
Some Theorems On Pyramidal, Prism, Pronic And Gnomonic Numbers

[1] R. RAMACHANDRAN, [2] P. SHANMUGANANDHAM

[1] Research scholar, Department of Mathematics, National College, (Affiliated to Bharathidasan university), Tiruchirappalli.

[2] Associate professor, Department of Mathematics, National College, (Affiliated to Bharathidasan university), Tiruchirappalli.

E- mail: .[1]rmrmoon@gmail.com, [2]thamaraishanmugam@yahoo.co.in

Abstract: In this paper, we inspect and acquire the correlations among the Pyramidal, prism, Pronic and Gnomonic numbers.

Mathematics subject Clasification:11B39, 11Y55

Keywords: Pyramidal Number; Prism Number; Pronic Number; Gnomonic Numbers.

1. Introduction

"we make patterns, we share moments"-Jenny Oownham. Number patterns rules not only mathematics but also science[1-3]. In present days it rules the world. It spreads anywhere in the world. In such numbers we contemplate certain extra special numbers pyramidal, prism, pronic and gnomonic numbers[4-8]. The connections between the numbers are processed in the configuration of the postulates.

Notations:

 $(CPy)_{N_0}^s$ - Centered Pyramidal Number of rank s with side N_o

 $Py_{N_0}^s$ - Pyramidal Number of rank s with side N_0

 $(Pri)_t^s$ - Prism Number of rank s with side t

 $(Pro)_s$ - Pronic Number of rank s $(Gno)_s$ -Gnomonic Number of rank s

Theorem 1:

$$6(Py)_n^3 + (Pri)_3^n = 2(Pro)_n[(Gno)_n - 1] + (Gno)_n + 4$$

Proof

We know that the pyramidal and prism numbers are

$$6(Py)_n^3 = n^3 + 3n^2 + 2n$$

$$(Pri)_n^3 = 3n^3 - 3n^2 + 2n$$
(2)

From (1) and (2)

$$\Rightarrow 6(Py)_{n}^{3} + (Pri)_{3}^{n} = 4n^{3} + 4n$$

$$2(Pro)_{n} = 2n^{2} + 2n \qquad (3)$$

$$(Gno)_{n} = 2n - 1 \qquad (4)$$
From (3) and (4) $\Rightarrow 2(Pro)_{n}(Gno)_{n} = (4n^{3} + 2n^{2} - 2n)$

$$6(Py)_{n}^{3} + (Pri)_{3}^{n} = (4n^{3} + 2n^{2} - 2n) - 2n^{2} + 6n$$

$$= 2(Pro)_{n}(Gno)_{n} - 2n^{2} + 6n$$

$$= 2(Pro)_{n}[(Gno)_{n} - 1] + (8n - 4) + 4$$

$$6(Py)_{n}^{3} + (Pri)_{3}^{n} = 2(Pro)_{n}[(Gno)_{n} - 1] + (Gno)_{n} + 4$$

Theorem 2

$$18(Py)_n^3 - (Pri)_3^n = 12(Pro)_n - 4(Gno)_n - 4$$

Proof

From the pyramidal and prism numbers we have

$$18(Py)_n^3 = 3n^3 + 9n^2 + 6n$$

$$(Pri)_3^n = 3n^3 - 3n^2 + 2n$$
(6)

From (5) and (6)

$$\Rightarrow 18(Py)_n^3 - (Pri)_3^n = (12n^2 + 12n) - 8n$$

$$= 12(Pro)_n - (8n - 4) - 4$$

$$= 12(Pro)_n - 4(Gno)_n - 4$$

$$18(Py)_n^3 - (Pri)_3^n = 12(Pro)_n - 4(Gno)_n - 4$$

Theorem 3

$$(Pri)_{2}^{n} - 4(Py)_{n}^{5} + 4(Pro)_{n} = 3(Gno)_{n} + 3$$

Proof

From the pyramidal and prism numbers we have

$$(Pri)_2^n = 2n^3 - 2n^2 + 2n (7)$$

$$4(Py)_n^5 = 2n^3 + 2n^2 \tag{8}$$

From (7) and (8)

⇒
$$(Pri)^n = -(4n^2 + 4n) + 6n$$

= $-4(Py)_n^5$

Therefore,

$$(Pri)_2^n - 4(Py)_n^5 = -4(Pro)_n + (6n - 3) + 3$$

 $(Pri)_2^n - 4(Py)_n^5 + 4(Pro)_n = 3(Gno)_n + 3$

Theorem 4

Prove that
$$(Pri)_{1}^{n} + 4(Py)_{1}^{5} = 2(Pro)_{1} + [(Gno)_{1} - 1] + 3(Gno)_{1} + 3$$

Proof

From theorem 3 we have

$$(Pri)_{2}^{n} + 4(Py)_{n}^{5} = 4n^{3} + 2n$$

$$= (4n^{3} + 2n^{2}2n) - 2n^{2} + 4n$$

$$= 2(Pro)_{n}(Gno)_{n} - (2n^{2} + 2n) + 6n$$

$$(Pri)_{2}^{n} + 4(Py)_{n}^{5} = 2(Pro)_{n} + [(Gno)_{n} - 1] + 3(Gno)_{n} + 3$$

$$(9)$$

Theorem 5

$$(Pri)_4^n - 6(Py)_n^6 = 5(Gno)_n + 5$$

Proof

From the prism number,

$$(Pri)_4^n = 4n^3 - 4n^2 + 2n6(Py)_n^6$$

$$= 4n^3 + 3n^2 - n$$

$$= (Pri)_4^n - 6(Py)_n^6$$

$$= -(7n^2 + 7n) + 10n$$

$$= -7(Pro)_n + 5(Gno)_n + 5$$

Therefore,

$$(Pri)_4^n - 6(Py)_n^6 = 5(Gno)_n + 5$$

Theorem 6

$$120(Py)_n^4 - (Pri)_4^n = 100n^2$$
 is a square number

Proof

Let the prism number be

$$(Pri)_4^n = 4n^3 - 4n^2 + 2n6(Py)_n^4 12(Py)_n^4$$

$$= 4n^3 + 6n^2 + 2n$$

$$= 12(Py)_n^4 - (Pri)_4^n$$

$$= 10n^2$$

Therefore.

$$120(Py)_n^4 - (Pri)_4^n = 100n^2$$

= a square number.

Theorem 7

$$(Pri)_4^n + 6(Py)_n^4 = (Pro)_n[3(Gno)_n - 4] + 5(Gno)_n + 5$$

Proof

The result of prism and pyrmidal numbers are

$$(Pri)_4^n + 6(Py)_n^4 = 6n^3 - n^2 + 3n$$

$$= 3(Pro)_n(Gno)_n - (4n^2 + 4n) + 10n$$

$$(Pri)_4^n + 6(Py)_n^4 = (Pro)_n[3(Gno)_n - 4] + 5(Gno)_n + 5$$

Theorem 8

$$6(Py)_n^7 - (Pri)_5^n = 4n(Gno)_n$$

Proof

Let,

$$(Pri)_5^n = 5n^3 - 5n^2 + 2n(Py)_n^7$$

 $= 6(Py)_n^7 - (Pri)_5^n$
 $= 8n^2 - 4n$
 $6(Py)_n^7 - (Pri)_5^n = 4n(Gno)_n$

Theorem 9

$$(Pri)_5^n + 6(Py)_n^7 + 7(Pro)_n = (Gno)_n[5(Pro)_n + 6] + 6$$

Proof

From theorem 8 we have

$$(Pri)_{5}^{n} + 6(Py)_{n}^{7} = 10n^{3} - 2n^{2}$$

$$= 5(Pro)_{n}(Gno)_{n} - (7n^{2} + 7n) + 12n$$

$$= 5(Pro)_{n}(Gno)_{n} - 7(Pro)_{n} + 6(Gno)_{n} + 6$$

$$(Pri)_{5}^{n} + 6(Py)_{n}^{7} + 7(Pro)_{n} = (Gno)_{n}[5(Pro)_{n} + 6] + 6$$

Theorem 10

$$36(Pri)_n^2 + 144(Py)_n^8 = 216n^3 = (6n)^3$$
 is a cubic number

Proof

We know that

$$(Pri)_{2}^{n} = 2n^{3} - 2n^{2} + 2n2(Py)_{n}^{8}$$

$$= 4n^{3} + 2n^{2} - 2n$$

$$= (Pri)_{2}^{n} + 4(Py)_{n}^{8}$$

$$= 6n^{3}$$

Therfore,

$$36(Pri)_n^2 + 144(Py)_n^8 = 216n^3$$
$$= (6n)^3$$

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

= a cubic number.

Theorem 11

$$2(Py)_n^8 - (Pri)_2^n = 3(Pro)_n - 3(Gno)_n - 6$$

Proof

Let,

$$2(Py)_n^8 - (Pri)_2^n = 3n^2 - 3n + 2n$$

= $3(Pro)_n - (6n - 6) - 6$
 $2(Py)_n^8 - (Pri)_2^n = 3(Pro)_n - 3(Gno)_n - 6$

Theorem 12

$$2(Py)_n^8 - (Pri)_2^n = 3(Gno)_n^2 - 3$$

Proof

From theorem 11 we have

$$2(Py)_n^8 - (Pri)_2^n = 3n^2 - 3n$$

$$8(Py)_n^8 - 4(Pri)_2^n = 12n^2 - 12n$$

$$= 3(Gno)_n^2 - 3$$

$$2(Py)_n^8 - (Pri)_2^n = 3(Gno)_n^2 - 3$$

Theorem 13

$$(Pri)_{7}^{n} - 6(Py)_{n}^{9} + 5n[5(Gno)_{n} - 1] = 0$$

Proof

From equation (1),

$$(Pri)_{7}^{n} = 7n^{3} - 7n^{2} + 2n6(Py)_{n}^{9}$$

$$(Pri)_{7}^{n} - 6(Py)_{n}^{9} = -10n^{2} + 6n$$

$$= -5n(Gno)_{n} + n$$

$$(Pri)_{7}^{n} - 6(Py)_{n}^{9} + 5n[5(Gno)_{n} - 1] = 0$$

Theorem 14

$$2(Pri)_{7}^{n} + 6(Py)_{n}^{9} = 21n(Pro)_{n} - 8(Gno)_{n}^{2} - 16(Gno)_{n} - 8$$

Proof

From equation (2),

$$\begin{aligned} 2(Pri)_{7}^{n} &= 14n^{3} - 14n^{2} + 4n6(Py)_{n}^{9} \\ 2(Pri)_{7}^{n} + 6(Py)_{n}^{9} &= 21n^{3} - 11n^{2} \\ &= 21n(Pro)_{n} - 32n^{2} \\ &= 21n(Pr0)^{n} - 8(Gno)_{n}^{2} - 16(Gno)_{n} - 8 \\ 2(Pri)_{7}^{n} + 6(Py)_{n}^{9} &= 21n(Pro)_{n} - 8(Gno)_{n}^{2} - 16(Gno)_{n} - 8 \end{aligned}$$

Theorem 15

$$6(Py)_n^{10} - (Pri)_n^n = 11(Pro)_n - 9(Gno)_n - 9$$

Proof

We know that the prism number

$$(Pri)_{8}^{n} = 8n^{3} - 8n^{2} + 2n6(Py)_{n}^{10}$$

$$6(Py)_{n}^{10} - (Pri)_{8}^{n} = 11n^{2} - 7n$$

$$= 11(Pr0)^{n} - 9(Gno)_{n} - 9$$

$$6(Py)_{n}^{10} - (Pri)_{8}^{n} = 11(Pro)_{n} - 9(Gno)_{n} - 9$$

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

Theorem 16

$$(Pri)_8^n + 6(Py)_n^{10} = (Pro)_n[8(Gno)_n - 13] + 9[(Gno)_n + 1]$$

Proof

From the Theorem 15

$$(Pri)_{8}^{n} + 6(Py)_{n}^{10} = 16n^{3} - 5n^{2} - 3n$$

$$= 8(Pro)_{n}(Gno)_{n} - (13n^{2} + 13n) + 18n$$

$$(Pri)_{8}^{n} + 6(Py)_{n}^{10} = (Pro)_{n}[8(Gno)_{n} - 13] + 9[(Gno)_{n} + 1]$$

2. Conclusion

The above discussed numbers are immensely absorbing that are around the world. We considered a adequate number of engaging outcomes on Pyramidal, Prism, Pronic and Gnomonic numbers. We firmly accept that, this work will be a agreeable motivation for more deeper exploration into such numbers.

References

- [1] Kenneth Ireland and Michael rosel "A Classical Introduction to Modern Number theory", 2nd edition.
- [2] Thomas P. Denze and Joseph B. Dence, "Elements of the theory of numbers"
- [3] Niven, Zuckevman and Montgomery, "The Theory of numbers", 5th Edition, Willey Publication.
- [4] Gopalan M.A., Manju somanath and Geetha K "Observations on Icosagonal Number", International Journal of Computational Engineering Research, Vol.3(5).
- [5] Zvonko Cerin "Sum of Squares and Products of Jacobsthal Numbers", Journal of Integer Sequences, Vol.10, (2007).
- [6] Zvonko Cerin "Formulae for Sums of Jacobsthal-Lucas Numbers", International Mathematical Forum, Vol.40(2), (2007).
- [7] Ganam A. and Anitha B "Sums of Squares of Polygonal Numbers", Advances in pure Mathematics, Vol.6, 2016, 297-301.
- [8] Amelia Carolina Sparavigna, "On the Generalized Sums of Mersenne, Fermat, Cullen, and Woodall Numbers", DOI: 10.5281/zenodo.2634312.