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Abstract: A porous vertical annulus subjected to a peristaltic wave motion on the outer wall is considered. 

Heat transfer in Jeffrey fluid flowing in an annular region is considered. A wave frame of reference is 

assumed here. The governing equations are subjected to long wavelength approximation and low Reynold’s 

flow. The velocity and pressure gradient are evaluated by applying regular perturbation. The friction at the 

wall and pressure rise are numerically evaluated and graphically depicted. As 0→ , the solution reduces 

to Newtonian fluid. 

 

 

1. Introduction 

Peristaltic action is a very effective mode of transport that occurs in the human body. The passage of 

urine, chime, food bolus etc. are due to peristaltic motion of the walls of the vessels. The mechanism has been 

effectively adopted for designing pumps for the transport of corrosive fluids. Many authors have analyzed 

experimentally and numerically the peristalsis in the reproductive system [1]-[6]. Newtonian fluid has been 

considered to study peristalsis by many authors [7] and [3]. Peristaltic transport of embryos was analyzed by 

Misra et. al [8], Li et. al [9].Many authors have considered the theoretical study of peristaltic transport. Eytan et. 

al [10], Mishra et. al [11] and Li et. al [9] have analyzed the effect of peristaltic flow on Newtonian fluids in 

different geometries like rectangular channels, cylindrical tubes, assuming uniformity, and non-symmetric 

geometries theoretically. Misra et. al [12], Shukla et. al [13]  and Raju et. al [14] have analyzed Power-law fluid 

under peristaltic transport. They have considered a uniform channel with axi-symmetry subjected to a sine wave. 

A uniform tube under peristaltic motion is analyzed by considering axisymmetric flow of Casson fluid 

by Mernone et. al [15]. Heat transfer effects on axisymmetric flow of Power-law fluid with chemical reaction is 

studied by Hayat et. al [16] and Eldabe et. al [17]. A concentric porous annulus with peristaltic transport under 

the influence of a magnetic field is considered by Shaaban et. al [18]. 

Selvi et. al [19] and Ahmed et. al [20] have studied the effect of peristalsis on Jeffrey fluid  flow 

analytically. The flow of couple-stress fluid in an asymmetric channel under peristaltic motion was considered 

by Sreegowrav et. al [21]. Rashmi et. al [22] have studied peristaltic transport of couple-stress fluid analytically 

in an eccentric annulus. Effects of heat transfer in a peristaltic transport of Prandtl fluid flowing in av ertical 

annulus is investigated by Indira et. al [23]. A porous annulus vertically placed is considered and heat transfer in 

peristaltic transport is studied using perturbation by Vajravelu et. al [24]. 

                In the present study, an attempt is made to understand the effect of heat transfer on peristaltic transport 

of Jeffrey fluid in a vertical annulus. The method of regular perturbation is employed along with low Reynold’s 

number and a long wavelength approximation. 

 

2.  Mathematical Formulation 

A vertical annulus with the x  axis as its axis is placed as shown in the figure. The cylindrical tubes are 

placed concentrically. A sinusoidal wave is applied to the outer wall with long wavelength approximation. The 

temperatures on the walls are 0T  and 1T respectively. The walls deform according to the function: 
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where 0a - radius of outer tube in absence of sine wave, b - amplitude, − wavelength and −c wave velocity. 

 
Figure 1: Physical configuration 

 

The governing equations for the above configuration assuming Jeffrey fluid flowing in the annular 

region can be stated as, 
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where  q
→

−  velocity, −  density, −fc  heat capacity, − viscous dissipation,  

− Cauchy’s stress tensor, −F


body force, 
1
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 −  , −2  retardation time and − shear 

rate. 

The equations above are subjected to, 
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                                                                                (5)

 

              1TT =  at  1aR =  and 0TT =   at HR = .                                                                     (6) 

 A moving frame of reference is introduced using velocity c of the wave and assuming,  

,cWw −= ,Rr = ,ctZz −=  and implementing non-dimensionalizing the above equations using the 
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              and  ( ) xx  2sin1+= .                                            (11) 

The boundary conditions take the form: 

             1−=w  on  1rr =  and on ( ),xr =                                                                  (12) 

             1=  on 1rr =   and 0=  on ( ).xr =                                                           (13) 

The governing equations are coupled and non-linear. A regular perturbation technique with porosity 
2  and 

convection parameter rG  is assumed as, 

( ) ( ),...... 1110

2

0100 +++++= gGggGgg mm                                                               (14) 

 where g  is the variable representing velocity, pressure and temperature. 

Applying perturbation scheme, the governing equations reduces to the following, 

 

Equations of order zero: 
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subject to, 
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            000 =  at ( )r x= .                                                                                          (17) 

Equations of order one: 
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subject to, 
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subjected to, 
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The solution of the above equations is given by, 
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 where  ,f  3f  and constants are listed in the appendix. 

The axial velocity is given by, 
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The heat transfer is given by, 
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The rate of flow in non –dimensional form can be written as, 
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Using the equations from (24) to (27) in the equation (32) and rearranging we get pressure gradient in the form, 
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Between the walls, the pressure rise can be evaluated using, 

.
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3.  Results and Discussion 

A Jeffrey fluid flowing in a porous annulus formed by concentric cylinders with outer wall subjected to 

wave motion is considered. Inner and outer tubes are subjected to a temperature gradient. The flow is peristaltic, 

and a long wavelength approximation is applied. A perturbation solution for velocity, temperature, pressure is 

obtained numerically and graphically presented. The parameters arising out of the study are given values in the 

following literature. 

Axial velocity profile as a function of radius is presented in figures 2 - 7 for various parameters 

available in the literature. Variation of axial velocity by increasing average flow rate is shown in figure 2, and 

since rate of flow is directly proportional to w , velocity increases with increasing Q  and effect is significant. 

Figure 3 showcases the effect of the amplitude of peristaltic waves propagating on the outer wall. Axial velocity 

increases with increasing wave amplitude, but the effect is not very significant. The effect of temperature can be 

studied by analyzing the behavior of the Grashoff number mG  on velocity. As mG  increases, the velocity 

increases. As temperature increases, the resistance to flow decreases due to the reduction in viscosity; hence, 
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there is a higher velocity. This can be seen in figure 4. The effect of permeability is analyzed in figure 5, and the 

effect is not very significant near the walls. As permeability increases, flow resistance decreases and velocity 

increases. The effect is stronger in the middle of the annular region. Figure 6 shows the effect of Eckert number 

on velocity. Eckert number gives the amount of heat dissipation. The effect of an increase in Eckert number is 

significant and results in increase of velocity. The velocity curve also shows tilting towards the inner wall. The 

increase in mE  is due to the increase in advective transport of heat, which results in a reduction of viscosity and 

an increase in velocity. Figure 7 depicts the effect of 1  on velocity. 1  - Jeffrey parameter is the ratio of 

relaxation to retardation time. As 1 0 → , fluid tends to become Newtonian. As 1  increases, the velocity 

increases. 

 

                
Figure 2: Axial velocity profile                Figure 3: Axial velocity profile 

                 
Figure 4: Axial velocity profile                Figure 5: Axial velocity profile 

               
Figure 6: Axial velocity profile               Figure 7: Axial velocity profile 
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Figure 8 presents axial velocity in axial direction for different Jeffrey parameter. As 1  increases 

magnitude of velocity increases. 

 

 
Figure 8: Axial velocity in axial direction 

 

Figures 9 - 12 showcase the temperature in the radial direction for different parameters which reflects 

most of the same pattern as in the case of axial velocity. Temperature increases with increasing flow rate, 

Grashoff number, Jeffrey parameter, and Eckert number. As velocity increases, the advective transport of heat 

increases. 

 

              
Figure 9: Radial temperature profile              Figure 10: Radial temperature profile 

 

             
Figure 11: Radial temperature profile                 Figure 12: Radial temperature profile 
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Figures 13 - 17 depict the variation of the axial pressure gradient and as sine wave is propagating on 

outer wall, the pressure also shows same pattern. Pressure gradient increases with increasing rate of flow, 

Grashoff number, and Eckert number but decreases with increasing inner tube radius. As the inner tube radius 

increases, the area available for flow decreases, and pressure as well as velocity increases. As the permeability 

parameter increases, the resistance to flow decreases, and the pressure gradient increases. 

 

              
Figure 13: Axial pressure gradient           Figure 14: Axial pressure gradient 

 

           
Figure 15: Axial pressure gradient           Figure 16: Axial pressure gradient 

 

 
         Figure 17: Axial pressure gradient 

 

The rise of pressure between the walls against the flow rate is shown in figures 18 and 19. As inner 
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tube radius increases, difference in pressure is more, and the pressure is negative between Q  equal to 0.0 to 2.0. 

It shows that pressure decreases as the amplitude ratio increases. As r1 decreases, the area of the cross section 

decreases to maintain the rate of flow. 

 

                 
Figure 18: Pressure difference between      Figure 19: Pressure difference between  

                  wall vs. Flow rate                wall vs. Flow rate 

 

4.  Conclusions 

A theoretical analysis of heat transfer effects on peristaltic transport of viscoelastic Jeffrey fluid 

flowing in annulus created by concentric cylinders filled with fluid saturated porous media is presented. The 

coupled non-linear equations are subjected to regular perturbation. The simplified zeroth and first order 

equations are solved analytically. As Jeffrey parameter 0 → , the solution equals Newtonian fluid. Absence 

of heat transfer is marked by 0mG → . From the results, it is evident that permeability is not affecting 

significantly. Eckert number, inner tube radius, Jeffrey parameter are most influencing factors. 
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