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Abstract

Let G=(V,E)be a simple graph. Let HD(G,j) be the family of hub dominating sets in G with cardinality j. Then,
the polynomial,

HD(G,x)=)._(7=hd(G)NV(G)[. [hd(G.)x"j ]

is called the hub domination polynomial of G where hd(G,j) is the number of hub dominating sets of G of
cardinality j and hd(G) is the hub domination number of G . Let L_(n,1) denotes the Lollipop graph with n+1
vertices and HD(L_(n,1),j) denotes the family of hub dominating sets of L_(n,1)with cardinality j. Then, the
polynomial,

HD(L_(n,1),x)=}._(=hd(L_(n,1) )"V(L_(n,1)) [ [hd(L_(n,1).j) X" ]

is called the hub domination polynomial of L_(n,1)where hd(L_(n,1),j) is the number of hub dominating sets of
L_(n,1)of cardinality j and hd(L_(n,1) )is hub domination number of L_(n,1).In this paper, we obtain a
recursive formula for hd(L_(n,1),j). Using this recursive formula, we construct the hub domination polynomial
ofL_(n,1) as,

HD(L (n,1),x)=Y, =) n+

hd(L_(n,1).)xj ]

where hd(L_(n,1),j) is the number of hub dominating sets of L_(n,1)of cardinality j and some of the properties
of this polynomial also have been studied.
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1. Introduction

Let G = (V,E) be a simple graph. The number of vertices in G is called the order of G and the number of edges
in G is called the size of G. A graph G is called a complete graph if any

two distinct vertices of G are adjacent. A path graph is a tree with two nodes of vertex degreel and the other
nodes of vertex degree 2. Let K,, denotes the complete graph with n vertices and B,, denotes the path graph with
m vertices.

The Lollipop graph L, ,, is the graph obtained by joining a complete graph K,, to a path graph B, with a bridge
and it is denoted by L, ,,.A set D €V is a dominating set of G if N[D] =V or equivalently, every vertex in

V — D is adjacent to atleast one vertex in D. The domination number of a graph G is defined as the minimum
cardinality taken over all the dominating sets D of vertices in G and is denoted by y(G).
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In the next section, we construct the families of hub dominating sets of L, ; by recursive method. In section Ill,
we study about the hub domination polynomials of the complete bipartite graph L, ; using the results which we
obtained in section I1.

For n to j combination, we use (;‘) as usual. In addition, we denote the set {1,2, ... ....n}by [n].

vpath of length two in same direction. Orient the left out u — v path in opposite direction. It is strongly
connected and is called a Diglobe. It is denoted as GI(n).

li. Hub Dominating Sets of the Lollipop Graph L, ;

The hub domination number for the Lollipop graph L, ;and a few of the properties of the hub dominating sets of
L, 1 are discussed in this section.

Definition 2.1: The Lollipop graph L, ; is the graph obtained by joining a complete graph on n vertices and a
path graph on 1 vertex with a bridge.

Definition 2.2: Let G be a simple graph of order n with no isolated vertices. A set D € V is said to be a
hub dominating set if every vertex in V — D is adjacent to atleast one vertex in D and every pair of vertices
inV — D has a path in G such that all the internal vertices of the path are in D.

Definition 2.3:The hub dominaton number of a graph G is defined as the minimum cardinality taken over all
the hub dominating sets D of vertices in G and is denoted by A4 (G).

Lemma 2.4: Foralln € Z*, (7) =0ifj>norj<0.

Theorem 2.5: Let L, ; be the Lollipop graph with n + 1 vertices.

(1)) o=
Thenhd(Ln,1J)= (n+1)_(n—1) if2<j<n+1
j j ==

Proof: Let L, ; be the Lollipop graph with n + 1 vertices and n = 4. Let vy, v, v3 ... v, v,41 be the vertices of
L1, where v, is the vertex of degree n and v, is the vertex of degree n + 1.Since L, contains n + 1

vertices, the number of subsets of L, ; with cardinality j is (n j 1). Each time (n J_ 1) number of subsets of

. - N . 1 -1
L, , with cardinality jare not hub dominating sets. Hence, L, ; contains (n-; ) - <n j ) number of subsets

of hub dominating sets with cardinality j. When the cardinality is 1, {v,,} is the only hub dominating sets.

(n;—l)_(;l) whenj =1

(”;Tl)—(l]_.l) if2<j<n+1

Therefore, hd(L,1j) =

Theorem 2.6: Let L, ; be the Lollipop graph with n + 1 vertices. Then,

() hd(Lnq,j)=1ifj=1

(i) hd(Lpy,j) =hd(Ly_11,j) + hd(Ly_11,j— 1)+ 1ifj =2
(iit) hd(Ly1,j) = hd(Ly_11,j) + hd(L,_11,j —1)if3<j<n+1
Proof:

M When j = 1, by Theorem 2.5
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hd(Lys,1) = (n: 1) (1)

=n+1-—n
hd(L,1,1) = 1whenj = 1.
(i) When j = 2, by Theorem 2.5
_ (n+1 n—1
we havehd(L,;,2) = ("} )_( 2 )
n -2
h(tn102) = (5) - ("3 %)
n n—1
andhd(L,-1,,1) = (1) = ( 1 )

Consider, hd(Ly;,2) = ("}1) - (n 5 1)

2
_(m+Dn (n-1D(n-2)
n+n n?-3n+2
4n — 2
)

hd(Ly1,2) =2n—1

Consider hd(Ly1,1,2) + hd(Ly1,1) = (1) = ("5 5)+ () - ("7 ")

_n(n—l)_(n—z)(n_3)

- > +n-mn-1)
n>—n n>-5n+6
-—- > +1
_4An—-6+2

2
=2n-2
=2n—1-1

hd(Ly_11,2) + hd(Ly_11,1) = hd(L,1,2) — 1

Therefore, hd(L,1,2) = hd(L,_11,2) + hd(L,_11,1) + 1

Hence hd(Ln1,j) = hd(Ly_11,j) +hd(Ly_11,j—1)+1 if j=2
(iili) By Theorem 2.5, we have,

hd(Ly,j) = (" ;“ 1) ~(j)oraz<j<n+1

hd(Ln—1,1'j) = (;l) - (n ]_ 1)
hd(Ln-11, = 1) = ( Z0)- (?:11)

Consider, hd(Ly_11,j) + hd(Ly_11,j — 1) = (7]1) - (n ]_ 1) +

(20)-(1)
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n n n—1 n—1
Z[(j)+(j—1)]‘[( j )+<j—1)]
n+1 n
N ( j ) N (1‘ )
Therefore, hd(Ly—11,j) + hd(Ly_11,j — 1) = hd(Lp1)
Hence hd(Ly1,j) = hd(Ly_11,j) + hd(Ly_11,j—1)if 3<j<n+1

11 Hub Domination Polynomials of the Lollipop GraphL,, ;

Definition 3.1: Let L, ; denotes the Lollipop graph with n + 1 vertices and HD(L,, ;, j)denotes the family of
hub dominating sets of L, ;with cardinality j. Then, the polynomial,
|V(Ln.1)|
HD(Ly4,x) = Z hd(Ly,1,j)x’
j=hd(Ln1)
is called the hub domination polynomial of L, ;where hd(L, 1,j) is the number of hub dominating sets of L,, ;
of cardinality j and £d (L, ,)is the hub domination number of L, ;.

Remark 3.2: Ad(L, ;) = 1.

Proof:Let L, be the Lollipop graph with n+1 vertices andn > 4. Label the vertices of L,; by
V1, Vp, V3, e, Up, Uppp WhHere vy, v, v3 ..., v, are the vertices of degree n — 1, v, is a vertex of degree n and
V41 IS @ vertex of degree 1. There is a path between any two vertices of vy, v,,v3 ..., v, because they are
adjacent to one another.In addition, the path between the vertices of {vl, Vo, V3, e, Un—1} and v, 44 USes v, as its
internal vertex.. Hence {v, } is a hub dominating set of cardinality 1.

Hence, Ad(L, ) = 1.

Theorem 3.3: LetL,, ; be the Lollipop graph with n + 1 vertices. Then, the connected hub polynomial of L, ; is
HD(Ly1,x) = (1 + x)HD(L,_1 4, x) + x? with initial value

HD (L3 x) = x + 5x% + 4x% + x*.

Proof: We have, HD(Ly1x) = X741 hd(Ly1,j)x

n+1

HD (L %) = hd(Ly s ) + hd(Ly; 2)x° + ) hd (L )00
=3

= hd(Ly1,1)x + [hd(Ly_11,2) + hd(Ly_11,1) + 1]x% +

n+1
E[hd(l'n—l,llj) + hd(l’n—l,l!j - 1)]X]
j=3
n+1
= hd(Ln,l,l)x +x% + Z[hd(l‘n—l,l'j) + hd(l‘n—ljl'j - 1)]xj
=2
n+1
- Z[hd(Ln—Ll:j) + hd(Lp—11,j — 1)]x/ +x?
j=1
n+1 n+1

= Z hd(Ln_ll]_,j)xj + Z hd(Ln—l,l,j - 1)XJ + x2
j=1 j=1
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n+1 n+1

- Z hd(Ly1,1, /)% + xz hd(Ly_11j — 1)x/ ™" + x?
j=1 j=1

= HD(Ly_11, x) + xHD(Ly_14, x) + x?

=1 +x)HD(L,_14, x) + x?

Hence, HD(L,1,x) = (1 + x)HD(L,_1 4, x) + x? with initial value
HD(Lspx) = x + 5x2 + 4x3 + x*.

Example 3.4

Consider the Lollipop graph Ls; with order 6 given in Figure 1.

Figure 1

HD(Lypx) = x + 7x%+9x° + 5x* + x5
By Theorem 3.3, we have,
HD(Lsyx) = (1 + x)HD(Lyq, x) + x?
=14+ x)(x+7x%4+9x3 +5x* +x5) + x2

=x+9x% 4+ 16x3 + 14x* + 6x° + x©

Theorem 3.5: Let L, ; be the Lollipop graph with n = 3.Then

n+1\ ; n—1\
HD(Ly,x) = ¥4 < i )xl -4 < i )xl —x.
Proof:Proof follows from Theorem 2.5, Theorem 2.6 and the definition of Hub Domination Polynomial.

For3< n< 10and1 < j < 15, we obtain hd(L, ,j) as shown in Table 1.

HD(Ly4,j), Hub Dominating Sets of L, ; with cardinality j.
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L, |17 [9 [5 1

Ly, [1]9 [16 [14 |6 1

Le, |1 1125 [30 [20 |7 1

L;; |1 13|36 |5 |50 27 8 1

Lgy |1 |15 149 |91 |105 |77 35 9 1

Loy |1 |17 |64 | 140 | 196 | 182 | 112 | 44 10 1

Lips |1 |19 |81 |204 |336 |378 |294 | 156 |54 11 1

Li17 |1 |21 | 100 | 285 | 540 | 714 | 672 | 450 | 210 65 12 1

L7 |1 |23 | 121 | 385 | 825 | 1254 | 1386 | 1122 | 660 275 77 13 |1

Liz; |1 |25 | 144 | 506 | 1210 | 2079 | 2640 | 2508 | 1782 | 935 352 90 |14 |1

Ligq |1 | 27 | 169 | 650 | 1716 | 3289 | 4719 | 5148 | 4290 | 2717 | 1287 |442 | 104 |15 |1

Table 1
In the following Theorem we obtain some properties of HD(L,, 1, ).
Theorem 3.6: The following properties hold for the coefficients of HD(L,, ;,j) for all n.
(i) hd(L,1,1) = 1, for every n > 3.
(ii) hd(L,1,2) =2n— 1 foreveryn > 3.
(iiiy  hd(L,y,n+1)=1,foreveryn > 3.
(iv) hd(L,1,m) =n+ 1, foreveryn > 3.

(v) hd(L,,n—1) =~ [n?+n — 2], for every n > 3.

1
2
1

(vi)  hd(Lny,n—2)=[n®~7n+6], foreveryn > 4.

(Vi) hd(Lyy,n—3) =5-[n*—2n* — 13n? + 38n — 24], for every n > 5.

Proof:

M Since there is only one hub dominating set of cardinality one we have the result.
(i)  Toprove hd(L,4,2) = 2n — 1, for every n > 3,

we apply induction on n.

Whenn = 3,

L.H.S =hd(Ls4,2) = 5 (from the Table 1)

RHS=6-1=5

The result holds true forn = 3.

Now, suppose that the result is true for all numbers less than n and we prove it for n.

hd(Ly1,2) = hd(Ly_11,2) + hd(L,_11,1) + 1
=2[n—1]-14+1+1

=2n-2+1
hd(L,1,2) =2n—1
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Hence, the result is true for all n.

(iii)  since, HD(L,1,n + 1) = [n + 1], we have the result.
(iv)Since,HD(L, 1,n) = {[n + 1] — x/x € [n + 1]}, we have the resul.
(v) To prove 4d(L,,n—1) = % [n? +n — 2], foreveryn > 3,

we apply induction on n.

When n = 3,

LH.S=/%d(Ls;,2) =5 (from the Table 1)

RHS=2(32+3-2)=5

The result holds true forn = 3.

Now, suppose that the result is true for all numbers less than n and we prove it for n.
Ad(Ly,mn—1)=/d(Ly_1,n—1)+ £d(Ly,_11,n —2)

=n+%[(n—1)2+(n—1)—2]

1
=2n+§(n2—2n+1+n—1—2)

1
=§(2n+n2—n+2)

fd(Lyy,m—1) = %(n2 +n—2)

Hence, the result is true for all n.
(vi)  Toprove 2d(L,,,n—2) = % [n® — 7n + 6], for every n > 4,
we apply induction on n.
When n = 4,
LH.S=/%d(Ly,,2) = 7 (from the Table 1)
RH.S=2(4® - 28 +6) =7
The result holds true for n = 4.
Consider the case when we prove the conclusion for n and it holds true for all numbers less than n.
fd(Ly,mn—2)=/d(Ly_113,n—2)+ 2d(L,_11,m —3)

=%[(n—1)2 +(n—-1)-2] +%[(n— 1)3—-7(n—1) + 6]

1
[n? —n-—2] +g[n3—3n2—4n+12]

N =

1
/d(Lyy,m—2) = g’ —7n+6]
Hence, the result is true for all n.
(vii)  Toprove 2d(L,,,n—3) = % [n*—2n% — 13n? + 38n — 24], forevery n > 5,

we apply induction on n.

Whenn =5,
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LH.S=/%d(Ls;,1) = 9 (from the Table 1)

R.H.S :%(625 —250—325+190—24) =9

The result holds true forn = 5.

Consider the case when we prove the conclusion for n and it holds true for all numbers less than n.

hd(L,1,n—=3)=2d(L, 10,7 —3)+2d(L, 11,7 —4)

= % [(7—1)%=7(z —1) + 6] +2—14[(n —1)4=2(z —1)°—13(7 — 1)+ 38(2 —1) — 24]

1 1
= c[n®—3n? —dn +12] + 50" -6" - n’ +54n —12]

1
(L =3) = o[n=2n = 137" + 387 — 24]

Hence, the result is true for all 72

2.

Conclusion

This work deduces the hub domination polynomials of the Lollipop graph £, by finding its hub dominating
sets. We can also use cardinality / to characterise the hub dominating sets.

Any Lollipop graph £ ,, ,,can be used as a generalisation of this study, and several intriguing properties can be
discovered.
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