A Study on the Lattice of Convex Sublattices of $S(B_n)$

^[1]Dr.A.Vethamanickam ^[2*]Mrs .S.ChristiaSoniya

[1]. Former Associate Professor, Department of Mathematics,
Rani Anna government college for women. Tirunelveli. India.

[2] Research scholar (Reg. No19221172092002.),
Rani Anna government college for women. Tirunelveli. India
Assistant Professor, Einstein College of Arts and Science, Tirunelveli.

(Affiliated to Manonmaniam Sundaranar University)

Abstract: The concept of 0-Supermodular lattices was introduced in the thesis of J.Arivukkarasu which appeared in the paper[1]. He proved there that the lattices $S(B_n)$ and S(D) are 0-Supermodular. In this paper, we prove that the lattice of convex sublattices of $S(B_n)$ with respect to the new ordering defined by S.Lavanya and S.ParameshwaraBhatta[7], is 0-Supermodular.

Keywords: Lattice, Convex sublattice, 0-Supermodular lattice, $S(B_3)$, $S(B_n)$.

AMS Mathematics Subject Classification(2020):03G10,06B75

1. Introduction

Let L be a lattice and CS(L) be the set of all nonempty convex sublattices of L.The work on $\langle CS(L) \cup \{\varphi\}, \subseteq \rangle$ has been done by many authors. For example, one can refer to Koh[5,6],chen[2],Marmazeev[8], A.Vethamanickam and R.Subbarayan[12],Sheeba Merlin[13].

In 1996,S.Lavanya and S.ParameshwaraBhatta[7] have introduced a new partial ordering on CS(L) and established many results on CS(L) with respect to that ordering. For example, they have proved that L and CS(L) are in the same equational class. Also from this paper,we know that $[\{0\},L] \cong I(L)$ and $[L,\{1\}] \cong D(L)$,where I(L) is the lattice of all ideals of L and D(L) is the lattice of all dual ideals(Filters) of L.Further works on CS(L) with respect to this ordering can be seen in the papers of P.V.Ramanamurty[9] and R.M.H.Raman[10].

The 0-version of the concept of supermodular lattice namely,a 0-supermodular lattice was introduced in the paper by A.Vethamanickam and J.Arivukkarasu[1]. There they have proved that the Eulerian lattice $S(B_n)$ is 0-supermodular.0-Supermodularity condition is not an identity. So, the class of all 0-supermodular lattices is not an equationalclass[1]. Though, 0-supermodularity condition is not equational, we attempt in the lines of S.Lavanya and S.ParameshwaraBhatta to establish that $CS[S(B_n)]$ to be 0-supermodular and we have succeeded in this attempt. For general 0-supermodular lattices L the question of deciding the 0-supermodularity of CS(L) remains an open problem.

2. Preliminaries

In this section, we give some basic definitions needed for the development of the paper.

2.1 Poset

A partially ordered set<A, ρ >consists of a non empty set A and a binary relation ρ on A such that ρ satisfies the following properties:

- (i) ρ is reflexive.that is, a ρ a for every $a \in A$.
- (ii) ρ is antisymmetric that is ,whenever a ρ b and b ρ a then a =b.
- (iii) ρ is transitive that is ,whenever a ρ b and b ρ c thena ρ c for every a,b,c \in A

 ρ is called a partial ordering relation on A and is usually denoted by the notation \leq .

If aposet<A, \le > also satisfies the linearity condition, that is, either $a \le b$ or $b \le a$, for every $a,b \in A$, then it is called a **chain.**

If A, $\leq b$ is a poset, $a,b \in A$, then a and b are **comparable** if either $a \leq b$ or $b \leq a$.

Otherwise, they are called incomparable elements . In notation, we write a || b.

2.2Lattice

A poset<L; \leq > is said to be a lattice if inf{a,b} and sup{a,b} exist for all a,b \in L, we denote by inf{a,b} = a \land band sup{a,b}=a \lor b

2.3Sublattice.

Let L be any lattice .A non empty subset K of a lattice L which is closed under \land and \lor is called a sublattice of L.

2.4Convex sublattice.

A sublattice K of a lattice L is said to be convex if $f(a,b) \in K$, $c \in L$ and $a \le c \le b$ imply that $c \in K$. For example, if $a,b \in L$, $a \le b$, the interval $[a,b] = \{x \in L \mid a \le x \le b\}$ is an example of a convex sublattice of L. The collection of all non empty convex sublattices of a lattice L is denoted by CS(L)

2.5A new partial orderingon CS(L)

We define a binary relation \leq on CS(L) by the following rule: for A,B \in CS(L), A \leq B if and only if "for every a \in A there exists a b \in B such that a \leq b and for every b \in B there exists an a \in A such that b \geq a", clearly ' \leq ' is a partial order on CS(L). Moreover, \langle CS(L), \leq \rangle is a lattice.

2.6 Notations

Let L be a lattice. For a subset A of L, we denote (A],[A) and $\langle A \rangle$ respectively the ideal, the filter and the convex sublattice of L generated by A .Let I(L) be the lattice of ideals of L (ordered by \subseteq) and D(L) be the lattice of filters of L (ordered by \supseteq)

2.7 Remark:

For $A,B \in CS(L)$, under the new partial ordering \leq , we have

$$A \wedge B = \langle \{a \wedge b \mid a \in A, b \in B\} \rangle = \{x \in L \mid a \wedge b \le x \le a_1 \wedge b_1 \text{ for some } a, a_1 \in A, b, b_1 \in B\}$$

$$A \lor B = \langle \{a \lor b \mid a \in A, b \in B\} \rangle = \{x \in L \mid a \lor b \le x \le a_1 \lor b_1 \text{ for some } a, a_1 \in A, b, b_1 \in B\}$$

2.8Supermodular lattice

A lattice L is said to be supermodular if it satisfies the following identity $(a \lor b) \land (a \lor c) \land (a \lor d) = a \lor [b \land c \land (a \lor d)] \lor [c \land d \land (a \lor b)] \lor [b \land d \land (a \lor c)]$ for all a,b,c,d \in L

2.90-Supermodular lattice

A Lattice L is called 0-Supermodular, if whenever b, c, $d \in L$ satisfy $b \wedge c = c \wedge d = b \wedge d = 0$, then $(a \vee b) \wedge (a \vee c) \wedge (a \vee d) = a$ for every $a \in L$.

2.10 Definition[11]

$$S(B_n) = (\overline{B_2} \times \overline{B_n}) \cup \{(1,1)\}$$
 where $\overline{B_2} = B_2 - \{1\}$ and $\overline{B_n} = B_n - \{1\}$ and B_n is the Boolean lattice of rank n. $S(B_3) = (\overline{B_2} \times \overline{B_3}) \cup \{(1,1)\}$ where B_3 is the Boolean lattice of rank 3.

As 0-supermodularity condition is not an identity, we can not immediately conclude that CS(L) is 0-supermodular if L is 0-supermodular. Therefore a natural question is:as to for what 0-supermodular lattices L,CS(L) will be 0-supermodular? In this paper, we prove independently that $CS[S(B_n)]$ is 0-supermodular.

2.11 SimplicialPoset

Let P be a Poset with 0. P is said to be simplicial if for every element $t \in P$, [0,t] is Boolean. A dual simplicial poset is defined dually.

For example, S(B_n) is Simplicial.

Figure 1

Figure 1.a

2.13 Remark:

In fig1 we give the lattice structure of $S(B_2)$ and in figure 1a, we produce the lattice structure of $CS[S(B_2)]$ so that one can get a clear understanding of the structure of $CS[S(B_n)]$, for n>2.Since the diagram of $CS[S(B_4)]$ is big, we only give in table1, below the rankwise.

The rankwise classification of the elements of $CS[S(B_4)]$ specifying the types in the respective ranks to get a glimpse of elements in $CS[S(B_n)]$. We note that the rank of $S(B_4) = 5$;

Therefore, the rank of $CS[S(B_4)] = 2x5=10$

Table 1: Rankwise classification of the elements of CS[S(B₄)]

S.No	Rank	Number of types	Types of convex sublattices of S(B ₄)
1	0	1	$\{(0,0)\}$
2	1	1	Edges from (0,0) to an element of rank 1(atom)For example, the setsof the form $ \big(\big(0,b_i \big) \big] or \big(\big(a,0 \big) \big] or \big(\big(b,0 \big) \big] $
3	2	2	Singletons of elements of rank 1 and intervals of the

			form[(0,0),a rank2 element] \cong B ₂ .
			For example, the sets of the form $\{(0,b_i)\}$ or $\{(a,0)\}$ or
			$\{(b,0)\}$ and $\{(a,b_i),(b,b_i)\}$ or $\{(0,b_i\vee b_j)\}$
4	3	2	Edges from an element of rank 1 to an element of rank 2 and intervals of the form[(0,0),a rank3 element] \cong B ₃ .
			For example, the sets of the form $[(a,0),(a,b_i)]$ or
			$\left[(b,0),(b,b_i) \right]_{\mathrm{or}} \left[(0,b_i),(b_i,b_i \vee b_j) \right]$
5	4	3	Singletons of rank 2 element and the intervals of the form[a rank 1 element, a rank 3 element] and [(0,0), a rank
			4 element] \cong B ₄ .
			For example, the sets of the form $\{(a,b_i)\}$ or $\{(b,b_i)\}$ or $[(a,0),(a,b_i \lor b_j)]$ or $[(0,b_i),(0,b_i \lor b_j \lor b_k)]$ or
			$\left[\left(\left(a, b_i \vee b_j \vee b_k \right) \right] \operatorname{or} \left(\left(b, b_i \vee b_j \vee b_k \right) \right]$
6	5	3	Edges from an element of rank 2 to an element of rank 3
			and the intervals of the form[a rank 1 element, a rank 4
			element] and S(B ₄).
			For example, the sets of the form $[(a, b_i), (a, b_i \vee b_j)]$ or
			$[(b,b_i),(b,b_i\vee b_j)] \text{or} [(0,b_i\vee b_j),(0,b_i\vee b_j\vee b_k)] \text{or}$
-		2	$[(a,0),(a,b_i\vee b_j\vee b_k)] \text{or } [(0,b_i),(a,b_i\vee b_j\vee b_k)]$
7	6	3	Singletons of rank 3 elements and theupper intervals from an element of rank 2 to an element of rank 4 and the upper intervals from an atom.
			For example, the sets of the form $\{(a, b_i \lor b_j)\}$ or $\{(0, b_i \lor bj \lor bk \text{ or } b, bi \lor bj \text{ or } a, 0, a, bi \lor bj \lor bk \text{ or } 0, bi, a, bi \lor bj \lor bk$
8	7	2	Edges from an element of rank 3 to an element of rank4
			and the upper intervals from an element of rank 2. For example,the sets of the form
			$\left[\left(a,b_i\vee b_j\right),\left(a,b_i\vee b_j\vee b_k\right)\right]$ or
			$[(0,b_i \vee b_j \vee b_k),(a,b_i \vee b_j \vee b_k)] \text{ or } [(a,b_i))$
			$\operatorname{or}\left[\left(0,b_{i}\vee b_{j}\vee b_{k}\right)\right)$
9	8	2	Singletons of rank 4 element and the upper intervals from an element of rank 3.
			For example, the sets of the form $\{(a, b_i \lor b_j \lor b_k)\}$ or
			$\{(b, b_i \lor b_j \lor b_k)\} \text{ or } \left[\left(a, b_i \lor b_j\right)\right)$
10	9	1	The upper intervals from an element of rank 4

			$\left[\left(a,b_i\vee b_j\vee b_k\right)\right)$
11	10	1	$\{(1,1)\}$

Section 3:0-Supermodularity of CS[S(B_n)]

Theorem3.1CS[S(B_n), \leq] is 0-Supermodular

Proof:

To prove that CS[S(B_n)] is 0-Supermodular, we need to prove that

 $(A \lor B) \land (A \lor C) \land (A \lor D) = A$, for every three mutually disjoint elements $B, C, D \in CS[S(B_n)]$ and for every $A \in CS[S(B_n)] --- \longrightarrow (a)$

If all of A,B,C,D $\in [\{0,0\},S(B_n)] \cong S(B_n)$, then (a) is true as $S(B_n)$ is 0-Supermodular.

If one of B,C,D is in $[S(B_n),\{(1,1)\}]$, then there is no choice for other mutual disjoint elements, Therefore we avoid that cases.

Let us take the n atoms of B_n as $b_1, b_2, ..., b_n$.

We note that rank of $S(B_n) = n+1$, therefore rank of $CS[S(B_n)] = 2n+2$ by [7]

Choose an element B of rank k in CS[S(B_n)]

Let us assume that k is odd and k>n+1

Let k = n+1+s for some s such that $1 \le s < n+1$

We observe that the convex sublattices of $S(B_n)$ with rank k in $CS[S(B_n)]$ are of the following types:

- (1) :The highest rank convex sublattice is an upper interval from an element of rank s in $S(B_n)$ (or a dual ideal)
- (2): The next highest rank convex sublattice is an interval from an element of rank s+1to an element of rank n in $S(B_n)$ and so on.
- (r+1): Convex sublattice of rank n+1-2r-s is an interval from an element of rank s+r to an element of rank n-r+1

Finally, an edge from an element of rank (k-1)/2 to an element of rank (k+1)/2

Let us choose one of the mutual disjoint elements B to have the rank k.

Choose B to be an interval from an element of rank s+r to an element of rank n-r+1

Assume without loss of generality that

$$\mathbf{B} = \left[(a, b_1 \lor b_2 ... \lor b_{s+r-1}), (a, b_1 \lor b_2 ... \lor b_{s+r-1} \lor b_{s+r} \lor ... \lor b_{n-r}) \right]$$

Next we have to choose C such that $C \land B = \{(0,0)\}\$

Then
$$C \in CS[(0,0),(b,b_{n-r+1} \vee ... \vee b_n)]$$

Rank of
$$\lceil (0,0),(b,b_{n-r+1}\vee\ldots\vee b_n) \rceil = r+1-\ldots\to (I)$$

Then the rank of
$$CS[(0,0),(b,b_{n-r+1}\vee...\vee b_n)]=2(r+1)$$

Vol. 44 No. 5 (2023)

Choose C such that the rank of C is m_1 , where $1 < m_1 < 2(r+1)$

Case(i) let m_1 be even, let $m_1 = 2r_1$ where we choose $2r_1 \le r + 1$

- 1. The highest rank convex sublattice is an upper interval from an element of rank 0 to 2η (or an ideal)
- 2. The next highest rank convex sublattice is an interval from an element of rank 1 to an element of rank $2r_1 1$ and so on.

The convex sublattice in the k_1 th step is an interval from an element of rank k_1 to an element of rank $2r_1 - k_1$ Finally since C is of even rank $2r_1$, C may be a singleton of an element of rank r_1 in $S(B_n)$

$$\mathbf{C} = \left[\left(0, b_{n-r+1} \vee \ldots \vee b_{n-r+k_1} \right), \left(0, b_{n-r+1} \vee \ldots \vee b_{n-r+k_1} \vee \ldots \vee b_{n-r+2r_1-1} \right) \right]$$

Now we have to choose D such that $D \land B = \{(0,0)\}\$ and $D \land C = \{(0,0)\}\$ then

$$D \in CS\left[(0,0), (b,b_{n-r+2r_1} \vee \dots \vee b_n) \right]$$

$$\operatorname{Rank of} \left[(0,0), (b,b_{n-r+2r_1} \vee \dots \vee b_n) \right] = r + 2r_1 + 1 - \dots \rightarrow (II)$$

Then the rank of
$$CS[(0,0),(b,b_{n-r+2r_1} \vee ... \vee b_n)] = 2(r+2r_1+1)$$

Choose D such that rank of D be m_2 , where $1 < m_2 < 2(r+2\eta+1)$

Case(i)let m_2 be even, let $m_2 = 2r_2$ where we choose $2r_2 \le (r+2r_1+1)$

- 1. The highest rank convex sublattice is an interval from an element of rank 0 to $2r_2$ (or an ideal)
- 2. The next highest rank convex sublattice is an interval from an element of rank 1 to an element of rank $2r_2$ -1 and so on.

The convex sublattice in the k_2 th step is an interval from an element of rank k_2 to an element of rank $2r_2-k_2$

Finally since D is of even rank $2r_2$, D may be a singleton set of an element of rank r_2 ,

$$\text{Let D=} \left[\left(0, b_{n-r+2r_1} \lor \dots \lor b_{n-r+2r_1+k_2-1} \right), \left(b, b_{n-r+2r_1+k_2} \lor \dots \lor b_{n-r+2r_1+2r_2-1} \right) \right]$$

So the remaining atoms in B_n are $b_{n-r+2r_1+2r_2}$, $b_{n-r+2r_1+2r_2+1}$,..., b_n

There are $r - 2r_1 - 2r_2 + 1_{\text{remaining number of atoms}}$

Now we have to choose the 4th element A, which is incomparable with any of B,C or D which can be chosen in two ways.

$$(I)A \in CS \left[(0,0), (b, b_{n-r+2r_1+2r_2} \lor \dots \lor b_n) \right]$$
 (or)

(II) A may contain some of the atoms coming in B,C(or) D

In Case(I) $\left[\left(0,b_{n-r+2r_1+2r_2}\right),\left(b,b_{n-r+2r_1+2r_2}\vee\ldots\vee b_{n-r+2r_1+2r_2+t}\right)\,\middle|\,,1\leq t\leq r-2r_1-2r_2+1\right]$ $B = \left[(a, b_1 \lor b_2 ... \lor b_{s+r-1}), (a, b_1 \lor b_2 ... \lor b_{s+r-1} \lor b_{s+r} \lor ... \lor b_{n-r}) \right]$ $\mathbf{C} = \left| (0, b_{n-r+1} \vee ... \vee b_{n-r+k_1}), (0, b_{n-r+1} \vee ... \vee b_{n-r+k_1} \vee ... \vee b_{n-r+2r_1-1}) \right|$ $\mathbf{D} = \left[\left(0, b_{n-r+2r_1} \vee \dots \vee b_{n-r+2r_1+k_2-1} \right), \left(b, b_{n-r+2r_1+k_2} \vee \dots \vee b_{n-r+2r_1+2r_2-1} \right) \right]$ $\left[\left(0, b_{n-r+2r_1+2r_2} \right), \left(b, b_{n-r+2r_1+2r_2} \vee \dots \vee b_{n-r+2r_1+2r_2+t} \right) \right] \vee$ $\lceil (a,b_1 \lor b_2 \lor \dots \lor b_{s+r-1}), (a,b_1 \lor b_2 \lor \dots \lor b_{s+r-1} \lor b_{s+r} \lor \dots \lor b_{n-r}) \rceil$ $= |(a, b_1 \lor b_2 \lor ... \lor b_{s+r-1} \lor b_{n-r+2r+2r_2}), (1,1)|$ $| (0, b_{n-r+2r_1+2r_2}), (b, b_{n-r+2r_1+2r_2} \vee ... \vee b_{n-r+2r_1+2r_2+t}) |_{\vee}$ $\left[(0, b_{n-r+1} \lor \dots \lor b_{n-r+k_1}), (0, b_{n-r+1} \lor \dots \lor b_{n-r+k_1} \lor \dots \lor b_{n-r+2r_1-1}) \right]$ $| (0,b_{n-r+1} \vee ... \vee b_{n-r+k_1} \vee b_{n-r+2r_1+2r_2}),$ $= \left| \left(0, b_{n-r+2r_1+2r_2} \right), \left(b, b_{n-r+2r_1+2r_2} \vee \dots \vee b_{n-r+2r_1+2r_2+t} \right) \right| \vee$ $\left| \left(0, b_{n-r+2r_1} \vee \ldots \vee b_{n-r+2r_1+k_2-1} \right), \left(b, b_{n-r+2r_1} \vee \ldots \vee b_{n-r+2r_1+2r_2-1} \right) \right|$ $= \begin{bmatrix} \left(0, b_{n-r+2r_1} \vee \ldots \vee b_{n-r+2r_1+k_2-1} \vee b_{n-r+2r_1+2r_2}\right), \\ \left(b, b_{n-r+2r_1+k_2} \vee \ldots \vee b_{n-r+2r_1+2r_2-1} \vee b_{n-r+2r_1+2r_2} \vee \ldots \vee b_{n-r+2r_1+2r_2+t}\right) \end{bmatrix}$

$$\begin{array}{ll} & \left[\left(a,b_{1} \vee b_{2} \vee ... \vee b_{s+r-1} \vee b_{n-r+2r_{1}+2r_{2}} \right), \left(1,1 \right) \right] \wedge \\ & \left[\left(0,b_{n-r+1} \vee ... \vee b_{n-r+2r_{1}+2r_{2}} \right) \\ & \left(b,b_{n-r+1} \vee ... \vee b_{n-r+k_{1}} \vee ... \vee b_{n-r+2r_{1}-1} \vee b_{n-r+2r_{1}+2r_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}+1} \right) \right] \\ & = \left[\left(0,b_{n-r+2r_{1}+2r_{2}} \right), \\ & \left(b,b_{n-r+1} \vee ... \vee b_{n-r+k_{1}} \vee ... \vee b_{n-r+2r_{1}-1} \vee b_{n-r+2r_{1}+2r_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}+1} \right) \right] \\ & \left((a \vee b) \wedge (a \vee c) \wedge (a \vee c) \wedge (a \vee c) \right) \\ & \left[\left(b,b_{n-r+2r_{1}+2r_{2}} \right), \\ & \left(b,b_{n-r+2r_{1}+2r_{2}} \right), \\ & \left(b,b_{n-r+2r_{1}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}-1} \vee b_{n-r+2r_{1}+2r_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}+1} \right) \right] \wedge \\ & \left[\left(0,b_{n-r+2r_{1}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}-1} \vee b_{n-r+2r_{1}+2r_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}+1} \right) \right] \\ & = \left[\left(0,b_{n-r+2r_{1}+k_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}-1} \vee b_{n-r+2r_{1}+2r_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}+1} \right) \right] \\ & = A \\ & \text{Case(II)} \\ & \text{Let} \\ & \text{A=} \\ & \left[\left(0,0 \right), \\ & \left(b,b_{i_{1}} \vee b_{i_{2}} ... b_{i_{i_{1}}} \vee b_{j_{1}} \vee b_{j_{2}} ... \vee b_{j_{i_{2}}} \vee b_{n_{1}} \vee b_{n_{2}} ... \vee b_{n-r+2r_{1}+2r_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}+1} \right) \right] \\ & \text{B=} \left[\left(a,b_{1} \vee b_{2} \vee ... \vee b_{s+r-1} \right), \left(a,b_{1} \vee b_{2} \vee ... \vee b_{s+r-1} \vee b_{s+r} \vee ... \vee b_{n-r+2r_{1}+2r_{2}-1} \right) \right] \\ & \text{D=} \left[\left(0,b_{n-r+2r_{1}} \vee ... \vee b_{n-r+2r_{1}+k_{2}-1} \right), \left(b,b_{n-r+2r_{1}+k_{2}} \vee ... \vee b_{n-r+2r_{1}+2r_{2}-1} \right) \right] \\ & \text{Now (AVB)} = \left[\left(a,b_{1} \vee b_{2} \vee ... \vee b_{s+r-1} \right), \left(1,1 \right) \right] \end{array}$$

A∨C=

$$\left[\left(0, b_{n-r+1} \vee \ldots \vee b_{n-r+k_1} \right), \begin{pmatrix} b, b_{n-r+1} \vee \ldots \vee b_{n-r+k_1} \vee \ldots \vee b_{n-r+2r_1} \\ \vee b_{i_1} \vee b_{i_2} \ldots \vee b_{i_1} \vee b_{j_1} \vee b_{j_2} \ldots b_{j_{l_2}} \vee b_{n_1} \vee b_{n_2} \ldots \vee b_{n_{l_3}} \\ \vee b_{n-r+2r_1+2r_2} \vee \ldots \vee b_{n-r+2r_1+2r_2+u} \end{pmatrix} \right]$$

A∨D=

$$\left[(0, b_{n-r+2r_1} \vee \ldots \vee b_{n-r+2r_1+k_2-1}), \begin{pmatrix} b, b_{n-r+2r_1+k_2} \vee \ldots \vee b_{n-r+2r_1+2r_2-1} \\ \vee b_{i_1} \vee b_{i_2} \ldots \vee b_{i_{l_1}} \\ \vee b_{j_1} \vee b_{j_2} \ldots b_{j_{l_2}} \vee b_{n_1} \vee b_{n_2} \ldots \vee b_{n_{l_3}} \\ \vee b_{n-r+2r_1+2r_2} \vee \ldots \vee b_{n-r+2r_1+2r_2+u} \end{pmatrix} \right]$$

$$(\text{A} \lor \text{B}) \land (\text{A} \lor \text{C}) = \begin{bmatrix} (0,0), \\ b, b_{n-r+1} \lor \dots \lor b_{n-r+k_1} \lor \dots \lor b_{n-r+2r_1-1} \\ \lor b_{i_1} \lor b_{i_2} \dots b_{i_{l_1}} \lor b_{j_1} \lor b_{j_2} \dots \lor b_{j_{l_2}} \lor b_{n_1} \lor b_{n_2} \dots \lor b_{n_{l_3}} \\ \lor b_{n-r+2r_1+2r_2} \lor \dots \lor b_{n-r+2r_1+2r_2+u} \end{bmatrix}$$

$$(A \lor B) \land (A \lor C) \land (A \lor D)$$

$$\left[(0,0), \begin{pmatrix} b, b_{i_1} \vee b_{i_2} \dots \vee b_{i_{l_1}} \\ \vee b_{j_1} \vee b_{j_2} \dots \vee b_{j_{l_2}} \vee b_{n_1} \vee b_{n_2} \dots \vee b_{n_{l_3}} \vee b_{n-r+2r_1+2r_2} \vee \dots \vee b_{n-r+2r_1+2r_2+u} \end{pmatrix} \right]$$

=A

Hence in case(i) when m_1 is even, m_2 is even and $m_1 \le r+1$, $m_2 < r+2r_1+1$, we have proved that the equation (a) is true.

The other cases are

Case(ii) m_1 is even and m_2 is even and $m_1 \le r+1$, $m_2 > r+2r_1+1$

Case(iii) m_1 is even and m_2 is even and $m_1 > r+1$, $m_2 \le r+2r_1+1$

Case(iv) m_1 is even and m_2 is even and $m_1 > r+1$, $m_2 > r+2r_1+1$

Case(v) m_1 is even and m_2 is odd and $m_1 \le r+1$, $m_2 \le r+2r_1+1$

Case(vi) m_1 is even and m_2 is odd and $m_1 \le r+1$, $m_2 > r+2r_1+1$

Case(vii) m_1 is even and m_2 is odd and $m_1 > r+1$, $m_2 \le r+2r_1+1$

Case(viii) m_1 is even and m_2 is odd and $m_1 > r+1$, $m_2 > r+2r_1+1$

Case(ix) m_1 is odd and m_2 is even and $m_1 > r+1$, $m_2 \le r+2r_1+1$

Case(x) m_1 is odd and m_2 is even and $m_1 > r+1$, $m_2 > r+2r_1+1$

Case(xi) m_1 is odd and m_2 is even and $m_1 \le r+1$, $m_2 \le r+2r_1+1$

Case(xii) m_1 is odd and m_2 is even and $m_1 \le r+1$, $m_2 > r+2r_1+1$

Case(xiii) m_1 is odd and m_2 is odd and $m_1 > r+1$, $m_2 \le r+2r_1+1$

Case(xiv) m_1 is odd and m_2 is odd and $m_1 > r+1$, $m_2 > r+2r_1+1$

Case(xv) m_1 is odd and m_2 is odd and $m_1 \le r+1$, $m_2 \le r+2r_1+1$

Case(xvi) m_1 is odd and m_2 is odd and $m_1 \le r+1$, $m_2 > r+2r_1+1$

In all the above cases, the argument is the same as in case(i), since the convex sublattices of $S(B_n)$ are in a particular interval form only.

Hence in all the cases (a) is true.

Hence we conclude that $CS[S(B_n)]$ is 0-supermodular.

Conclusion:

There is a scope that the above result can be extended to other weaker conditions like 0-modularity,0-semi modularity, pseudo 0-distributivityetc.

References

- [1] Arivukkarasu.J and Vethamanickam.A., On 0-supermodular lattices, Mathematical Sciences International Research Journal, Volume, Vol-3,Issue-2,748-754 (2014).
- [2]Chen,C.C and Koh, K.M., On the lattice of convex sublattices of a finite lattice, Nantha Math.,5, 92-95(1972)
- [3] Gratzer, G., General lattice theory, Birkhauser Verlag, Basel, (1978).
- [4]Iqbalunnisa, W.B. Vasantha Kandasamy,

Florentinesmarandache,

Supermodular lattices, Educational Publisher Inc. Ohio, (2012).

- [5] Koh, K.M., On the lattice of convex sublattices of a lattice, Nantha Math., 6,18-37(1972).
- [6] Koh, K.M., On the complementation of the CS(L) of a lattice L, Tamkang J. Math., 7,145-150(1976).
- [7] Lavanya, S., ParameshwaraBhatta, S, A New approach to the lattice of convex sublattices of a lattice, Algebra Univ, 35, 63-71(1996).
- [8]Marmazeev, V.I., The lattice of convex sublattices of a lattice (Russian), Ordered sets and lattices,9,50-58,110-111, (1986) Saratov GosUniv., Saratov.
- [9]RamanaMurty,P.V., On the lattice of convex sublattices of a lattice,Southeast Asian Bulletin of Mathematics26,51-55 (2003).
- [10] Rahman,R.M.H., Study of Convex Sublattices of a Lattice by a new Approach, Journal of Scientific Research 1(3), August (2009).
- [11] Santhi, V.K., Topics in Commutative Algebra, Ph.D thesis, M.K. University (1994).
- [12] Vethamanickam, A., and Subbarayan, R., On the lattice of convex sublattices, Elixir Dis. Math. 50, (2012) 10471-10474.
- [13]Vethamanickam, A., Sheeba merlin, G., On the lattice of convex sublattices of $S(B_n)$ and $S(C_n)$, Eur. J. Pure Appl. 11;10(4):916-28(Jul2017).