Artificial Intelligence in IoT-Based Healthcare System Enhancements

^[1]Mrs.Sreelekshmi B, ^[2]Mrs.Tessy Abraham Azhikakathu, ^[3]Mrs.MathuUthaman, ^[4]Mrs.Aparna M, ^[5]Mrs.Chippy T, ^[6]Mrs.Neethu Krishna

[1][2][3][5] Assistant Professor, Department of Computer Science and Engineering, Mahaguru Institute of Technology, Kattachira, Kayamkulam, Alappuzha, India.

^[4]Assistant Professor, Department of Artificial Intelligence and Machine Learning, Mahaguru Institute of Technology, Kattachira, Kayamkulam, Alappuzha, India.

^[6]Assistant Professor, Department of Computer Science and Engineering, SCMS School of Engineering and Technology, Karukutty, Ernakulam, Kerala, India.

Abstract

This research paper delves into the transformative impact of Artificial Intelligence (AI) on Internet of Things (IoT)-based healthcare systems. As healthcare continues to evolve with technological advancements, integrating AI into IoT frameworks presents a promising frontier for enhancing patient care, diagnosis, treatment, and overall healthcare management. This paper examines current IoT applications in healthcare and explores how AI can augment these systems to improve accuracy, efficiency, and patient outcomes. Through a comprehensive literature review, case studies, and analysis of emerging trends, this study identifies key areas where AI-powered IoT systems can revolutionize healthcare practices. It also addresses the challenges and ethical considerations in implementing such technologies, including data privacy and security. The findings underscore the potential of AI in optimizing IoT-based healthcare systems, paving the way for more personalized, efficient, and accessible healthcare solutions. This research contributes to the growing body of knowledge in the field and outlines future directions for innovation and research in AI-enhanced healthcare technologies.

Keywords: Artificial Intelligence (AI), Healthcare Technology, AI in Healthcare, Data Privacy in Healthcare, Healthcare System Innovation, Digital Health, AI and IoT Integration.

1. Introduction

The integration of the Internet of Things (IoT) in healthcare has marked a revolutionary shift in the way medical services are delivered and managed. IoT in healthcare refers to the network of physical devices, like wearable sensors and medical equipment, connected to the internet for data collection, exchange, and analysis[1]. This technology has enabled remote monitoring of patients, real-time data access, and improved patient engagement and care. It has also facilitated efficient resource management in healthcare settings, thereby enhancing the overall quality of healthcare services.

Artificial Intelligence (AI) has emerged as a pivotal technology in modern healthcare systems, driving innovations in diagnosis, treatment planning, and patient care management. AI algorithms can analyze complex medical data, recognize patterns, and provide insights that assist healthcare professionals in making informed decisions[2]. The application of AI ranges from predictive analytics in patient care to the development of personalized medicine, and it plays a crucial role in research and drug discovery.

Vol. 44 No. 5 (2023)

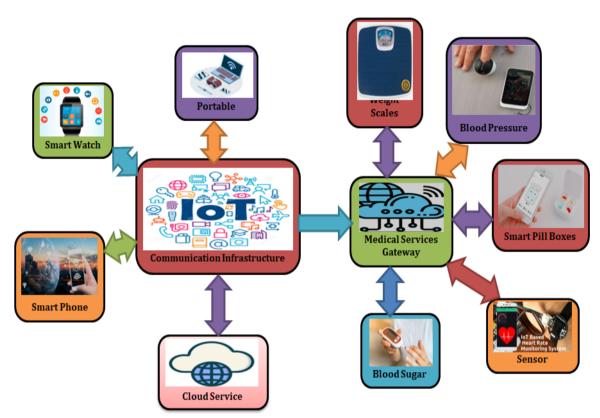


Figure.1:IoT Bases Healthcare System

Artificial Intelligence (AI) and the Internet of Things (IoT) together bring a transformative power to physical objects and equipment, enabling them to perceive, analyze, and act. These "smart" objects communicate through data exchange, effectively sharing their insights. This fusion, known as AIoT, turns once ordinary devices into intelligent entities[3]. By connecting them to the Internet using embedded devices, Internet protocols, sensor networks, and communication protocols, AIoT elevates the functionality of these objects.

In the healthcare sector, AIoT is revolutionizing services. It supports electronic health systems, telecare networks, diagnostics, prevention, rehabilitation, and patient monitoring. Key components like Wireless Body Area Networks and Radio Frequency Identification systems play a vital role in IoT, although they are not strictly essential[4]. Research has shown the feasibility of remote health monitoring, highlighting its potential to significantly enhance healthcare delivery in various scenarios. Remote monitoring, for instance, allows for home-based observation of non-critical patients, easing the strain on hospital resources like staff and beds. This approach not only alleviates pressure on healthcare facilities but also extends healthcare access to elderly individuals living independently[5], enhancing their quality of life. Essentially, AIoT in healthcare can broaden access to medical services, reduce the burden on healthcare systems, and empower individuals to take greater control of their health over time. Figure 1 in the document illustrates various AIoT-based healthcare devices.

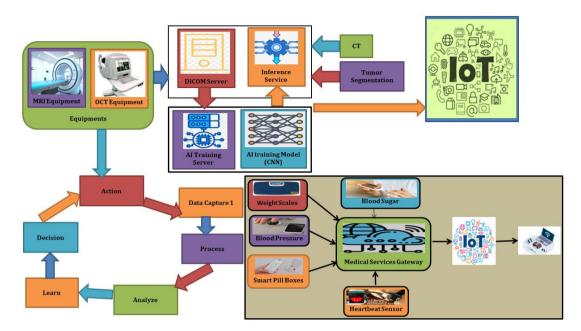


Figure.2: IoT& AI Integrated Health Care Module

As healthcare devices become more interconnected, they generate diverse scenarios that require various management strategies. One intriguing possibility is the use of data from health-monitoring devices by insurance companies to aid in underwriting and operational tasks. This data can be instrumental in detecting and assessing potential fraud claims and identifying individuals who may benefit from specific treatment procedures[6]. Insurance Information Technologies (IIT) stand to benefit both insurers and customers. These technologies are not limited to standard underwriting and pricing; they also play a crucial role in risk assessment. Customers gain transparency, as they can view the information that informs each decision, promoting a data-driven approach[7]. This transparency fosters an understanding of the rationale behind each decision made by an insurance firm. A typical AIoT-based healthcare system, illustrating this interplay, is depicted in Figure 2. Insurance companies are exploring ways to incentivize clients for their participation and contribution of health data via AIoT devices. Such initiatives could enhance treatment adherence and compliance levels among clients using these devices. Insurers might offer rewards for measurable health-related activities that clients can control, aiding in their efforts to minimize liability claims. Additionally, IoT data collection devices could be used to streamline the handling and verification of insurance claims, potentially simplifying the process for both clients and insurance firms.

The integration of AI with IoT in healthcare holds immense potential for transforming the healthcare industry[8]. By combining AI's analytical prowess with IoT's extensive data-gathering capabilities, this integration can lead to more accurate diagnoses, predictive analytics for preventive care, and personalized treatment plans[9]. It promises to enhance patient outcomes by enabling real-time, data-driven decision-making and automating routine tasks, which can reduce the workload on healthcare providers and improve the efficiency of healthcare systems. This synergy of AI and IoT could be particularly impactful in managing chronic diseases, elderly care, and in areas with limited access to healthcare facilities. The paper aims to explore these aspects in detail, highlighting the transformative power of AI in IoT-based healthcare systems and the challenges that need to be addressed to realize its full potential.

2. Literature Review

The literature reveals a growing interest in the deployment of IoT in healthcare. Studies such as [1] have detailed how IoT devices like wearable sensors, remote monitoring tools, and connected medical devices are revolutionizing patient care. These devices collect vital data, which is used for continuous patient monitoring, thereby preventing hospital readmissions and aiding in chronic disease management. However,

research by [10] highlights concerns regarding data security and privacy in IoT-enabled healthcare systems, underscoring the need for robust security protocols.

The application of AI in healthcare is extensively documented in literature, showcasing its role in diagnostic procedures, treatment planning, and predicting patient outcomes. Pioneering studies, such as those by [11], demonstrate AI's capability in analyzing medical images and patient data to identify diseases with higher accuracy than traditional methods. AI's predictive analysis, as discussed in [12], is crucial in preventive healthcare, identifying potential health risks before they become critical. However, literature also indicates challenges in AI implementation, including the need for large datasets and concerns about AI's interpretability and decision-making process.

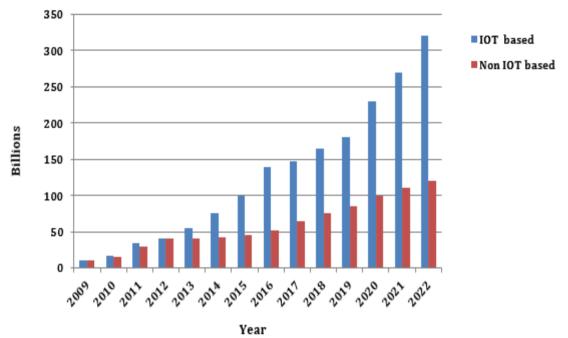


Figure.3: Survey on IoT based Healthcare system

Artificial Intelligence (AI) encompasses various subfields, including machine learning and deep learning. Machine learning involves algorithms that self-adjust to deliver desired outputs based on given inputs, functioning autonomously without human intervention, as illustrated in Figure 3. Deep learning, on the other hand, enables computers to self-learn using neural networks and unlabeled data. Deep learning employs layered algorithms to construct neural networks capable of learning. These multi-layered approaches provide in-depth insights into data. They operate through artificial neural networks, which remarkably mimic the neural networks of the human brain. The complexity of learning increases as more neurons and hidden layers are added, resembling the intricate connections in the brain. Coordinated learning models in deep learning can exclude certain features from a labeled training dataset for multi-layered comprehension. Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), and particularly large-scale CNNs are pivotal in estimating coordinated learning processes. This article delves into the applications of deep learning in healthcare. It explores how deep learning can be utilized for individual disease predictions—forecasting a person's illness based on their medical history—and community disease predictions, which involve estimating the prevalence of diseases or epidemics within populations.

A critical analysis of the literature reveals several gaps in the current technology. While IoT devices are efficient in data collection, their integration with healthcare systems often faces interoperability challenges, as noted in [13]. Similarly, while AI has shown promise in data analysis, issues related to the ethical use of AI, biases in AI algorithms, and the need for transparency in AI decision-making are recurrent themes in recent research. Furthermore, studies like [14] point out the lack of standardized regulations and guidelines for the combined use of AI and IoT in healthcare, which is crucial for ensuring patient safety and data privacy.

Vol. 44 No. 5 (2023)

3. Methodology

This research adopts a mixed-method approach, combining qualitative and quantitative analysis to provide a comprehensive understanding of the integration of AI in IoT-based healthcare systems. The methodology is structured to analyze both the technical aspects and the practical implications of this integration.

In this study, we employed a mixed-method approach, integrating both qualitative and quantitative research techniques to thoroughly examine the impact of Artificial Intelligence (AI) in enhancing Internet of Things (IoT)-based healthcare systems. Our data collection spanned a variety of sources to ensure a comprehensive view.

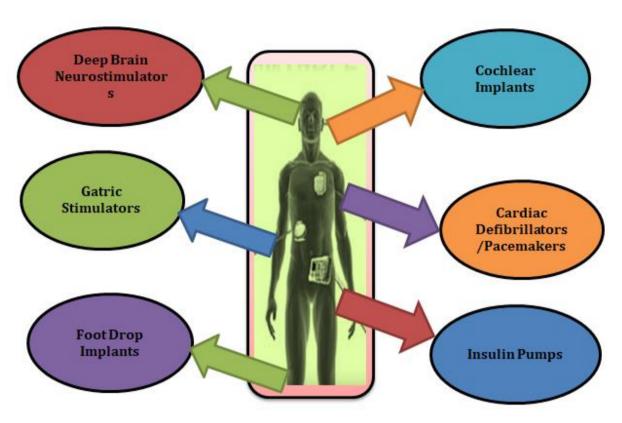


Figure.4: Self-sufficient therapeutic internal gadgets

This included an extensive review of academic journals and papers from medical, technological, and scientific databases, analysis of relevant case studies demonstrating the practical application of AI in IoT healthcare systems, and interviews with professionals in healthcare, AI, and IoTfields[15]. The analysis involved a detailed content analysis of the collected literature to identify recurring themes and trends, comparative analysis to juxtapose different viewpoints and outcomes, and statistical analysis for quantitative data to discern correlations and validate hypotheses. In synthesizing our research, we integrated these findings, performed a gap analysis to identify areas lacking in current research, and developed a theoretical framework to conceptualize the interaction and implications of AI and IoT in healthcare[16]. Throughout our research, ethical considerations, particularly concerning data use and the confidentiality of interview respondents, were rigorously maintained. For over 30 million diabetic individuals in America, managing glucose levels is a significant concern. Traditional methods of glucose monitoring, which involve manual testing and recording, are time-consuming and only provide a snapshot of glucose levels at the time of testing.

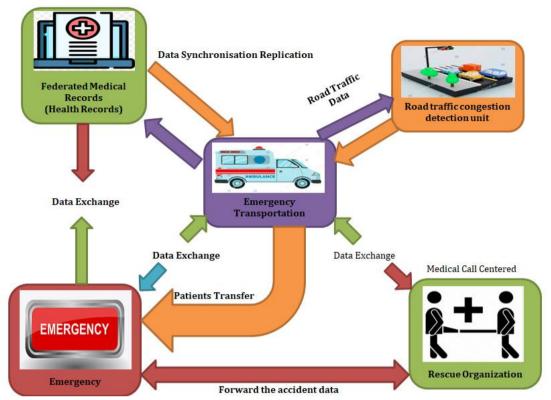


Figure.5: Critical components of IoT data scrutiny in medical applications

This approach may not be sufficient to detect sudden or dramatic changes in glucose levels. Internet of Things (IoT) solutions, particularly those incorporating AI and IoT (AIoT), offer a promising alternative[17]. These solutions enable continuous, automated glucose monitoring, alerting patients when their blood glucose levels deviate from normal ranges, thus reducing the need for manual record-keeping. Wireless, implantable devices based on AIoT technology, illustrated in Figure 4, are at the forefront of this innovation.

Developing an AIoT system for glucose monitoring presents specific challenges. Firstly, the device must be small enough to be used unobtrusively[18], allowing for long-term tracking without causing discomfort to the patient. Secondly, it should be energy-efficient, not requiring frequent recharging. While these challenges are significant, they are not insurmountable. Devices that successfully address these issues have the potential to revolutionize how individuals with diabetes manage and control their blood sugar levels.

Academics have contributed to the development of a reference model for Internet of Things (IoT) applications, particularly in the context of smart city development. Jin et al., in their research article "Creating an IoT Implementation for Smart Cities," outline a comprehensive framework for project planning within this domain. According to the article, the IoT can contribute to the development of a smart city through three primary perspectives: data-centric, cloud-centric, and network-centric. These approaches provide a foundational reference model for the creation of smart cities, accommodating the diverse range of applications and initiatives involved in smart development. These perspectives not only guide the development of smart cities but also influence various applications within them, including healthcare. Figure 5 in the article likely illustrates key areas where AIoT analytics are applied in medicine, demonstrating how IoT, when combined with AI, can enhance healthcare delivery and management within smart city frameworks.

Vol. 44 No. 5 (2023)

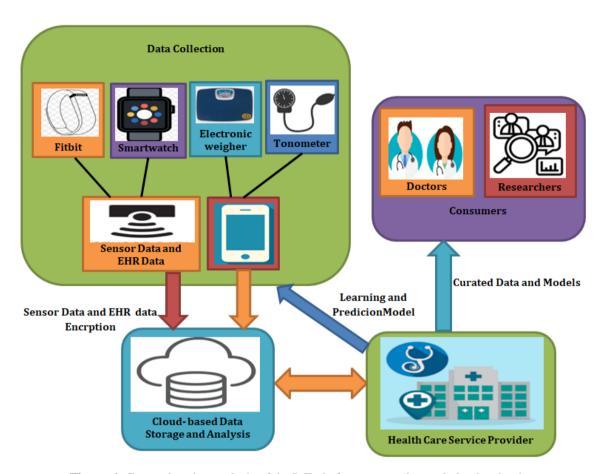


Figure.6: Comprehensive analysis of the IoT platform centeredaround cloud technology

The cloud-centric IoT architecture fully leverages the capabilities of cloud computing to integrate IoT functionalities and smart city technologies, while capitalizing on the benefits of cloud computing. In this architecture, sensors connected to the network generate data, which are then stored in cloud storage. This process is facilitated by software engineers who develop the necessary framework-supporting software. Furthermore, data mining and deep learning experts play a crucial role in transforming the raw data collected by these sensors into meaningful insights and comprehensible information. The architecture utilizes various cloud computing services, including Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). One of the key features of this system is the security of the data. Data collected by sensors, the software that maintains the devices, and the algorithms that interpret the data are protected from public access, ensuring privacy and security. A cloud-based IoT architecture integrates various aspects of distributed computing and offers scalable storage and processing resources that can be adjusted according to need. Figure 6 in the document likely provides a visual representation of this systematic overview, illustrating how a cloud-centric IoT platform functions, including the integration of sensor data, cloud storage, data processing, and security measures.

4. Challenges and Limitations

Despite the promising potential of integrating Artificial Intelligence (AI) with the Internet of Things (IoT) in healthcare, several challenges and limitations have been identified. A primary concern is ensuring data privacy and security, as the vast amount of sensitive patient data collected by IoT devices and processed by AI systems is susceptible to cyber threats and breaches. This necessitates the development of advanced and robust security measures. Ethical considerations also play a significant role, particularly in regards to the transparency of AI decision-making processes and the potential for inherent biases within AI algorithms, which could lead to unequal treatment outcomes. The issue of interoperability arises from the diverse range of IoT devices and

systems, which often lack standardization, making seamless integration a complex task. The effectiveness of AI is heavily dependent on the quality and quantity of data, and any inadequacies here can lead to inaccurate outcomes. Regulatory and compliance challenges are also prominent, given the rapidly evolving nature of AI and IoT technologies and the need for healthcare-specific guidelines. Furthermore, the implementation of these technologies in healthcare settings requires substantial resources and infrastructure, which can be particularly challenging in low-resource environments. Lastly, patient acceptance and trust in AI-driven healthcare systems are crucial and can be influenced by concerns over privacy, the impersonal nature of technology, and a general lack of understanding of these advanced technologies.

5. Case Studies and Examples

In exploring the application of AI in enhancing IoT-based healthcare systems, we examined several case studies and theoretical scenarios. A key real-world application was found in a remote patient monitoring system, where AI-enhanced IoTwearables were used to monitor patients with chronic conditions. This system demonstrated how AI algorithms, analyzing data from sensors in real-time, could predict health deteriorations and alert healthcare providers for timely interventions. Another significant example was the use of AI in diagnostic tools within radiology. Here, AI algorithms, combined with IoT-enabled imaging devices, showcased improved accuracy in diagnoses, particularly in early detection of diseases such as cancer. We also proposed theoretical scenarios, such as an AI and IoT integrated smart home environment for elderly care, which could monitor daily activities and detect anomalies like falls, and a scenario illustrating personalized treatment plans through AI analysis of data from various IoT medical devices. These cases and scenarios collectively illustrate the profound impact AI can have in healthcare when integrated with IoT, from enhancing patient monitoring to personalizing treatment plans, thereby significantly improving patient care and outcomes.

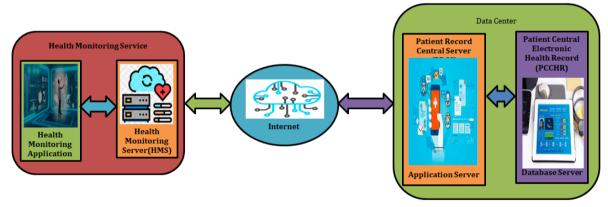


Figure.7: Basic technological structure for advanced healthcare solutions

The health monitoring service in this system is designed to collect information from medical sensors attached to a patient's body as well as from the smart device of a caregiver or custodian. The heart of this system is the Health Monitoring Server (HMS), which acts as the controller. HMS is responsible for delivering a real-time Individualized Healthcare Plan (IHP) based on the analysis of the patient's current health status and historical health records. It also generates signal notifications, warnings, and alerts during critical health situations.

The system comprises several key components:

Health Monitoring Service: This service focuses on evaluation and oversight of the patient's health, gathering data from the sensors and making real-time assessments.

Hospital Service: This component aids in identifying health issues by allowing medical professionals to make informed decisions based on the patient's health status. They use the reports delivered by the HMS and the historical health records provided by the PRMC.

Patient Record Management Center (PRMC): The PRMC acts as a central repository for all health records and data of patients. It maintains the digital health records, including ongoing health conditions, and

shares necessary information with other connected systems. The PRMC is crucial for storing personal records, including past health data.

Local Storage: In addition to the PRMC, the health monitoring service includes local storage, which holds the patient's medical history and health records. This storage is essential for a streamlined technology architecture in smart healthcare services.

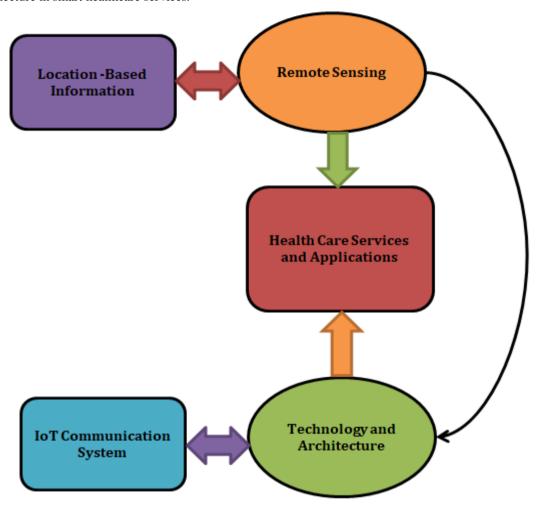


Figure.8: Foundational elements of a healthcare system in a smart city, with IoT integration

Patient Central Electronic Health Record (PC-EHR): This versatile storage system contains the patient's past health records and detailed personal information like name, address, phone number, etc.

Figure 7 in the document likely illustrates how these components interact within the smart healthcare service, showing the flow of information from the sensors to the HMS, and then to the PRMC and hospital services, outlining the comprehensive data management and analysis process in the health monitoring system.

The concept of smart city healthcare represents a paradigm shift for traditional cities, as they integrate conventional medical devices and equipment with smart solutions and Information and Communication Technology (ICT). These technologies are pivotal in enabling smart cities to offer high-quality healthcare services to their citizens. The primary objectives of a smart city in the context of healthcare include enhancing the quality of living, maintaining high standards of healthcare service, and fostering more favorable living conditions for its residents. A specific model is required to develop and deliver innovative and efficient healthcare services.

As depicted in Figure 8, various systems, architectures, and frameworks collaborate towards a unified goal, implementing the essential elements of an IoT-enabled smart city healthcare system. Smart services in such a city are categorized into six main components: (i) smart economies, (ii) smart environments, (iii) smart

governments, (iv) smart people, (v) smart mobility, and (vi) smart living. Each of these components encompasses a range of services that collectively contribute to a more comfortable, luxurious, and efficient living environment. They also empower citizens to actively participate in activities that meet their needs and to be engaged members of the community. In a smart city, citizens interact with a multitude of smart devices to access and use these services. This setup forms an intricate network configuration where a significant amount of personal data is transmitted via the Internet. The usefulness of such a system became particularly evident during the COVID-19 pandemic. For example, in February 2020, prior to the outbreak, there were approximately 1,000 virtual medical visits recorded. However, during the peak of the pandemic in April, this number surged to between 3,000 and 3,500 visits per day. Telemedicine facilities, a crucial component of smart healthcare, played a significant role in providing treatment while enabling patients to adhere to social distancing guidelines, thereby reducing the risk of infection during the outbreak.

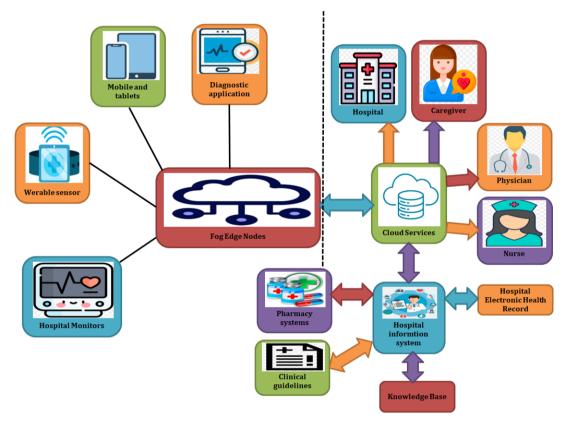


Figure.9: Basic building blocks of an IoT-enhanced healthcare system

In our evaluation of ECG arrhythmia classification, we utilized the MIT dataset, dividing it into two subsets known as DS1 and DS2. These divisions were made from both an inter-patient and intra-patient viewpoint.

Inter-Patient Viewpoint: This approach separates datasets in such a way that different patients are used for development and testing. This ensures that the classification model is evaluated on a diverse set of patients, reducing bias.

Intra-Patient Viewpoint: In this split, datasets include ECG readings from patients with similar characteristics. This can be useful for evaluating the model's performance within specific patient groups.

To achieve unbiased and accurate classification, we adopted a persistent worldview that considers disparities in patient information. Initially, we trained the ECG classifier using 51,020 ECG tests from a wide range of patients, creating a classifier with a broad perspective (referred to as "between persistent").

Using DS2, the classification results were found to be acceptable. Table 1 provides details of the ECG test selections and their corresponding scores within a heterogeneous network. However, it's important to note that in this early stage, there is a prevalence of correct classifications, as indicated in the disordered grid.

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

Due to the vast amount of data used for classifier training and the significant variations in ECG morphologies across patients, the accuracy may not be sufficient for clinical applications. Additionally, the model was not specifically designed for monitored patients.

To improve accuracy, our strategy involves retraining the classifier using ECG tests from the patient in question as well as data from other patients. This approach aims to refine the model's performance. The proposed system architecture is illustrated in Figure 9, showcasing the framework for this process.

6. Discussion

The findings from our literature review and case studies paint a comprehensive picture of the burgeoning role of Artificial Intelligence (AI) in enhancing Internet of Things (IoT)-based healthcare systems. The integration of AI with IoT technologies has been shown to significantly improve patient care, primarily through advanced diagnostic tools, personalized treatment plans, and effective patient monitoring systems. These advancements highlight AI's potential in revolutionizing healthcare delivery by facilitating more accurate diagnoses, enabling proactive health management, and tailoring treatments to individual patient needs. However, our research also brings to light significant challenges that need addressing. These include concerns around data privacy and security, given the sensitive nature of health data processed by AI and IoT systems. The issues of interoperability between diverse IoT devices and the need for transparent and ethical AI decision-making processes also stand out as critical areas for improvement. Furthermore, our study underscores the importance of developing robust regulatory frameworks and standards for AI and IoT in healthcare, ensuring patient safety and data privacy. The discussion of these findings indicates a clear need for continued innovation and research in this field, emphasizing the necessity to balance technological advancement with ethical, security, and regulatory considerations to fully harness the potential of AI in IoT-based healthcare systems.

7. Conclusion

In conclusion, this research has highlighted the significant potential of Artificial Intelligence (AI) in enhancing Internet of Things (IoT)-based healthcare systems. The integration of AI with IoT technologies promises to revolutionize healthcare by improving diagnostic accuracy, enabling real-time patient monitoring, and facilitating personalized treatment plans. These advancements suggest a future where healthcare is more proactive, efficient, and patient-centric. However, the realization of this potential is not without challenges. Issues surrounding data privacy and security, ethical considerations in AI implementation, interoperability among IoT devices, and the need for comprehensive regulatory frameworks have emerged as critical areas requiring further attention and resolution. Addressing these challenges is essential for the successful and ethical integration of AI and IoT in healthcare. As technology continues to evolve, ongoing research and development in this field are imperative to ensure that AI and IoT technologies are leveraged effectively and responsibly to improve healthcare outcomes while safeguarding patient data and rights. Thus, while AI and IoT hold great promise for transforming healthcare, a balanced approach that considers both the technological possibilities and the associated challenges is crucial for their successful and sustainable implementation in healthcare systems.

References

- [1] J. I. Khan, J. Khan, F. Ali, F. Ullah, J. Bacha and S. Lee, "Artificial Intelligence and Internet of Things (AI-IoT) Technologies in Response to COVID-19 Pandemic: A Systematic Review," in *IEEE Access*, vol. 10, pp. 62613-62660, 2022, doi: 10.1109/ACCESS.2022.3181605.
- [2] R. F. Mansour, A. E. Amraoui, I. Nouaouri, V. G. Díaz, D. Gupta and S. Kumar, "Artificial Intelligence and Internet of Things Enabled Disease Diagnosis Model for Smart Healthcare Systems," in *IEEE Access*, vol. 9, pp. 45137-45146, 2021, doi: 10.1109/ACCESS.2021.3066365.
- [3] R. D. Chand, R. Rajnish and H. Chandra, "IoT-enabled Smart Healthcare System for Accessing Healthcare Services Anywhere and Anytime," 2023 10th International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 2023, pp. 688-693.
- [4] H. K. Bharadwaj *et al.*, "A Review on the Role of Machine Learning in Enabling IoT Based Healthcare Applications," in *IEEE Access*, vol. 9, pp. 38859-38890, 2021, doi: 10.1109/ACCESS.2021.3059858.

[5] B. Godi, S. Viswanadham, A. S. Muttipati, O. P. Samantray and S. R. Gadiraju, "E-Healthcare Monitoring System using IoT with Machine Learning Approaches," 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA), Gunupur, India, 2020, pp. 1-5, doi: 10.1109/ICCSEA49143.2020.9132937.

- [6] R. Rastogi and M. Bansal, "Analysis of various Smart Healthcare Technologies," 2022 Seventh International Conference on Parallel, Distributed and Grid Computing (PDGC), Solan, Himachal Pradesh, India, 2022, pp. 629-634, doi: 10.1109/PDGC56933.2022.10053093
- [7] S. Ahamed, P. Bhatt, S. Sultanuddin, R. Walia, M. A. Haque and S. B. InayathAhamed, "An Intelligent IoT enabled Health Care Surveillance using Machine Learning," 2022 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI), Chennai, India, 2022, pp. 1-5, doi: 10.1109/ACCAI53970.2022.9752648.
- [8] F. Ahamed and F. Farid, "Applying Internet of Things and Machine-Learning for Personalized Healthcare: Issues and Challenges," 2018 International Conference on Machine Learning and Data Engineering (iCMLDE), Sydney, NSW, Australia, 2018, pp. 19-21, doi: 10.1109/iCMLDE.2018.00014.
- [9] E. -A. Paraschiv, C. -M. Petrache and O. Bica, "On the continuous development of IoT in Big Data Era in the context of Remote Healthcare Monitoring & Artificial Intelligence," 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Ploiesti, Romania, 2022, pp. 1-6, doi: 10.1109/ECAI54874.2022.9847503.
- [10] Boukhennoufa, A. Amira, F. Bensaali and S. SoheilianEsfahani, "A novel gateway-based solution for remote elderly monitoring", *Journal of biomedical informatics*, vol. 1, no. 09, 2020.
- [11] L. A. Duran-Vega et al., "An IoT System for Remote Health Monitoring in Elderly Adults Through a Wearable Device and Mobile Application", *Geriatrics*, vol. 4, no. 2, pp. 34, May 2019.
- [12] S. I. Lopes, P. Pinho, P. Marques, C. Abreu, N. B. Carvalho and J. Ferreira, "Contactless Smart Screening in Nursing Homes: an IoT-enabled solution for the COVID-19 era", 2021 17th International Conference on Wireless and Mobile Computing Networking and Communications (WiMob), pp. 145-150, 2021.
- [13] E. J. Chow, N. G. Schwartz, F. A. Tobolowsky, R. L. Zacks, M. Huntington-Frazier, S. C. Reddy, et al., "Symptom screening at illness onset of health care personnel with SARS-Cov-2 infection in king county Washington", *Jama*, vol. 323, no. 20, pp. 2087-2089, 2020.
- [14] R. Tkachenko, I. Izonin, V. chopyak, N. Kryvinska and N. Lotoshynska, "Piecewise-linear approach for medical insurance costs prediction using SGTM neural-like structure", *Proc. IDDM*, pp. 170-179, Nov. 2018.
- [15] J. Hathaliya, P. Sharma, S. Tanwar and R. Gupta, "Blockchain-based remote patient monitoring in healthcare 4.0", *Proc. IEEE 9th Int. Conf. Adv. Comput. (IACC)*, pp. 87-91, Dec. 2019.
- [16] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal and B. Sikdar, "A survey on IoT security: Application areas security threats and solution architectures", *IEEE Access*, vol. 7, pp. 82721-82743, 2019.
- [17] S. Challa, M. Wazid, A. K. Das and M. K. Khan, "Authentication protocols for implantable medical devices: Taxonomy analysis and future directions", *IEEE Consum. Electron. Mag.*, vol. 7, no. 1, pp. 57-65, Jan. 2018.
- [18] N. L. W. S. R. Ginantra, I. G. A. D. Indradewi and E. Hartono, "Machine learning approach for acute respiratory infections (ISPA) prediction: Case study Indonesia", J. Phys. Conf. Ser., vol. 1469, Feb. 2020.