Vol. 44 No. 5 (2023)

Water Quality Assessment And Prediction: A Comparative Analysis

[1]Valarmathi V, [2]Dr.S.Dhanalakshmi

[1] Assistant professor,
[2] Associate professor,
[1] Department of Information Technology and Cognitive Systems
[2] Department of Software Systems
Sri Krishna Arts and Science College,
Coimbatore, Tamil Nadu, INDIA

Abstract: Water is second essential for life on our planet. It is found in our seas, rivers, lakes, ice caps, and glaciers, as well as in our soil as moisture and in the air as water vapour. Without water, life would be impossible. However, the quality of our water is in jeopardy, not only for drinking but also for the water that runs through our oceans to support marine life, fishing and aquaculture industries, and coastal towns near ports where storm water flow is a major issue. Groundwater quality is being impacted by various issues, including poor national land management, irrigation practices, waste management, and rising chemical concentrations, all contributing to pollution in the form of chemical hazard. In this paper, we did a comparative study on various works carried out for water quality assessment, classification and prediction. A detailed study done on various parameters of water and mainly focused the important parameters of water to measure quality of it. Water quality is assessed using the Water Quality Index.

Keywords: Groundwater quality, water quality assessment, classification, prediction, Water Quality Index

1. Introduction

Everyday living, agriculture, industry, and fisheries are just a few examples of many uses for water. It encourages a wide range of human endeavors as well as those of nature and the entire world ecology. Not only necessary components but also other compounds can be found in water.

Dangerous compounds, which are not only unneeded for living things but also have negative health effects, are both essential for maintaining the life of living things. Furthermore, parasites, contagious microbes, and chemical compounds, such as agricultural chemicals, can harm humans and other living things' health. Water also contains these elements. For a variety of reasons, it is vital to create water quality guidelines.

Water, a crucial nutrient for the body, is necessary for human survival. It helps in digestion, nutrient absorption, and toxin and waste removal from the body. Water is also required for cooking.

The majority of fresh water is consumed for agricultural purposes. Precipitation, irrigation, or both can provide water needed for agriculture. Inappropriate irrigation practices lead to salinization, which reduces soil productivity by deteriorating soil texture and water uptake by agricultural crops. In order to avoid salinization, careful attention must be given to irrigation water quality and irrigation technique. Water is a key requirement for fish farming, especially artificial hatching.

Reusing water is consequently essential in this industry, both for economic reasons and to conserve the finite water supply. In order to avoid harming farmed fish or putting the health of humans who eat farmed fish as a protein source at risk, a sufficient degree of water quality must be ensured.

Several industries depend on water for production, making use of features like its solubility, capability for transportation, or ability to exchange heat. Water is mostly used in manufacturing for cooling, processing, cleaning, and boiler make-up.

1.1 Water Related Diseases

There are four groups that water-related illnesses fall under:

- Waterborne infections are spread through consumption of contaminated water.
- Infections that are washable and are brought on by a shortage of water for personal hygiene.
- Diseases caused by communicable bacteria that impact water, such as schistosomiasis.

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

• Infections caused by aquatic insects like mosquitoes, whose larvae carry a variety of infectious diseases like malaria and dengue fever, among others.

2. Importance Of Water Quality

One of an ecosystem's most crucial health markers is water quality. Because it supports life on land, in the ocean and in other forms, high-quality water is crucial to preserving biodiversity.

Pollution of water quality has many causes. The main contributors to marine pollution include industrial and agricultural activities, fuel leaks, shipping and fishing operations, sewage discharges and global warming.

Water pollution may cause significant issues for both people and the environment when it comes to drinking water, our fishing, aquaculture industries and marine protected areas (MPAs), wastewater treatment facilities, river life, and our coastal port towns. In order to identify potential environmental problems, develop effective preventative measures, and develop systemic solutions for them, it is important to monitor the quality of the water.

Pollution of water quality has many causes. The main contributors to marine pollution include industrial and agricultural activities, fuel leaks, shipping and fishing operations, sewage and wastewater discharges, and global warming.

Water pollution may cause significant issues for both people and the environment when it comes to drinking water, our fishing and aquaculture industries, marine protected areas (MPAs), wastewater treatment facilities, river life, and our coastal port towns. In order to identify potential environmental problems, develop effective preventative measures, and develop systemic solutions for them, it is important to monitor the quality of the water.

2.1 Parameters And Key Indicators Of Water Quality

It's crucial to comprehend, evaluate and keep track of the basic parameters of the main water quality indicators in order to meet regulations. The main indicators are dissolved oxygen, turbidity, pH, bio indicators, nitrate compounds, and water temperature comprise a wide variety of chemical, physical and biological qualities related to water quality. To evaluate and monitor the quality of the water, water samples are collected, and the resulting information provides data that serves as crucial indicators of pollution and shifts in normative behavior patterns.

Dissolved oxygen, turbidity, bio indicators, nitrates, pH and water temperature are six primary indicators of water quality.

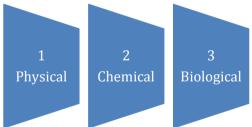


Fig 1 -Basic Water Quality Categories

Table − **1** Basic data on the factors affecting water quality.

Basic	Factors Affecting Water	Measure	Research Cases
Categories	Quality	ment	
	Potential Hydrogen (pH)	none	Coastal waterways, rivers, lakes, streams
			and Waste Water Treatment Plant
Physical	Water Temperature (WT)	°C	Coastal waterways, rivers, ponds, lakes,
Filysical			catchments and streams
	Electrical Conductivity (EC)	us cm-1	Lakes, Groundwater, Reservoir, Streams
			and Rivers

Vol. 44 No. 5 (2023)

	Suspended Solids (SS)	mg/L	Catchments, Coastal waters, Rivers, Streams, and Creeks				
	Total Phosphorus (TP)	μg/L	Lakes, Rivers and Waste Water Treatment Plant				
	Turbidity (Tur)	FNU	Streams, Rivers				
	Salinity (S)	PSU	Coastal waterways, Groundwater				
	Boron (B)	mg/L	Rivers				
	Total Hardness (TH)	mg/L	Rivers				
	Transparence (SD)	cm	Lakes				
	Total Suspended Solids (TSS)	mg/L	Rivers				
	Total Dissolved Solids (TDS)	mg/L	Drains, Rivers and Groundwater				
	Phosphate (P)	mg/L	Experimental system				
	Nitrite (NO2)	mg/L	Groundwater				
	Permanganate (COD Mn)	mg/L	Rivers				
	Total Nutrients (TN)	mg/L	Waste Water Treatment Plant, Coastal				
			waterways and Lakes				
	Dissolved Oxygen	mg/L	Ponds, Coastal waters, Creeks, Lakes,				
	(DO)		Waste Water Treatment Facilities, Reservoirs and Rivers				
	Biochemical Oxygen	mg/L	Water experimental system for rivers,				
Chemical	Biochemical Oxygen Demand (BOD)	mg/L	lakes, sewage treatment facilities, and mines				
	Chemical Oxygen Demand (COD)	mg/L	Lakes, Rivers, Groundwater, Mine Water, Reservoirs and Waste Water Treatment Plant				
	Nitrate (NO3)	mg/L	Catchment, River, Groundwater, Well, and Experimental Aquifer				
	Total Organic Carbon (TOC)	mg/L	Rivers				
	Ammonia cal Nitrogen (NH3 -N)	mg/L	Lakes, Rivers, Groundwater, and Reservoirs				
Biological	Chlorophyll a (Chl-a)	μg/L	Reservoirs, Lakes, surface waters and coastal waters				
	Fecal Coliform (FC)	mg/L	Lake				
		•					

2.2 Requirements For The Quality Of Water For A Range Of Use

Any body of water must be sufficiently clean in order to be utilized to its maximum potential. Water for drinking needs to be incredibly pure. Controlling the water's quality is more crucial due to the rising gap between both the quantity required and the quantity that can be produced.

Every water usage has certain quality requirements. So, it is crucial to comprehend the uses of a water body's flow in order to determine the benchmark for the water's quality standard. The notion of designated best use was first proposed by the Indian Central Pollution Control Board. In light of this, the use of water that requires the best quality of water among all of the others in a given body is the optimal usage.

The top five applications have been established. By using this classification, the managers and planners who are in charge of maintaining water quality can set objectives for the water's quality and develop restoration programmes that are suitable for different water bodies. Referred to from CPCB [1] are Tables 2 and 3.

Table -2.Often used color coding to show the state of the water on maps.

Color of Water	Uses / Description
Blue	Direct drinking, industrial and other uses of this water are all possible.
Green	The water in plants and soil.
White	Atmospheric moisture
Brown or grey	Brown or grey colored effluent can be used to identify different types of wastewater.

Table -3 Best Water Uses Identified.

Class	Best Water Uses Identified	Criteria			
A	Source of Drinking Water before	TC	50 or less per 100 ml.		
	standard treatment but after	pН	6.5 to 8.5		
	disinfection	DO	greater than 6 mg/l		
		BOD	2mg/l or lower		
В	Outdoor bathing	TC	500 or less per 100 ml		
		pН	6.5 to 8.5		
		DO	greater than 5 mg/l		
		BOD	3mg/l or lower		
С	Source of drinking water after regular	TC	5000 or less per 100 ml.		
	treatment and disinfection	pН	6 to 9		
		DO	greater than 4 mg/l		
		BOD	3mg/l or lower		
D	Fisheries and wildlife reproduction	Free	-		
		Ammonia			
		pН	6.5 to 8.5		
		DO	greater than 4 mg/l		
		BOD	2mg/l or lower		
Е	Controlled waste disposal, industrial	pН	6.0 to 8.5		
	cooling and irrigation	EC	Maximum 2250		
		Sodium	Maximum 26		
		absorption			
		Ratio			
		В	Maximum 2mg/l		

2. Literature Review

A variety of methods and algorithms were used to assess the quality of surface or ground water. Water quality can be predicted using machine learning, artificial intelligence, and fuzzy logic algorithms.

A new model that incorporates Entropy weight, Set Pair Analysis and Markov chain is utilised to evaluate and forecast the quality of groundwater, claim Fengmei Su et al. in 2019. Short-term groundwater quality predictions made using the SPA-Markov chain model are more accurate. The water quality measurements used for predicting include Cl-, SO42-, TDS, and TH. [2].

AjitPratap Singh et al. developed the fuzzy-based water quality evaluation method in 2019 by combining the triangular membership function with the gaussian membership function. The FCWQI model advises parametric sensitivity for defining the WQI used in surface water quality evaluation. This model evaluates the water quality using the following variables: temperature, pH, Dissolved, BOD, EC, FC, and nitrates. [3].

The results of various studies on water quality are compared in the table.

Table – 4 Comparative Water Quality Analysis.

Author /	Research	Benchma	Algorithms /	Water Quality	Perform	Proposed
Year	Objective	rk /	Methods /	parameters	ance	Models and
		Dataset	Models Used	used	Metric	Results Obtained
S.Vijay et al.	To forecast	Among the towns	Naïve Bayes, C5.0, and	Alkalinity, PH,	Sensitivit	More accuracy
et al. 2019	the quality of ground water,	of the	C5.0, and Random forest	chloride, BOD, sulphate, COD,	y, Kappa, Specificit	is demonstrated
	physico-	district of	(Machine	chloride, EC,	y, and	by the Naive
	chemical	Vellore,	Learning	TDS and TH	Accuracy	Bayes and
	properties were used.	bore wells.	classifier algorithm)			Random Forest
	were used.	wens.	argorithm)			algorithms.
Ping Liu	Model for	Yangzhou	Deep neural	Conductivity,	Precision	Compared to
et al. 2019	predicting water quality	's Guazhou	networks, ARIMA, SVR,	Turbidity, CODMn, WT,	, ADAM, MSE	ARIMA and SVR, the
2017	that calls for	Water	LSTM, and time-	pH, DO,	WISE	dissolved
	high-quality	Source	series prediction	CODMn, and		oxygen
	data.			NH3-N		prediction was more accurate
						(prediction
						period length:
Uddin et	To Assess the	Ireland's	West-Java,	Colinity all TD	ACRPS,	m = 181).
al. 2020	quality of	southern	SRDD, Horton,	Salinity, pH, TP Nitrate, TON	MSE,	Combining the EBK
	surface water	Cork	CCME, NSF,	TA, DO,	ASE,	interpolation
	using	Harbour	Baccarin, and	Temperature,	RMSE,	model and the
	different WQI models.		Hanh	Chl a,	and MSE	CCME model results in the
						lowest levels
TD1	WOI	1	NAPATET 1		D	of uncertainty.
Theyazn H. H	WQI and WQC	https://w ww.kaggl	NARNET and LSTM models for	Conductivity, pH, BOD, FC,	Precision	NARNET model
Aldhyan	forecast.	e.com/anb	WQI prediction	Nitrate, and TC	sensitivit	outperformed
i et al.		arivan/			y, and	LSTM.
2020		indian- water-	Naive Bayes, SVM, and K-NN		accuracy Correlati	SVM has the highest WQC
		quality-	for WQC		on, F-	prediction
		data.	forecasting.		score,	accuracy
					MSE, RMSE,	(97.01%).
					and R	
Umair	WQI and	Pakistani	The WQI is	Total Dissolved	Recall,	Gradient
Ahmed et	WQC estimation	watershed at Rawal	estimated using the following	Values, pH, Temperature,	Accuracy	boosting and polynomial
al.2020	using	ai Nawai	algorithms: Ridge	Turbidity,	, Precision	regression
	supervised		Regression,	Nitrate, Fecal	, F1	produce
	machine		Elastic Net	Coliform, and	Score,	positive results

	learning		Regression, Lasso	Turbidity	MAE,	in the WQI
	methods.		Regression,	,	MSE,	Prediction.
			Gradient		RMSE,	In WQC
			Boosting,		and R	Prediction,
			Random Forest,		Squared	MLP fared
			Polynomial			better.
			Regression, SVM.			
			KNN, Gradient			
			Boosting			
			Classifier,			
			Decision Tree,			
			Gaussian Naive			
			Bayes, Random			
			Forest, Logistic			
			Regression,			
			Stochastic Gradient Descent,			
			SVM, MLP, and			
			Bagging			
			Classifier are			
			some of the			
			algorithms used			
			methods were			
			used to define			
			WQC.			
Rahim	To forecast	Greece's	Deep learning	Oxidation-	R,	The hybrid
Barzegar	variables	little	(DL) models	reduction	RMSE,	CNN-LSTM
et	affecting	Prespa	include LSTM,	potential (ORP),	MAE,	model, in
al.2020	water quality,	Lake	CNN, and SVR	EC, WT, pH,	percenta	particular for
	construct a	Real-time	and DT for	DO, and Chl-a	ge of	the DO levels,
	coupled	dataset	machine learning.		bias	successfully
	CNN-LSTM				PBIAS,	caught both
	model.				ENS,	extreme and
					WI, and	low values of
					graphic	the water
					plots	quality
DuieTie	To manid	The Tale	Form indexed	mII DO4 NO2	Dooms	indicators.
n Bui et	To provide special	The Talar and its	Four independent RF, M5P, RT, and	pH, PO4, NO3, turbidity, EC,	Pearson correlatio	In comparison to BA-RT
al.	algorithms for	five	REPT algorithms	TS, DO, FC,	n	algorithm,
2020	WQI	principal	as well as 12	BOD, COD, and	coefficie	RFC-RT has
2020	prediction as	tributaries	hybrid data-	TS	nts: R2,	the lowest
	well as other	anoutanes	mining techniques		RMSE,	prediction
	water science	•	include BA,		MAE,	power.
	topics in		CVPS and RFC		NSE,	Faecal
	places with				PBIAS,	coliform was
	highly uneven				PREI,	the best
	dispersion of				and R2	indicator for
	water quality					calculating
	measuring					WQI.

	stations.					
Anthony Ewusi et al. 2021	Use TDS as a predictor of water quality for management of water quality.	Ghana's Tarkwa	GPR, BPNN and PCR.	EC, As, Cd, CN, Cu-D, pH, TSS, turbidity, and Hg	ENS, MAE, R, R2, RMSE, and Index of Agreeme nt (d)	The average R2, MAE, and RMSE for the GPR model, which provided a better prediction of TDS concentration,

3.1 Index Of Water Quality (WQI)

A single categorising value that describes the pollution level or water quality status of water bodies is provided by the WQI, which is regarded as a mathematical method that significantly simplifies the complex water quality data sets. Moreover, WQI is a single dimensionless number that provides a clear picture of the current state of water quality by combining measurements of a few important variables, such as pH, nitrate, DO and heavy metals.

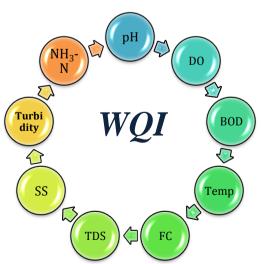


Fig – 2 Most popular measures of water quality.

were

4.090,

7.910, respectively.

0.987,

and

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

Conclusion

In this study, we outlined key metrics required to assess water quality. The designated best uses of water and the requirements for water quality for various uses were discussed. Comparative analysis has been done on a variety of classification and evaluation systems for water quality. The kind of pollution affected the water and if it was contaminated are revealed by the results of the criteria used to determine WQI.

References

- [1] https://cpcb.nic.in/nwmp-data/
- [2] Su, Fengmei, Jianhua Wu, and Song He. "Set pair analysis-Markov chain model for groundwater quality assessment and prediction: A case study of Xi'an city, China." *Human and Ecological Risk Assessment: An International Journal* 25.1-2 (2019): 158-175.
- [3] Singh, AjitPratap, KunalDhadse, and JayantAhalawat. "Managing water quality of a river using an integrated geographically weighted regression technique with fuzzy decision-making model." *Environmental Monitoring and Assessment* 191 (2019): 1-17.
- [4] Uddin, MdGalal, Agnieszka Indiana Olbert, and Stephen Nash. "Assessment of water quality using Water Quality Index (WQI)." *Ecol Indic* 85 (2020): 966-982.
- [5] Vijay, S., and K. Kamaraj. "Ground water quality prediction using machine learning algorithms in R." *International Journal of Research and Analytical Reviews* 6.1 (2019): 743-749.
- [6] Liu, Ping, et al. "Analysis and prediction of water quality using LSTM deep neural networks in IoT environment." *Sustainability* 11.7 (2019): 2058.
- [7] Aldhyani, Theyazn HH, et al. "Water quality prediction using artificial intelligence algorithms." *Applied Bionics and Biomechanics* 2020 (2020).
- [8] Ahmed, Umair, et al. "Efficient water quality prediction using supervised machine learning." *Water* 11.11 (2019): 2210.
- [9] Banadkooki, FatemehBarzegari, et al. "Enhancement of groundwater-level prediction using an integrated machine learning model optimized by whale algorithm." *Natural resources research* 29 (2020): 3233-3252.
- [10] Ewusi, Anthony, Isaac Ahenkorah, and Derrick Aikins. "Modelling of total dissolved solids in water supply systems using regression and supervised machine learning approaches." *Applied Water Science* 11.2 (2021): 1-16.
- [11] Rama, A., S. Rajakumari, and P. Selvamani. "PERFORMANCE EVALUATION OF MACHINE LEARNING ALGORITHMS IN FORECASTING WATER QUALITY INDICES: STUDY IN TAMILNADU WATER BODIES." *European Journal of Molecular & Clinical Medicine* 7.5 (2021): 1892-1900.
- [12] Barzegar, Rahim, Mohammad TaghiAalami, and Jan Adamowski. "Short-term water quality variable prediction using a hybrid CNN–LSTM deep learning model." *Stochastic Environmental Research and Risk Assessment* 34.2 (2020): 415-433.
- [13] Bui, DuieTien, et al. "Improving prediction of water quality indices using novel hybrid machine-learning algorithms." *Science of the Total Environment* 721 (2020): 137612.
- [14] Chen, Yingyi, et al. "A review of the artificial neural network models for water quality prediction." *Applied Sciences* 10.17 (2020): 5776.