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Abstract:- A vertex set of a graph G ~ said to be a kIDS if <D> has exactly k isolated vertices and V(G °) is the
union of the closed out neighborhoods of vertices in D. This paper does include some basic properties of kIDS
in directed graph and provide the KID number for cycles, paths and some special graphs in digraph that has been
discussed.
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1. Introduction

In this paper, we contemplate simple, finite and directed graphs only. For primary explanation and note in
graph theory, we follow [2] and [4].

A dominating set D of a digraph G is a set of vertices of V( G) such that the union of the closed out
neighborhoods of vertices in D equals the vertex set of V( 5). In 2022, the extended version of UIDS in
directed graphs was introduced by Sivagnanam Mutharasu and V.Nirmala. A dominating set D of G is said
to be an UIDS in G has exactly one isolated vertex[5].

From making use of the concept of kIDS in graphs, we study KIDS in directed graphs. A dominating set D
of G is said to be a kIDS if <D> has exactly k isolated vertices. The minimum and maximum cardinality of a
minimal KIDS of G are called the kID number yk,o(ﬁ) and the kIUD number Fkvg((?) respectively. There are
some graphs which does not admit UIDS but it admit kIDS for some k > 2.

Example 1.1 Consider the unidirectional path Ps. Suppose there exists an UIDS in P, let it be D and x be any
isolated vertex in < D >. Suppose X = vy, then v, ¢D. To dominate the vertex vs, v must be in D and so D =
{v1,vs}. Here < D> has two isolated vertices, a contradiction to D is UIDS. Since v, € D for every dominating
set D, v, must not be isolated in < D > for any dominating set. Suppose X = vs, then v, ¢ D. To dominate the
vertex vy, v; must be in D and so D = {vy,vs}, a contradiction to D is UIDS. Thus P does not admit UIDS where
as {vi,vs} is 21DS in P,

Example 1.2 Consider the unidirectional cycle Ca. Suppose there exists an UIDS in C,, let it be D. Without loss
of generality assume that v, be the isolated vertex in < D >. Then v, v, ¢D. To dominate the vertex vs, vz must
be in D and so D = {v,,v3}. Here < D> has two isolated vertices, a contradiction to D is UIDS. Thus 54 does not
admit UIDS where as {vy,vs} is 2IDS in 54.

2 Basics of k-Isolate Domination

In this section, we attain certain essential development of kIDS.
Observation 2.1 For any graph G with k-isolate domination set, we have

1) Yo(G) < yio(G) for all k > 1(Since every k-isolate domination set is an isolate domination set).
2 y(ﬁ) < ykyo(Gﬁ) for all k > 1(Since every k-isolate domination set is a domination set).
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Theorem 2.1 Let G = Sun(k)(k = 3) with V(G) = { u;, Vi : 1 < i <k } and E(G) = { Ui Ups1 - 1 < i <k -1 }U{u,ug}
U {Vili - 1 < i<k }. Then the Sun graph G admits kKIDS with ¥(G) = yo(G) = k.

Proof 1 Let D be a dominating set. Since v; has no in-degree, v; must be in D and thus y(@) > k. Since { vy, vy,
..., v }isakIDS, yyo(G) < k. Thus y(G) = yxo(G) = k(by Observation 2.1(2)).

Corollary 2.1 For a given integer k there exists a graph G such that y(ﬁ) = yo(ﬁ): yk,O(Gﬁ) =k.

Theorem 2.2 Let m and n be two integers such that n > m > k. Then there exists a graph G such that y(G) = m
and y,,o(G) = n.

Proof 2 Let Cpy, be a unidirectional cycle of order ‘m’ with V(fm) = { Wy, Wy, ..., wp }. Let F be any graph
which admits KIDS with y(F‘) = ykvo(ﬁ) = n-m+1(Since by Theorem 2.1) and G=Cn°F. LetShea dominating
set of G, then S need to contain w; or at least one vertex of £, where F"' is a corresponding copy of F and so
¥(G) = m. Since V(C,,) is a dominating set of G, we have y(G) < m and so y(G) = m. Assume S be any kIDS of
G and x be any k isolated vertices of < S >. Suppose x = w; € V(fm), then w, ¢ S. To dominate the vertex of
V(F"?), S must include at least n-m+1 vertices of V(F"?)( Since y(F"?) = n-m+1). Now to dominate the vertex
of V( F"') for each i #£1,2, S must include at least one vertex of V(F") or w;. Thus |S| > 1+( n-m+1) + (m-2) >
n. Suppose x € V( ﬁWi) for some 1 <i < m. Without loss of generality, assume that X € F"" thenw; £ S. To
dominate the vertex of F** | S must include n-m+1 vertices of V(F*")( Since y(F"') = yo(F"") = n-m+1). Now
to dominate the vertex of V(I7“Wi) for each i # 1, S must include at least one vertex of V(ﬁWi) or w;. Therefore |S|
> (n-m+1) + (M-1) = n and thus yyo(G) > n. Let S be a KIDS of F**. Then D =S U { Wy, Wa, ... , wp } is a
KIDS. Thus yyo(G) = n.

3. k-1solate Domination number for some special graphs

In this section, we obtain exact values of kID numbers for cycles, paths and some special graphs.

In[3], Mohamed El-Zahar, Sylvian Gravier and Antoaneta Klobucar proved the following result.
Lemma 3.1 [3]:
7(Pn) = 7(Cp) = n/2+1 n=2(mod4)

=[n/2] otherwise.

Theorem 3.1 Let C,, be a unidirectional cycle of order n and n > 2k. Then

1. Vk,O(En) =k + 2lif n = 2k + 31 for some integer | > 0,
2. ]’k,o((jn) =k+ 20+ 1ifn=2k+ 31+ 1 for some integer | > 0,
3. ]’k,o((jn) =k+ 20+ 2ifn=2k+ 31+ 2 for some integer | > 0.

Proof 1 Let V(C,) ={ V1, Va, ..., vn }.
Case 1: Suppose n = 2k + 31 for some integer 1 > 0.

Case la: Suppose | = 0.

Let D; be a yxo—setin C‘n and Xy, Xo, ..., xi be the isolated vertices in < D, >. By the definition of kIDS, |D;| >k
and so Vk,o(fn) >k.

LetDZ:{VZH.l:OSiSk'l}.

8014



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 04 (2023)

Claim: D, is kKIDS. Since the set of vertices {v, : 0 <i <k} U {n} are not in D,, the set of vertices {vyi.; : 0 <i<
k-1 } are isolated vertices in < D, >.

Letv; € V(C,)- D.
Case 1.a.1: Suppose i = 2j for 1 <j <k then v,; is dominated by v,;.,€ D,. Note that |D,| = k and so yk,o(fn) <k
Case 1.b: Suppose 1> 1.

Let D, be a yyo—set in C, and X4, Xy, ..., X be the isolated vertices in < D, >. Note that each x; can dominate a
maximum of 2 vertices(including x;). Thus the vertices Xy, X,, ..., x,x can dominate a maximum of 2k vertices.
All the other vertices of D, are adjacent with some other vertices of D, and any two adjacent vertices can
dominate a maximum of 3 vertices. Thus to dominate the remaining 3l vertices, D, must include another 2|

vertices. Since n = 2k + 3l, |D,| >k + 21 and thus yo(C,) > k + 2L
Let D= { Vais1: 0 1< k-1 } U {Vioksrysj, Vizksayraj : 0<j < 1-1 }.

Claim: D3 is KIDS. Since the set of vertices {vy : 1 <i<k} U {n} are not in D, the set of vertices {vyi.; : 0 <i<
k-1 } are isolated vertices in < D3 >.

Letv; € V(C,)- D.
Case 1.b.1: Suppose i = 2j for 1 <j <k then v, is dominated by vy;.1€ Ds.

Case 1.b.2: Suppose i = 2k + 3j for 1 <j <1 then vi.3; is dominated by V(aksz)+3i.1) for 0 <j <1-1 € D;. Note that
|[D;| =k + 2l and so yk,O(En) <k+2l

Case 2: Suppose n = 2k + 31 +1for some integer 1 > 0.

Case 2a: Suppose | = 0.

Let D, be a yyo—set in 5n and Xy, Xo, ..., X, be the isolated vertices in < D, >. Note that each x; can dominate a
maximum of 2 vertices(including x;). Thus the vertices X3, Xy, ..., xx can dominate exactly 2k vertices. Thus
there exists exactly one vertex which is not dominated by D,, without loss of generality, let it be v,. Then v,
could not be in D4 and so v, € D,. Also vz must be in D,. To dominate the vertex v, either v; or v, must be in D,.

Suppose Vi€ Dy, v, will not be isolated in < D, >, a contradiction.
Suppose V,€ Dy, v will not be isolated in < D, >, a contradiction.
Thus there does not exist a kKIDS in ¢, when | = 0.

Case 2.b: Suppose 1> 1.

Let Ds be a yyo—set in 5n and Xy, Xo, ..., X be the isolated vertices in < D5 >. Note that each x; can dominate a
maximum of 2 vertices(including x;). Thus the vertices Xy, X, ..., xx can dominate a maximum of 2k vertices.
All the other vertices of Ds are adjacent with some other vertices of Ds and any two adjacent vertices can
dominate a maximum of 3 vertices. Thus to dominate the remaining 3l vertices, Ds must include another 2l
vertices. Since n = 2k + 3I+1, to dominate all the vertices, Ds need to contain one more vertex in it. Thus |Ds| >

k + 21 + 1 and thus yyo(Cr) > k + 21 + 1.
Let Ds = { Visr : 0<i<k-1 } U { V(2k+1)+3j, V(2k+2)+3 * 0 S_] <l-1 } U {n-l}.

Claim: Ds is KIDS. Since the set of vertices {v,; : 1 <i <k} U {n} are not in Ds, the set of vertices {vyi,; : 0 <i<
k-1 } are isolated vertices in < Dg >.

Letv; € V(C‘n)- Ds.

Case 2.b.1: Suppose i = 2j for 1 <j <k then vy; is dominated by v,;..€ Ds.
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Case 2.b.2: Suppose i = (2k+3) + 3j for 0 <j <1 - 2 then Vy.3)+3j is dominated by Voks)+35 for 0 <j <1-2 € Ds.
Case 2.h.3: Suppose i = n, then v; is dominated by v,.1.

Note that [Ds| = k + 21 + 1and 50 yo(Cr) < k + 21 + 1.

Case 3: Suppose n = 2k + 31 +2 for some integer 1 > 0.

Case 3a: Suppose | = 0.

Let Dg be a yyo—set in 5,, and Xy, X, ..., X be the isolated vertices in < Dg >. Note that each x; can dominate a
maximum of 2 vertices(including x;). Thus the vertices X3, Xy, ..., X can dominate exactly 2k vertices. Thus
there exists exactly two vertex which is not dominated by De, let it be v;and v;.

Suppose viand v; are not adjacent then by Case 2.a, we get a contradiction.

Suppose v;and vji+ 1) are adjacent. Then viy ¢ Dg and thus vi, must be in Dg. Also Vis, € De. If Vi1 € Dgthen
Vi+> Will not be isolated in < Dg >, a contradiction. Thus v; must be in Dg and so < Dg > will have k+1 isolated

vertices, a contradiction. Thus there does not exist a kIDS in an when | = 0.

Case 3.b: Suppose 1> 1.

Let D; be a yyo—set in 5n and Xy, Xo, ..., X be the isolated vertices in < D; >. Note that each x; can dominate a
maximum of 2 vertices(including x;). Thus the vertices Xy, X,, ..., Xx can dominate a maximum of 2k vertices.

Further, find that D;-{ X1, X,, ..., X« }is a total dominating set of H=G - U, N[x;] and |V(H)| >31+2. Also
H is a disconnected graph whose components are unidirectional paths. Let the components be Hy, H, ..., Hy, for
some 1 < m < k-1. Note that y(H) > y(H)*+ vi(Ho)*....+ yi(Hm) = v« Paio). By Lemma 3.1, y(H) > 21 + 2.
Thus |D,| >k + 21 + 2 and thus yyo(Cn) >k + 21 + 2.

By taklng Dg= { Voirp - 0<1<k-1 } U { V(2k+1)+3j, V(2k+2)+3j * 0 SJ <1-2 } V) {n-2, n'l}.

Claim: Dg is KIDS. Since the set of vertices {vy : 1 <i<k} U {n} are not in Dg, the set of vertices {vyi.; : 0 <i<
k-1 } are isolated vertices in < Dg >.

Letv; € V(C,)- Ds.

Case 3.b.1: Suppose i = 2j for 1 <j <k then vy is dominated by v,;.1€ Ds.

Case 3.b.2: Suppose i = (2k+3) + 3j for 0 <j <1 - 2 then V(z.g)+3j is dominated by Vsks)+3j for 0 <j <1-2 € Ds.
Case 3.b.3: Suppose i = n, then v; is dominated by v,,.;.

Note that |Dg| = k + 21 + 2 and 50 yyo(C) <k + 21 + 2.
In[1],V.Nirmala proved the following result.

Lemma 3.2[1]: Let C, be a unidirectional cycle of order nforn >1. Then
a). »y( €)= 2t +1if n = 3t+2 for some integer t >1,

b). yY(Cr)=2t+1if n = 3t+1 for some integer t >1,

c). yL(’)(fn): 2t if n = 3t for some integer t > 2.

Putting k = 1 in Theorem 3.1, we can get the above result as a Corollary of Theorem 3.1.
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The similar proof of Theorem 3.1 can be applicable for the following result.

Theorem 3.2 Let P, be a unidirectional path of order n and n > 2k. Then

1. Yo(Po) = k + 21 if n = 2k + 31 for some integer | > 0,
2. Yio(Po) =k + 21+ 1 if n = 2k + 31 + 1 for some integer [ > 0,
3. Vk,O(ﬁn) =k+ 21+ 2ifn=2k+ 3]+ 2 for some integer [ > 0.

In[1],V.Nirmala proved the following result.

Lemma 3.3[1]: Let P, be a unidirectional path of order n for n > 1. Then
a). y%(ﬁn) = 2t +1if n = 3t+2 for some integer t >1,

b). y‘é(ﬁn): 2t+1if n = 3t+1 for some integer t >1,

C). y%(ﬁn): 2t if n = 3t for some integer t > 2.

Putting k = 1 in Theorem 3.2, we can get the above Lemma as a Corollary of Theorem 3.2.

Theorem 34 Let G = K,°Po(1 < k<n—1)with V(G) ={ui,Vi: I < i<n}and EG)={UjUp: [ < i<n—1
Yu{viui: 1 <i<n} Then the Comb graph G admits kIDS with Vk,o(é) =2n-Kk.

Proof 3 Let D be a minimum KIDS. Since v; has no in-degree, v; must be in D for all 1 < i < k.
Thus all the k isolated vertices of < D > must be in the set { vi,v», ...v, }. Suppose v; is not isolated in < D >
then u; must be in< D >. Thus |D| >2(n-Kk) + k=2n -k and thus yk,o(ﬁ) >2n-k.Since { vy, Vo, ..., vk} U
{vi, Ui : 1 < i<n} is akIDS with 2n — k elements, we have yk,o(ﬁ) <2n -k and thus ykyo(G*) =2n-k.

Theorem35Let G = Kin(n = k= 2)with V(G) ={ Vi: 0< i<n}and E(G) = {Vov;: 1 < i <n }. Then the
Star graph G does not admit kIDS.

Proof 4 Suppose G admits minimum KIDS, say D. Since vq has no in-degree, vy must be in D and so v;’s are not
isolated. If vy isisolated in< D >, v; ¢ D for all 1 < i <n. Thus D is UIDS, a contradiction to k > 2.

Theorem 3.6 Let G = Hy(1 < k<n) with V(G)={u; : 0< i<n}U{V;: 1< i<n}and E(G)={vu: 1< i<
N} U{ U Us o 1< i <n-130{Uupui} U {Ugl : 1 < i <n }. Then the Helm graph G admits KIDS with y(G) =
Yio(G) = 2n — k+1.

Proof 5 Let D be a minimum KIDS. Since uq and v; has no in-degree, v; , Uy must be in D for all 1 < i <n. Note
that up will not be isolated(otherwise < D > must have n + 1 isolated vertices, namely vi,v,, ...v,, Ug, &

contradiction. Thus all the k isolated vertices of < D > must be in the set { vq,v,, ...v, }. Suppose v; is not
isolated in < D > then v; and u; must be in < D >(Note that there are n-k number of such v;’s). Thus |D| >2(n-

k) +k+ 1= 2n—k+1andthusyk,o(5)2 2n—k+1.Since {vy, Vo, ... , vk JU{ugt U{vj, ui:k+1<i<n}isa
KIDS with 2n — k + 1 elements, we have y,o(G) <2n—k + 1 and thus Vk,o(é) =2n - k+1.
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