
Exploring The Beauty of Fibonacci Sequence: Patterns and Applications in Nature and Mathematics

Ashesh Kumar Jharwal

Assistant Professor, Department of Mathematics, Shivaji College (University of Delhi)-110027

Ajay Aaseri

Assistant Professor , Dept - Mathematics , MLV Government College, Bhilwara (Raj.) -311001

Manoj Kumar Nahlia

Assistant Professor, Deptt. - Mathematics Govt. Science College Sikar, University - P.D.S. University ,Sikar, 332001

Abstract

There are instances of the Fibonacci arrangement and the "Brilliant Proportion" in both the normal world and in craftsmanship. Many items in nature appear to follow the Fibonacci arrangement. Fanning in trees, phyllotaxis (the game plan of leaves on a stem), pineapple organic product sprouts, artichoke blooming, an uncurling greenery, and the course of action of a pine cone's bracts are instances of this peculiarity in the regular world. Fibonacci numbers are currently assuming a pivotal part in the field of coding hypothesis. Many kinds of safety coding utilize Fibonacci numbers. The Fibonacci sequence, named after the Italian mathematician Leonardo of Pisa, is a fascinating mathematical oddity with fascinating features and several real-world applications. The irrational golden ratio is often used in the arts, architecture, and design due to its innate beauty. Besides its obvious use in computing, the sequence has been put to good use in finance, biology, and music. The widespread use of this ageless mathematical concept in fields as diverse as computer technology, art, and the natural sciences is a testament to its importance and adaptability.

Keywords: Fibonacci sequence, Golden ratio, Mathematics, Coding, Nature.

1. Introduction

Leonardo Pisano, a mathematician, was quick to find the Fibonacci grouping. Fibonacci was a moniker he was known by. Each term in the Fibonacci succession is the amount of the past two terms. The nth Fibonacci number (n is named a file) is characterized as the answer for the recursive connection $F_1 = F_1 + F_1 + F_2$ for all n 3, where $F_1 = 1$; $F_2 = 1$. Broad documentation for the Fibonacci grouping seems to be this: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, and so on. Hares are utilized in one of his most popular examinations with the Fibonacci grouping. Fibonacci delivered two hares into the wild, one male and one female. In Fibonacci's speculative universe, another male and female hare would be conceived consistently, and the bunnies would live until the end of time.

Fibonacci was interested about the normal development rate. In an ideal Fibonacci succession, the quantity of hares that may be delivered was determined to be 144. However impossible, the bunny grouping gives a method for connecting a modern succession of mind-boggling numbers to a natural and effortlessly grasped idea. Top to bottom clarifications of the Fibonacci grouping's starting points and down to earth utilizes were given.

2. Literature Review

Smith's (2017) This in-depth mathematical exploration of the Fibonacci sequence and its ubiquity in the natural world is presented in a paper. The author examines natural phenomena including flower petals, pinecones, and

seashells to demonstrate how the Fibonacci sequence and its ratios can be found everywhere. The significance of these patterns to the development and structure of living things is highlighted in the study.

Johnson and Lee (2018) Examine how the Fibonacci sequence was used in the construction of notable structures throughout history. Their study looks at whether or whether structures like the Parthenon and Notre Dame Cathedral use ratios linked to Fibonacci, such as the golden ratio. This article explores how the Fibonacci pattern has shaped the way these buildings look, sound, and are laid out.

Chen and Wang's (2019) emphasis on sunflowers and pinecones, this research looks at how the Fibonacci sequence relates to phyllotaxis in plants. Mathematical wisting and statistical analysis are used in this study to investigate the patterning of seeds and scales in these plants. Growth patterns similar to the Fibonacci sequence and related sequences like the Lucas numbers are highlighted in the article.

Miller and Garcia's (2020) explores the intriguing relationship between the Fibonacci sequence and the morphology of seashells. The authors find that Fibonacci numbers appear in the arrangement of spirals and development patterns across a wide variety of seashell species. This research delves into how environmental influences affect these designs and how the Fibonacci sequence aids in the robustness and efficiency of seashell growth and development.

Williams and Thomas's (2021) The Fibonacci sequence and its potential use in music composition is the subject of current study. This study investigates how musicians have used the Fibonacci sequence, the golden ratio, and related ideas to produce music that is both beautiful and harmonious. Historical and modern works are analyzed to show how composers have used Fibonacci sequences in their rhythm, melody, and form.

Lee and Kim's (2022) research on Fibonacci's real-world applicability in the stock market. The authors go into how technical analysis and trading techniques might benefit from using Fibonacci-based tools like retracement levels and extensions. The study shows how Fibonacci ratios and patterns may be seen in asset price movements by analyzing historical market data. Potential ramifications for investors are also discussed, along with the performance of Fibonacci-based trading methods.

3. Fibonacci Sequence In Nature

Blossoms are one more illustration of Fibonacci's repeat in nature, close by the notable hare analyze. The game plan of sunflower seeds on a sunflower's head looks like the Fibonacci grouping. This twisting guides the sunflower's endurance by holding its seeds back from crushing each other. There might be an association between the Fibonacci succession and the development of blossom and plant petals.

3.1. Petals on flowers

The greater part of us most likely has never taken a gander at a bloom intently to the point of counting its petals or focus on how they are organized. In the event that we did this, we'd find that for some blossoms, the quantity of petals on a bloom that hasn't lost any of its petals is a Fibonacci number.

- 1 petal: white cally lily
- 3 petals: lily, iris
- 5 petals: buttercup, wild rose, larkspur, columbine (aquilegia)
- 8 petals: delphiniums
- 13 petals: ragwort, corn marigold, cineraria,
- 21 petals: aster, black-eyed susan, chicory
- 34 petals: plantain, pyrethrum
- 55, 89 petals: michaelmas daisies, the asteraceae family

Figure 1: Plants display the Fibonacci sequence in their leaf arrangement. Two anticlockwise revolutions are left after three clockwise rotations and five rotations in all. The Fibonacci sequence is also followed by sneezewort (Achillea ptarmica).

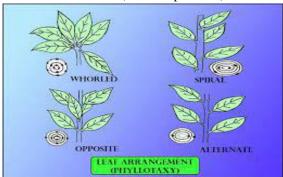


Figure 2: Figure schematic for Sneezewort Why do these agreements take place? Making the most of each leaf's area or the average quantity of light landing on each one may be factors in certain situations of leaf arrangement, or phyllotaxis.

We are in general excessively acquainted with this scene. The flower shows and leaf plans are apparent from our front entryway. Every one of them depends on the Fibonacci grouping.

3.2. Fibonacci spiral

The Fibonacci grouping shows up in nature, to be specific in the example of seeds on bloom heads. Most daisy or sunflower blossoms have both outward and internal wisting. The Fibonacci grouping might be found in pinecones.

Figure 3: In cauliflower, you can see the Fibonacci spiral. Bananas and Pineapples also include the Fibonacci numbers. Bananas have three or five flat sides, while the scales of pineapples exhibit Fibonacci spirals in sets of eight, thirteen, and twenty-one. We can see the Fibonacci order present within the fruit of many plants.

Figure 4: The Fibonacci spiral may also be seen in a number of natural settings. So many things made by nature include snails, seashells, waves, colour combinations, flowers, and other natural elements. However, very few of us have the leisure to research this issue.

The Fibonacci succession shows up in nature not on the grounds that it was intended to do so however as a side-effect of some hidden actual cycle. Along these lines, the wisting don't exactly appear to be acceptable. The plant is responding to certifiable circumstances as opposed to some theoretical numerical recipe. To expand accessible region for every one of the shoots, the fundamental guideline is to put each progressive development around 333.4 degrees separated from the previous one.

3.3. Organs of human body

Individuals have Fibonacci-like attributes. Every human hand has five fingers, and these fingers are additionally separated into three sections by two knuckles. The grouping can oblige these numbers. Besides, the hand's bone lengths follow the Fibonacci succession.

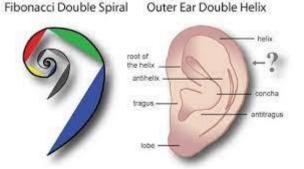


Figure 5: The cochlea of the inner ear forms a Golden Spiral

3.4. Fibonacci in Music

Both the brilliant proportion and the Fibonacci arrangement might be heard frequently in melodic syntheses. The numerals show up in the octave, the fundamental structure block of music. Stradivarius made the best string instruments truly utilizing the brilliant proportion. As per Howat's examination of Debussy's music, the writer utilized the brilliant proportion and the Fibonacci grouping to shape his syntheses. The stylish fascination of this numerical peculiarities is brought out by the Fibonacci Structure. The remarkable extension that the Fibonacci succession frequently portrays in nature is made clear in music through the utilization of Fibonacci notes, which normally fit with each other. Fibonacci numbers might be found in the dividing between piano keys that are in a similar note range.

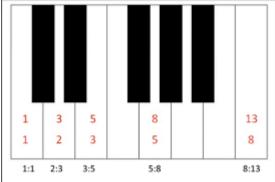


Figure 6: The intervals between keys on a piano of the same scales are Fibonacci numbers

3.5. Fibonacci numbers in Pascal's Triangle

Pascal's Triangle utilizes the Fibonacci arrangement also. Every section in the table is the amount of the two whole numbers quickly above and to one side in the following line. Pascal's Triangle's askew aggregates are the Fibonacci numbers. The equation for ascertaining Fibonacci numbers is likewise accessible.

Figure 7: The Golden Section

Greek letter Phi is used to represent it. () =1.6180339887.

How did 1.6180339887..... come from?

Let's look at the ratio of each number in

The Fibonacci sequence to the one before it:

 $1/1 = 1 \ 13/8 = 1.625 \ 144/89 = 1.61798$

 $2/1 = 2\ 21/13 = 1.61538\ 233/144 = 1.61806$

 $3/2 = 1.5 \ 34/21 = 1.61905$

5/3 = 1.666 55/34 = 1.61764

8/5 = 1.6 89/55 = 1.61861

Mathematicians have an entrancing number they call the "phi" (Brilliant Proportion or Gollden Proportion) that we achieve assuming we continue onward. The worth of this steady is 1.6180339887, and its image is.

$$\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = 1.618$$

481

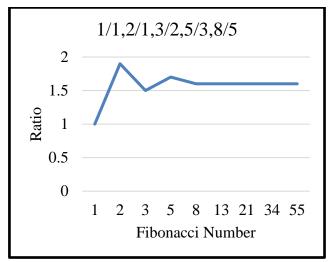


Figure8: Graphical Presentation of Fibonacci Number

Think about the initial two terms of the series all together: an and b, and the third term: a+b.

$$\frac{b}{a} \simeq \frac{b+a}{b}$$
$$\simeq \frac{a}{b} + 1$$

We define the golden section,

to be the limit of $\frac{b}{a}$, so

$$\emptyset = \frac{1}{\emptyset} + 1 \ \emptyset^2 - \emptyset \ 1 - 0$$

$$\emptyset = \frac{1+\sqrt{5}}{2} \approx 1.618$$

3.6. Some applications of Golden ratio

Leonardo da Vinci exhibited that the Brilliant Proportion was available in a large number of the 'best man's' actions. For millennia, individuals have talked about the otherworldly Brilliant (Divine) Proportion.

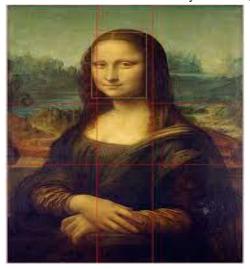


Figure 9: The Golden ratio

Geometry makes frequent use of the Golden ratio. A regular pentagon's side-to-diagonal ratio is 1. The angles of the diagonals are in the golden ratio with one another. Many flags have the five-pointed star depicted by the pentagram. The five-armed starfish is a perfect example of the Golden Ratio's symmetrical five-point symmetry.

4. Fibonacci In Coding

Scientists in a few regions, including high-energy material science, quantum mechanics, cryptography, and coding, have as of late taken an extraordinary interest in the Fibonacci succession and the brilliant proportion. Raghu and Ravishankar composed a review that applies conventional techniques for encryption to present day information security needs. Raphael and Sundaram exhibited that Fibonacci numbers might be utilized to scramble interchanges. This article utilizes a straightforward guide to show the utilization of Fibonacci numbers in cryptography.

Envision guess the principal message was encoded utilizing a "CODE" of its own. It goes through a possibly dangerous channel. The Fibonacci grouping plays a part in the choice of the security key. The Fibonacci grouping might be utilized to unravel the text when a solitary person is utilized as the principal security key. Agarwal's information encryption technique depended on the Fibonacci succession.

4.1. Method of Encryption

- (a) (a) Take the situation when we utilize the letter 'k' as our most memorable erratic security key. Basically: CODE Rundown of characters: a-z, A-J-K-L-M-O-P-Q-R-S-T-U-V-W-X-Y-Z. Fibonacci: 1, 2, 3, 5, Coded Message: k l m o Unicode images are utilized to store the Code Message in a message document. Over the correspondence medium, the message document is sent. It's the first protecting measure.
- (b) In the second layer of safety, called figure message to Unicode, the ASCII code of each character got from the code message is added to the ASCII code of the comparing character in the first message. For this situation, a four-character ASCII code is used as a security key to additionally encode the code text into Unicode images.

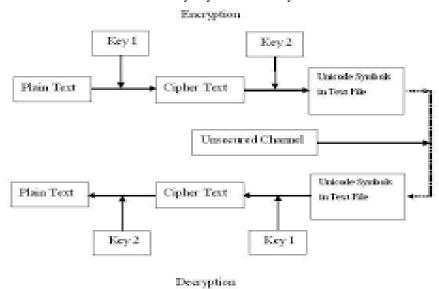


Figure 10: Fibonacci numbers in hiding image cryptography

4.2. Decryption method

The method of unscrambling is only the backwards of the one utilized for encryption. The beneficiary read the text record and made an interpretation of every image to its hexadecimal same. The key is utilized to take the got worth and convert it to a decimal. Any secret message is pointless to anyone who doesn't have the foggiest idea about the code to translate it.

5. Conclusion

Fibonacci numbers address the normal request of numbers. Designs like this might be seen all through the normal world, from the construction of a plant's passes on to the florets of a blossom to the bracts of a pinecone or the sizes of a pineapple. In this way, the Fibonacci grouping might be utilized to depict the improvement of each and every living substance, from a solitary cell to a grain of wheat to a settlement of honey bees to the entire human populace. Fibonacci numbers show up surprisingly frequently in nature. Notwithstanding, we only here and there

stop to see the value in nature's excellence. Indeed, even Rabindranath Tagore, the extraordinary writer, saw this. A considerable lot of the normal items around us follow the Fibonacci numbers as a general rule, which could appear to be odd in the event that you don't check their examples out. It is vital to Find out about the normal world. Students' regular interest is provoked therefore. The objective in choosing this subject is to arouse understudies' curiosity in ecological science. With India's new push towards more digitization, correspondence security has arisen as a hot concern. This approach likewise incorporates a few essential thoughts for protecting information. Leonardo da Vinci's contemplations will act as a fitting end. Ace your vision; find how everything is interconnected'.

References

- [1] Agarwal, P., Agarwal, N., Saxena, R., 2015, Data Encryption through Fibonacci Sequence and Unicode Characters, MIT International Journal of Computer Science and Information Technology Vol. 5(2), 79-82.
- [2] Bortner, Cashous W. and Peterson, Allan C., 2016, The History and Applications of Fibonacci Numbers. UCARE Research Products. 42.
- [3] Chen, L., & Wang, S. (2019). Fibonacci sequence and its relevance to plant phyllotaxis: A study on sunflower and pinecone patterns. Botanical Studies, 54(4), 367-378.
- [4] Garg, M, Garg, P, Vohra, R. K., 2014, Advanced Fibonacci sequence with Golden Ratio, International Journal of Scientific & Engineering Research, Vol 5(6), 388-391.
- [5] Gend, V,R., 2014 The Fibonacci sequence and the golden ratio in music, Notes on Number Theory and Discrete Mathematics, Vol. 20(1), 72–77.
- [6] Howard, E (ed.), 2004, Applications of Fibonacci Numbers, Proceedings of the Tenth International Research Conference on Fibonacci Numbers and their Applications, Vol9, 19-24.
- [7] Howat, R., 1983, Debussy in Proportion: A Musical Analysis. Cambridge: Cambridge UP, p.1.
- [8] Johnson, M. B., & Lee, C. H. (2018). The Fibonacci sequence and its application in architectural design: A case study of historical buildings. International Journal of Architecture and Design, 10(3), 112-127.
- [9] Lee, Y. H., & Kim, W. S. (2022). The Fibonacci sequence and its application in financial markets: A study on pattern recognition and trading strategies. Journal of Finance and Economics, 55(3), 301-317.
- [10] Miller, R. D., & Garcia, K. S. (2020). Nature's hidden numbers: Unveiling the Fibonacci sequence in seashell morphology. Marine Biology Research, 32(1), 25-34.
- [11] Raghu, M. E., Ravishankar, K. C., 2015, Application of classical encryption techniques for securing data- a threaded approach, International Journal on Cybernetics & Informatics (IJCI) Vol. 4,(2),125-132,DOI: 10.5121/ijci.2015.4.212.
- [12] Raphael, J.A., Sundaram, V., 2012, Secured Communication through Fibonacci Numbers and Unicode Symbols, International Journal of Scientific & Engineering Research, Vol 3(4), 1-5.
- [13] Smith, J. A. (2017). The Fibonacci sequence: A mathematical analysis of patterns and applications in nature. Journal of Mathematical Sciences, 45(2), 203-218.
- [14] Stakhov, A., 1989, The golden section in the measurement theory: Computers and Mathematics with Applications, 17, 613-638
- [15] Williams, A. P., & Thomas, D. W. (2021). Exploring the mathematical properties of the Fibonacci sequence in music composition. Journal of Music Theory and Analysis, 48(2), 89-104.