presence of coefficient of Ohm’s law,and velocity of internal heat source under three theories i.e. coupled, LS(one
relaxation time), GL(two relaxation time) theory. In Figures 1 to 20 the solid line represent (GL) theory , the large
dash line represents (LS) theory and small dash line represents (CT) theory results.

Figure 1 shows the temperature distribution with space variable y for different values of time 7= 0.4,1.2.
The Value of temperature is large for LS theory in comparison to GL and CT theory. Temperature increase for
time ¢ = 0.4 as compared to time ¢ = 1.2 in the interval 0 <y <4 for LS and GL theory and then decrease gradually
in the interval 4 < y < 8 and becomes steady after some interval. Figure 2 investigates temperature variations for
different values of coefficient of modified Ohm’s law ko= 0,10. Temperature has large value for GL and LS theory
as compared to coupled theory at ko= 0. temperature has large value in LS theory as compared to GL and CT
theory in the interval 0 < y < 3. Figure 3 represents variation of temperature for different values of vo= 0,10.
Temperature has maximum value for coupled theory at vo= 0 in the interval 2 < y < 4. Temperature has maximum
value for vo=0 in CT theory and vo= 10 in LS and GL theory as compared with other values.

Figures 4 to 6 indicates variation of change in volume fraction field ¢ with the passage of distance. In
figure 4 variations of ¢ for different values of time ¢ = 0.4,1.2. It shows maximum value for LS theory at # = 0.4
and for GL theory at = 1.2 in the range 2 <y < 4.5. In figure 5 ¢ varies for different ko values. Significant change
is observed for CT theory at ko= 10 and for LS theory ko= 0. In figure 6 value increases in the range 2 <y <4.5
and decreases gradually in range 4.5 <y <9 for all theories. Peak value of ¢ is obtained for vo= 10.

In figures 7 to 9 investigates variation of microtemperature w; with the distance y. In figure 7 represent
variations of w for different values of time ¢ = 0.4,1.2. It has maximum value for LS theory for both = 0.4 and ¢
= 1.2 at y = 0 and decreases gradually after y = 2, becomes constant for all theories. Figure 8 represent w) varies
for different ko values. Maximum value of w; is observed ko= 10 for LS theory and ko= 0 for CT theory as compared
to other theories. Figure 9

shows variations of wi graph under three theories for different value of vo= 0,10. Maximum value of
microtemperature attains for CT theory of both values of vo= 0,10. Significant change is observed for both value
of vounder three theories.

In figures 10 to 12 exhibits the distribution of heat flux moment g.. for different values of time ¢,
coefficient of modified Ohm’s lawko and velocity of internal heat sourcev,. Figure 10 represent variations of w;
for different values of time # = 0.4,1.2. Graph for = 0.4 in LS theory initially increases and decreases gradually
but in case of t = 1.2 shows reverse nature. In figure 11, g, shows maximum value for ko= 10 in the interval 1 <
¥ <4 and becomes constant after y > 6. Variations for different values of vy is observed in figure 12. g, attains
peak for the interval 2 <y <4 in LS and GL theory for vo= 10.

In figures 13 to 16 describes the normal stress distribution oy, for different values of time ¢, coefficient of
modified Ohm’s law ko, velocity of internal heat source vy and initial stress p. Figure 13 shows variations of g
for various values of time 7= 0.4,1.2. Graph shows maximum value for = 1.2 for CT theory and for LS theory at
t = 0.4. Figure 14 shows maximum peak for ko= 0,10 in GL theory. Figure 15 shows deviations for v, values,
maximum peak gives for LS and GL theory at vo = 10. Figure 16 gives deviations of initial stress at p = 0,10°
values. Maximum values of normal stress obtained for p = 0 in all three theories and p = 10° for GL theory.
Significant change is observed for all graphs in all three theories.

In figures 17 to 20 the shearing stress distribution o, are done for time ¢, coefficient of modified Ohm’s
law ko and velocity of internal heat source v and initial stress p.Figure 17 shows change in o, for various values
of time ¢ = 0.4,1.2. Graph shows maximum value for # = 0.4 for GL theory. Figure 18 shows maximum peak for
ko= 0 in CT theory and GL and LS theory graphs coincides for both values of k. Figure 19 shows change in
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shearing stress for vo values, shows exactly reverse nature for both values of v in all theories. Figure 20 gives
deviations of initial stress at p = 0,10 values. Maximum values of shearing stress obtained for p = 0,10%in GL,LS
theory. Figures 21 and 22 represents variation of temperature 7 and microtemperature wi for with and without
voids and significant changes are observed.

Significant change is observed in all the field variables. In all figures we observed that the field variables
are obtained in a enclosed region of space and vanishes outside the region. This shows that the there is finite waves
propagation. Hence the significant change is for all values of # ko, vo,p.
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Figure 1. Variation of temperature T for different values of ¢
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Figure 14. Variation of normal stresses oy, for different values of ko

6. Conclusion

In this article, we present a magneto-thermoelastic problem with microtemperature and voids under the

influence of moving internal heat source and modified Ohm’s law. Normal mode analysis is used for analytical
solutions of temperature, microtemperature, displacement, volume fraction field and stresses. The comparison of
all the quantities are done with three different theories for variations of time, velocity of moving heat source and
modified Ohm’s law coefficient are observed. From the graphical observation we conclude the following facts
which is useful to design new material in the development of the theory.

(1) The absence and presence of modified Ohm’s law shows significant change in heat conduction in
three theories due to its competency to conduct heat with finite speed when passes through the
medium.

(2) The significant effect of presence and absence of internal heat source is observed on all field variable
under three theories.

(3) The effect of time on all field quantities are observed indicates nature of quantities as time passes .

(4) Significant effect of initial stress are observed on stresses.

These results prove useful to study microtemperature of nanoparticals. The modified Ohm’s law in

microtemperature theory with initial stress and internal heat source in magneto-thermoelastic problem which gives
the new and novel contribution to this field.
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APPENDIX

A. Graphical Results
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