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Abstract: This paper employs a multi-objective optimization technique to concurrently partition data into
multiple overlapping subspace clusters. Simultaneously, the data grouping and the identification of relevant
subspace feature sets corresponding to these groups are performed. The study utilizes validity indices, including
the ICC-index, PSM-index, and a novel MNR-index, where the latter optimizes the overlapping of objects into
distinct clusters. Furthermore, existing mutation operators such as large deletions, large duplications, and large
translocations are adapted to enhance the exploration of the search space effectively. The proposed method is
tested on ten standard real-life datasets and sixteen synthetic datasets to identify diverse overlapping subspace
clusters. Comparative analyses with existing methods highlight the advantages of incorporating multiple
objectives and the newly defined objective function, demonstrating superior performance in the majority of
cases. Additionally, the paper illustrates the application of this method in the bi-clustering of gene expression
profile data, showcasing its versatility and efficacy across different domains.
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1 Introduction

Subspace clustering methods aim to categorize a dataset into sets of objects that may overlap or remain
distinct. However, when dealing with many features representing each object, it is common to encounter irrelevant
or redundant features. To tackle this problem, the suggested method picks unique sets of features for different
groups of objects. In subspace clustering, an object can be associated with multiple sets of features, so it's not
uncommon for an object to be part of more than one cluster. To address this challenge, an overlapping subspace
clustering technique is introduced, allowing objects to be part of multiple clusters.

In unsupervised ML, the idea of optimization [1] is commonly used to solve various real-world issues.
The suggested method follows the MOO framework and uses evolutionary techniques to create overlapping
clusters in subspaces. To achieve high-quality subspace clusters, optimization is essential, focusing on both cluster
compactness and the selection of subspace feature sets. Furthermore, to create overlapping clusters, optimization
is necessary to manage the overlapping of objects [7]. The objective function is designed to limit object overlaps
and ensure that only those objects relevant to multiple subspace feature sets are included in more than one cluster.

The developed method is an evolutionary approach where we create a genotype, also known as a genome,
made up of a set of tuples. Each tuple is denoted as = {14, 7,,... 7.} . In this representation, 'z;' signifies a
functional element, while '< h;, k;, x; >' signifies a non-functional one. In each tuple, hi signifies the quantity of
cluster, and fi denotes number of the feature selected. ki and fi are uniformly chosen from {1,2, ...5C,,,,} and
{1,2, ..., F} their respective SCp,q, limits, k: upper limit for the number of clusters. Again, x € Coord, with

Coord = {j X ?{;‘ﬁ | j € {—1000, ...,1000}},xmax is the highest associated with every feature in normalized

dataset.

A phenotype, denoted as P, includes a collection of fundamental points. The genotype, G?, is then
translated into a phenotype to establish the locations of core points or centers for subspace clusters. The clusters,
6;, created by considering the tuples in the genotype where i € {1, 2, .. ,K}.
The phenotype is shown as a matrix having a size of SCuax * , The clusters get reorganized by modifying the tuples
found in the G’ Just the practical tuples, V; &; = 1, contribute to updating a phenotype. Inefficient components
need to pause till they progress into practical through mutation operators. The components k; and f; of a tuple,
representing number of the cluster and number of the feature, and their matching location (k” row, f* column) in
the phenotype, are revised with the value x; from that tuple.
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The G? in eq. illustrates how the genotype maps to the phenotype. By a specific instant, with a
genome dimension of t = §, the largest amount of clusters, is set at is SCpax = 4, and the feature set comprises

F={f. 1 f3})-

7,70 2 1 X,
7,10 3 2 xj
73|11 1 3 «x, 6.0 0 "2;“"6

Ge =T4, 1 3 1 Xg P9 92 Xg X4 0
TS 1 2 2 x4 93 xs 0 x7
6|1 1 3 Xe 94 0 0 0
01 2 1 x
gl1 3 3 x

The tuples in the genome generate three clusters with centers 01, 62 & 03, along with the associated
subspace features: F1, F2 and F3. In this approach, the initial genome size is set at 100, with one-third of them
being non-functional.

The exploration of the search space involves the application of mutation operators to existing genomes,
generating novel genomes. The choice of the most promising genomes for the next steps relies on their objective
values, expressed as validity indices.
In this scenario, a novel weight index called the MNR is introduced to measure how much overlap exists among
multiple subspace clusters. This is accompanied by further weight indices like the ICC and PSM, each evaluating
various aspects of subspace cluster quality. All discussed objectives are simultaneously improved through a multi-
objective optimization (MOO) framework. The algorithm we created underwent thorough testing, using seven
real-world datasets and sixteen synthetic datasets. We assessed the effectiveness of MOO technique by comparing
it to SOO. The evaluation of our method on two categorical datasets and three large datasets demonstrated that

our approach is not only competitive but often outperforms state-of-the-art methods.

I1. Proposed Methodology
In this section, we have explored various mutation operators employed to traverse the exploring space
and objective functions utilized to optimize the resultant clusters.

(a) Mutation Operators

This method includes 2 mutation operators: large-scale reorganization and replacement. The mutation
operator of large-scale reorganization involves extensive removal, extensive replication, and extensive
displacement. The mutation operators applied to a genome T are as follows:

(b) Point Substitution
Point mutation specifically targets an individual tuple which changes an section inside particular tuple.
Mutation operator of substitution uniformly chooses a tuple ti € T and swaps the n element.
< p({0,1}),b,c,d >, for =1
e <ap{12,..5C ), c,d >, forn =2
L <ab,p({1,2..,F},d> forn=3
<a,b,c,p({Coord}),>, forn =4

The p operator equally picks a component from the scale of respective tuple and substitutes it.

(c) Merge Operator M
For instance, dual tuples represented as 7; =< a, b, ¢,d > andt; =< a’,b’,c’,d’ > andanumberm €

{1,2,3,4} is selected consistently. The M can be illustrated as.

<ab',c,d > forn=1

M(T- . m)= <ab,c,d > forn=2
v <a,b,cd > forn=3
<a,b,c,d> forn=4%
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Rearrangement operators influence the size of the genome, leading to either an increase or decrease.
These breakpoints within a tuple are reassembled to create new tuples. There are 3 types of operators for this
enhancement:

Extensive removal, extensive replication, and extensive displacement involve selecting 2 integers, i and
J, evenly inside extent of the genome size. Once again, a discontinuity factor is evenly selected to determine where
the change bound is set surrounded by the adjoining tuples. The 3 types of reorganization operators are described
as:

(d) Extensive removal
If i less than or equal to j, the portion between the tuples t; and 1; is deleted. If j is less than i, the deletion
is carried out with consideration for the circular nature of the genome.
T e {Tl,i—l +M(Ti,Tj,n) +Tj+1,t, fOTi S]}
Tivri-1 + M(7i,75,m), fori> j

(e) Extensive replication
Ifi1<j, the portion among tuples ti and 7j is replicated from the primary tuple T and included at a casually

selected 3™ position, p. If j<i, the portion is reproduced, respecting the circular nature of the genome.

TI,p—l + M(Tp, T n) + Ti+1.j—1 +

. M(t;,1p,n) + Tpiny, fori<j
- _
Tip-1+ M(Tp.l'j, Tl) + T +Tyjq +
M(t;,1p,m) + Tpyy fori>j

(f) Extensive Displacement

The portion among tuples ti and 7j is removed after the prime tuple T and placed at a casually selected
third position, p. For cases where i is less than or equal to j, p 6€ [i, j] if j >=i and p 6€ [1,j] U [i, t] if j < i.
After applying these relocation operatives, the step replacement factor is then employed to the revised genome.
The quantity of point substitutions to implement is established through the utilization of the binomial distribution,
B (M, t"), in which t' is order of the genome after relocations and 1 is the rate of mutation. Still, to prevent order
of the genome from becoming zero, the limits of i to j restricted to 1/ 3 ™ of the order. The mutation rate 7 is set
at 0.005.

IIL. Objective Functions

Objective functions serve the purpose of minimizing or maximizing certain criteria, and they can also be
formulated as validity indices. Consequently, during each step, validity indices are progressively optimized,
leading to an optimal solution. The method employs non-conquered ordering and crowding distance, to arrange
the results depending on real values and select the best solutions.

The objective values for the subspace are computed once the dataset X is divided into K subspace
clusters. Each subspace cluster, denoted as Ci, is characterized by a subspace feature set Fi, where i ranges from
1 to K. The validity indices considered in this approach consist of the ICC index, the PSM index and a newly
introduced MNR index. The MNR is defined to address the overlap of objects in overlapping subspace clustering.

In overlapping subspace clustering, this objective function aims to reduce substantial object overlap by
curtailing the count of overlying points [2]. If p; and p; represent the membership degrees of objects i and j

correspondingly, the MNR can be described as follows:
K-1 K

0 1
MNR(X, P?) =ﬁz Z | Nl Vg =1 (4.1)
203 j=im
The term KC2 represents the grouping of 2 clusters selected from K clusters, and | . | denotes the size of the set.
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IV. Production of Overlapping Subspace Clusters

The PY includes clusters along with their respective subspace. The main goal is to allocate every single
thing to one or more clusters, as the proposed method permits object overlap, allowing a particular object to be
portion of many clusters.

This assignment process is denoted by a membership matrix, pu, where the size is equal to (clusters,
objects). The values within p are either '0' or '1', indicating whether the i-th object is present ('1') or absent ('0") in
the kth cluster. In this methodology, every objective is allocated to a minimum of one cluster. If a specific line
has multiple '1's, it means the object belongs to multiple clusters. The suggested process utilizes a distance-based
approximate to assign objects to clusters, calculating the distance between any two points according to Equation
4.1.

Usually, an object is allocated along a specific cluster depending on lowest gap amongst them. However,
the proposed method introduces a degree of flexibility by allowing an object to be assigned to clusters within 10%
of the minimum distance. Therefore, the technique designates an object to clusters that meet the following
condition:

1 if d(x,0,) <1.1%th =mind(x,6,)

=< VbR 4.2
H 0, oherwise (4.2)

The suggested method transfers an object to every cluster within 1.5 times of the minimum distance
which enables objects associated with several clusters that have practically equal distances. Additionally,
experimental observations indicate that the average cluster compactness remains largely consistent, whether the
10% flexibility is applied. Moreover, introducing a 10% flexibility results in a minor quantity of objects being
allocated to more groups, particularly those located at nearly equal distances.

V. Data Sets and Implementation Details

The presented algorithm underwent evaluation with 30 actual and synthetic datasets, results were
matched to various existing algorithms using different evaluation metrics. The parameter settings applied are
consistent with those outlined, except for the number of iterations, which is set to [=400. Furthermore, the mutation
rate nr is established at 0.005, and the initial genome size is set at 100 for real datasets and 200 for synthetic
datasets.

VI. Results and Analysis
Here, showcased and analyzed the outcomes achieved by implementing the recommended method on
various real and synthetic datasets to evaluate its performance.

(a) Actual Life Data Sets
The ranks of each procedure for different evaluation metrics were established using a method like the
one outlined. The least and highest scores from the 20 runs are presented in Table 1. The rankings of the various
algorithms are depicted in Fig. 1, leading to the following observations:
o The outcomes in Table 1 have statistical significance and are not merely the result of chance. Welch's
t-test [reference 9] was performed on different datasets for various evaluation metrics at a 5%
significance level, and all obtained p-values [reference 10] were less than 0.05, indicating statistical
significance.
e The proposed algorithm excels, securing the top position in metrics primarily designed to assess
subspace  clustering quality, namely CE and RNIA (Fig. I(c) and 1(d)).
Moreover, in terms of accuracy, the technique gives competitive results, securing the 2™ position (Fig.
1(b)).
However, the suggested approach holds the 6 position in the Entropy metric (Fig. 1(e)) due to the
clusters formed by an algorithm. A higher number of clusters often leads to a better entropy score.
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Table 1: the actual-life data sets

F-Measure Accuracy CE RNIA Entropy Coverage NumCluster AvgDim RunTime
Dataset Max Min | Max Min | Max Min | Max Min | Max Min | Max Min Max | Min Max Min | Max Min
Breast
Proposed 0.68 0.63 0.82 0.78 0.32 0.21 0.67 0.59 0.38 0.31 1 1 20 15 12.04 8.38 6326 6017
CHAMEL 0.60 0.51 0.76 0.76 0.23 0.11 0.53 0.25 0.25 0.22 1.0 1.0 8 16.75 5.75 339 131
EOCLUST
CLIQUE 0.67 0.67 0.71 0.71 0.02 0.02 0.40 0.40 0.26 0.26 1.0 1.0 107 107 1.7 453 453
DOC 0.73 0.61 0.81 0.76 0.11 0.04 0.84 0.07 0.46 0.27 1.0 0.8 60 [ 27.2 2.8 1.00E 3751
+06 5
FIRES 0.49 0.03 0.76 0.76 0.03 0.0 0.05 0.0 1.0 0.01 0.76 0.04 11 1 2.5 1 250 31
INSCY 0.74 0.55 0.77 0.76 0.02 0.0 0.24 0.11 0.60 0.39 0.97 0.74 2038 167 11 4.4 13437 6348
3 4
KYMERO 0.66 0.57 0.79 0.76 0.18 0.14 0.56 0.51 0.31 0.25 1.0 1.0 19 13 1236 9.26 8 7
CLUST
MINECLU | 0.78 0.69 0.78 0.76 0.19 0.18 1.0 1.0 0.56 0.37 1.0 1.0 64 32 33 33 40359 2043
S 7
P3C 0.63 0.63 0.77 0.77 0.04 0.04 0.19 0.19 0.36 0.36 0.85 0.85 28 28 6.9 6. 6281 6281
PROCLUS 0.57 0.52 0.80 0.74 0.51 0.11 0.65 0.43 0.32 0.23 0.89 0.69 9 2 24 18 703 141
SCHISM 0.67 0.67 0.75 0.69 0.01 0.01 0.36 0.34 0.35 0.34 1.0 0.99 248 197 2.3 22 15874 1146
9 09
STATPC 0.41 0.41 0.78 0.78 0.16 0.16 0.33 0.33 0.29 0.29 0.43 0.43 5 5 33 33 5187 4906
SUBCLU 0.68 0.51 0.77 0.67 0.02 0.01 0.54 0.04 0.27 0.24 1.0 0.82 357 5 2 1 5265 16
Dataset Max Min Max Min | Max Min | Max Min Max Min Max Min Max | Min Max Min Max Min
Diabetes
Proposed 0.74 0.67 0.77 0.72 0.39 0.28 0.8 0.71 0.29 0.23 1 1 15 10 5.1 4.13 2950 2723
CHAMEL 0.70 0.62 0.73 0.70 0.17 0.09 0.66 0.47 0.28 023 1.0 1.0 29 19 5 2.75 598 438
EOCLUST
CLIQUE 0.70 0.39 0. 0.69 0.03 0.01 0.14 0.01 0.23 0.13 1.0 1.0 349 202 4.2 11953 203
DOC 0.71 0.71 0.72 0.69 0.31 0.26 0.92 0.79 0.31 0.24 1.0 0.93 67 17 8 5 1.00E 5164
+06 0
FIRES 0.52 0.03 0.65 0.64 0.12 0.0 0.27 0.0 0.68 0.0 0.81 0.03 17 1 25 1 4234 360
INSCY 0.65 0.39 0.70 0.65 0.37 0.11 0.45 0.42 0.44 0.15 0.83 0.73 132 3 7 5.7 11209 3353
3 1
KYMERO | 0.69 0.64 0.73 0.70 021 0.08 0.55 0.40 0.25 0.21 1.0 1.0 16 13 3.69 2.87 3 3
CLUST
MINECLU | 0.72 0.66 0.71 0.69 0.63 0.13 0.89 0.58 0.29 0.17 0.99 0.96 39 6 5.2 3578 62
S
P3C 0.39 0.39 0.66 0.65 0.56 0.11 0.85 0.22 0.09 0.07 0.97 0.88 2 1 7 2 656 141
PROCLUS | 0.67 0.61 0.72 0.71 0.34 0.21 0.78 0.69 0.23 0.19 0.92 0.78 9 3 8 6 360 109
SCHISM 0.7 0.62 0.73 0.68 0.08 0.01 0.36 0.09 0.34 0.2 1.0 0.79 270 21 4.2 3.9 35468 250
STATPC 0.73 0.59 0.70 0.65 0.06 0.0 0.63 0.17 0.72 0.28 0.97 0.75 363 27 8 8 27749 4657
SUBCLU 0.74 0.45 0.71 0.68 0.01 0.01 0.01 0.01 0.14 0.11 1.0 1.0 1601 325 4.7 4 19012 5871
2 8
Dataset Max Min | Max Min | Max Min | Max Min | Max Min | Max Min Max | Min Max Min | Max Min
Glass
Proposed 0.57 0.5 0.65 0.58 0.33 0.26 0.79 0.72 0.52 0.48 1 1 13 7 4.83 3.21 2867 2215
CHAMEL 0.43 0.28 0.57 0.50 0.43 0.26 0.88 0.55 0.46 0.36 1.0 1.0 4 7.5 475 195 95
EOCLUST
CLIQUE 0.51 0.31 0.67 0.50 0.02 0.0 0.06 0.0 0.39 0.24 1.0 1.0 6169 175 54 3.1 41119 1375
5
DOC 0.74 0.50 0.63 0.50 0.23 0.13 0.93 0.33 0.72 0.50 0.93 0.91 64 11 9 33 23172 78
FIRES 0.30 0.30 0.49 0.49 0.21 0.21 0.45 0.45 0.40 0.40 0.86 0.86 7 7 2.7 2.7 78 78
INSCY 0.57 0.41 0.65 0.47 0.23 0.09 0.54 0.26 0.67 0.47 0.86 0.79 72 30 5.9 2.7 4703 578
KYMERO 0.65 0.51 0.71 0.60 0.32 0.24 0.85 0.76 0.65 0.55 1.0 1.0 23 19 6.74 5.7 18 16
CLUST
MINECLU | 0.76 0.40 0.52 0.50 0.24 0.19 0.78 0.45 0.72 0.46 1.0 0.87 64 6 7 4.3 907 15
S
P3C 0.28 0.23 0.47 0.39 0.14 0.13 0.3 0.27 0.43 0.38 0.89 0.81 3 2 3 3 32 31
PROCLUS | 0.60 0.56 0.60 0.57 0.13 0.05 0.51 0.17 0.76 0.68 0.79 0.57 29 26 8 2 375 250
SCHISM 0.46 0.39 0.63 0.47 0.11 0.04 0.33 0.20 0.44 0.38 1.0 0.79 158 30 3.9 2.1 313 31
STATPC 0.75 0.40 0.49 0.36 0.19 0.05 0.67 0.37 0.88 0.36 0.93 0.8 106 27 9 9 1265 390
SUBCLU 0.50 0.45 0.65 0.46 0.0 0.0 0.01 0.01 0.42 0.39 1.0 1.0 1648 831 4.9 4.3 14410 4250
Dataset Max Min | Max Min Max Min Max Min | Max Min | Max Min Max | Min Max Min | Max Min
Liver
Proposed 0.67 0.6 0.67 0.61 0.39 0.29 0.82 0.71 0.14 0.11 1 1 10 4 3.89 2.73 1551 1350
CHAMEL 0.65 0.59 0.68 0.62 0.20 0.10 0.53 0.41 0.14 0.07 1.0 1.0 27 22 2.48 1.85 202 158
EOCLUST
CLIQUE 0.68 0.65 0.67 0.58 0.08 0.02 0.38 0.03 0.10 0.02 1.0 1.0 1922 19 4.1 1.7 38281 15
DOC 0.67 0.64 0.68 0.58 0.11 0.07 0.51 0.35 0.18 0.11 0.99 0.9 45 13 3 1.9 62532 1625
4
FIRES 0.58 0.04 [ 0.58 0.56 | 0.14 0.0 0.39 0.0l [ 037 0.0 0.84 0.03 10 1 3 1 531 46
INSCY 0.66 0.66 0.62 0.61 0.03 0.03 0.42 0.39 0.21 0.20 0.85 0.81 166 130 2.1 2.1 407 234
KYMERO 0.65 0.56 0.67 0.60 021 0.09 0.56 0.43 0.12 0.04 1.0 1.0 17 11 2.82 2 2 2
CLUST
MINECLU | 0.73 0.63 0.65 0.58 0.09 0.09 0.68 0.48 0.33 0.16 0.99 0.92 64 32 4 3.7 49563 1954
S
P3C 0.36 0.35 0.58 0.58 0.55 0.27 0.96 0.47 0.02 0.01 0.98 0.94 2 1 6 3 172 32
PROCLUS | 0.53 0.39 0.63 0.63 0.26 0.11 0.66 0.25 0.05 0.05 0.83 0.46 6 2 5 3 78 31
SCHISM 0.69 0.69 0.68 0.59 0.04 0.03 0.45 0.26 0.10 0.08 0.99 0.99 90 68 2.7 2.1 3l 0
STATPC 0.69 0.57 0.65 0.58 0.23 0.01 0.58 0.37 0.63 0.05 0.77 0.71 159 4 6 3.3 1890 781
SUBCLU 0.68 0.68 0.64 0.58 0.11 0.02 0.68 0.05 0.07 0.02 1.0 1.0 334 64 3.4 1.3 1422 47
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Dataset Max Min Max Min Max Min Max Min Max Min Max Min Max | Min Max Min Max Min
Shape
Proposed 0.66 0.6 0.79 0.71 0.26 0.21 0.87 0.77 0.72 0.67 1 1 30 23 7.95 4.25 4803 4580
CHAMEL 0.75 0.63 0.80 0.71 0.54 0.49 0.78 0.71 0.77 0.67 1.0 1.0 14 10 12.4 10.7 462 252
EOCLUST 9
CLIQUE 0.31 0.31 0.76 0.76 0.01 0.01 0.07 0.07 0.66 0.66 1.0 1.0 486 486 33 33 235 235
DOC 0.90 0.83 0.79 0.54 0.56 0.38 0.90 0.82 0.93 0.86 1.0 Lo 52 29 13.8 12.8 2.00E 8650
+06 0
FIRES 0.36 0.36 0.51 0.44 0.20 0.13 0.25 0.20 0.88 0.82 0.45 0.39 10 5 7.6 5.3 63 47
INSCY 0.84 0.59 0.76 0.48 0.18 0.16 0.37 0.24 0.94 0.87 0.88 0.82 185 48 9.8 9.5 22578 1153
1
KYMERO 0.82 0.72 0.86 0.79 0.57 0.53 0.86 0.80 0.83 0.77 1.0 1.0 19 16 135 125 101 91
CLUST 6
MINECLU 0.94 0.86 0.79 0.60 0.58 0.46 1.0 1.0 0.93 0.82 1.0 1.0 64 32 17 17 46703 3266
S
P3C 0.51 0.51 0.61 0.61 0.14 0.14 0.17 0.17 0.8 0.8 0.66 0.66 9 9 4.1 4.1 140 140
PROCLUS 0.84 0.81 0.72 0.71 0.25 0.18 0.61 0.37 0.93 0.91 0.89 0.79 34 34 13 7 593 469
SCHISM 0.51 0.3 0.74 0.49 0.10 0.0 0.26 0.01 0.85 0.55 1.0 0.92 8835 920 6 3.9 71296 9031
4
STATPC 0.43 0.43 0.74 0.74 0.45 0.45 0.55 0.55 0.56 0.56 0.92 0.92 9 9 17 17 250 171
SUBCLU 0.36 0.29 0.70 0.64 0.0 0.0 0.05 0.04 0.89 0.88 1.0 1.0 3468 3337 4.5 4.1 4063 1891
Dataset Max Min Max Min Max Min Max Min Max Min Max Min Max | Min Max Min Max Min
Vowel
Proposed 0.39 0.33 0.44 0.38 0.18 0.14 0.87 0.75 0.33 0.27 1 1 32 22 6.66 3.86 11023 8487
CHAMEL 0.41 0.37 042 0.38 0.17 0.13 0.65 0.54 0.45 0.40 1.0 1.0 33 24 6 4.57 995 787
EOCLUST
CLIQUE 0.23 0.17 0.64 0.37 0.05 0.0 0.44 0.01 0.10 0.09 L0 1.0 3062 267 4.9 1.9 52323 1953
3
DOC 0.49 0.49 0.44 0.44 0.14 0.14 0.85 0.85 0.58 0.58 0.86 0.86 64 64 10 10 12001 1200
5 15
INSCY 0.82 0.33 0.61 0.15 0.09 0.07 0.75 0.26 0.94 0.21 0.90 0.81 163 74 9.5 43 75706 3939
0
FIRES 0.16 0.14 0.13 0.11 0.02 0.02 0.14 0.13 0.16 0.13 0.50 0.45 32 24 2.1 1.9 563 250
MINECLU 0.48 0.43 0.37 0.37 0.09 0.04 0.62 0.34 0.60 0.46 0.98 0.87 64 64 2 3.6 7734 5204
S
KYMERO 0.53 0.48 0.53 047 0.16 0.14 0.75 0.70 0.56 0.52 1.0 1.0 50 45 6.82 6.3 364 339
CLUST
P3C 0.08 0.05 0.17 0.16 0.12 0.08 0.69 0.43 0.13 0.12 0.98 0.95 3 2 7 4.7 1610 625
PROCLUS 0.49 0.49 0.44 0.44 0.11 0.11 0.53 0.53 0.65 0.65 0.67 0.67 64 64 8 8 766 766
SCHISM 0.37 0.23 0.62 0.52 0.05 0.01 0.43 0.11 0.29 0.21 1.0 0.93 494 121 4.3 2. 23031 391
STATPC 0.22 0.22 0.56 0.56 0.06 0.06 0.12 0.12 0.14 0.14 1.0 1.0 39 39 10 10 18485 1667
1
SUBCLU 0.24 0.18 0.58 0.38 0.04 0.01 0.39 0.04 0.30 0.13 L0 1.0 1088 709 3.6 2 26047 2250
1
MINECLUS 7 | * KYMERO 4 [ =
DOC - * Proposed - *
KYMERO - " IQUE - *
Pro&msed . * PROCLUS - "
PROCLUS A * CHAMELEQ - B
INSCY - * SCHISM "
SCHISM - * MINECLUS ~ *
CHAMELEQ - * DOC *
STATPC * STATPC - "
SUBCLU A " INSCY - *
CLIQUE ~ * SUBCLU ~ B
3C * P3C A *
FIRES - . FIRES »
T T T T T T T T T T T T T T T T T T T T
12345678 910111213 1234567 8 92910111213
(a) Ranks based on F-Measure (b)Ranks based on Accuracy
Proposed { | » Proposed { [+
CHAMELEO - . MINECLUS { | #
KYMERO - * KYMERQO A "
MINECLUS - . DOC .
PROCLUS - b CHAMELEO ~ *
DOC " PROCLUS - *
P3C A . P3C - .
STATPC A i STATPC *
INSCY * INSCY *
FIRES - i SCHISM + *
SCHISM A * FIRES - .
CLIQUE - * CLIQUE A *
SUBCLU - " SUBCLU 1 :
T T T T T T T T T T T T T T T T T T T T T T
12345678 910111213 12345678 910111213
(c) CE (d) RNIA
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Figure 1: Rankings of different clustering algorithms

In contrast, algorithms like INSCY, MINECLUS, and others excel when it comes to the entropy metric.

However, they struggle to effectively control the quantity of generated clusters, as depicted in Figure 1(g). These
algorithms often generate a significant number of clusters, resulting in a lower ranking compared to the proposed
approach. However, when considering F-Measure (Figure 1(a)), the proposed method may not claim the top spot
but still positions itself among the top-performing approaches.

(b) Synthetic Data Sets

A similar procedure is followed by solutions for 20 datasets to that of the real-life. Each dataset undergoes
10 runs, and the recorded highest and least scores are outlined in Table 2. The proposed technique draws

inspiration from the ChameleoClust process, our emphasis lies in directly comparing it with ChameleoClust across
various synthetic datasets, streamlining the analysis. Figure 2 visually presents the best metric values attained by
both approaches for these 20 datasets, along with their averages. These graphs specifically concentrate on key
metrics, with the metric score versus the average number of clusters obtained after 10 runs for each dataset (Fig.
2(a) to 2(e)). From these graphs, we can make the following observations:

e The proposed algorithm generates several clusters, typically between 10 and 15, closely aligning
with the quantity of clusters for datasets, which is 20. In contrast, ChameleoClust produces a broader
range of clusters, spanning from 9 to 16. P3C and KymereoClust are other approaches which create
clusters within the ranges of 6-16 and 9-14, respectively. The remaining algorithms produce even
larger numbers of clusters and are not included in the comparison.

e In terms of the main evaluation metrics, the proposed algorithm stands out in FM, CE, and RNIA.
Yet, ChameleoClust performs well in the accuracy metric. ChameleoClust also excels in terms of
entropy, possibly because it generates a larger number of clusters assessed to the presented technique.

(c) Results on Categorical and Big Data Sets

For evaluating the effectiveness while applying various objectives, conducted experiments on 2 definite
and 3 large datasets. We implemented and tested single and multi-objective optimization, which focuses merely
on the ICC of the proposed process. The datasets utilized were gathered from UCI [183]. Additionally, two
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categorical datasets, Soybean (with 50 occurrences and 40 size) and the Molecular dataset (with 1640 occurrences
and 72 size), were also considered.

Table 2: For the synthetic data sets

Dataset F-Measure Accuracy CE RNIA Entropy NumCluster AvgDim RunTime
Max Min Max Min Max | Min | Max Min | Max | Min | Max | Min Max Min Max Min
D05 0.61 0.35 0.75 0.52 0.51 033 | 0.7 0.54 | 0.75 | 0.55 12 10 2.78 1.86 2563 2476
D10 0.75 0.57 0.69 0.61 0.42 0.25 0.57 0.49 0.77 0.68 15 11 5.78 4.88 4631 4200
D15 0.69 0.52 0.74 0.59 0.49 0.34 0.65 0.56 0.73 0.67 16 12 10.89 6.76 5351 5298
D20 0.73 0.54 0.74 0.64 043 | 027 | 059 048 | 0.75 | 0.66 17 14 12.65 8.94 6949 6557
D25 0.74 0.57 0.78 0.62 0.52 | 039 | 0.68 0.55 | 0.8 0.73 16 13 16.84 10.88 7058 6969
D50 0.63 0.39 0.68 0.54 0.45 | 027 | 0.66 0.48 | 0.69 | 0.47 17 15 19.45 13.7 15181 | 13017
D75 0.68 0.23 0.67 0.49 0.39 0.25 0.66 0.44 0.52 0.38 17 10 353 9 24315 | 24315
N10 0.84 0.70 0.83 0.75 0.49 | 0.28 | 0.69 049 | 0.77 | 0.70 17 11 13.79 7.3 6428 6122
N30 0.77 0.62 0.73 0.64 036 | 0.26 | 0.54 039 | 0.74 | 0.64 16 13 13.2 8.4 7491 7436
Ns50 0.8 0.66 0.79 0.63 0.35 0.25 0.51 0.37 0.78 0.69 17 14 12.2 8.7 7333 7123
N70 0.76 0.46 0.61 0.49 0.33 0.22 0.48 0.28 0.73 0.58 16 11 13.15 6.1 7499 7119
S1500 0.82 0.69 0.83 0.78 0.45 0.35 0.69 0.56 0.85 0.74 16 13 13.78 10.28 6097 5869
$2500 0.83 0.68 0.84 0.74 0.48 | 033 | 0.59 0.49 | 0.84 | 0.72 16 14 12.45 9.85 7123 7110
S$3500 0.76 0.65 0.75 0.71 0.43 | 033 | 0.62 0.53 | 0.79 | 0.7 15 14 14.65 11.11 7421 6733
S4500 0.83 0.66 0.76 0.69 0.39 0.27 0.61 0.53 0.78 0.67 17 14 12.85 10.5 7372 7341
S$5500 0.78 0.65 0.82 0.71 0.45 | 031 0.63 0.52 | 0.78 | 0.71 16 15 13.24 8.76 6955 6927
a
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Figure 2: Comparison of Chameleo Clust (orange) and proposed (blue) method
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Table 3: categorical and big data sets concerning valuation metrics

Dataset F-Measure Accuracy CE RNIA Entropy

SO0 MOO SO0 MOO SO0 MOO | SOO MOO SOO | MOO
HTRU 0.72 0.81 0.95 0.97 0.11 0.33 0.58 0.39 0.74 0.77
Crowd Source 0.24 0.27 0.59 0.71 0.23 0.17 0.73 0.77 0.41 0.52
Magic 0.61 0.72 0.70 0.74 0.16 0.20 0.42 0.66 0.15 0.23
Soyabin 0.62 0.80 0.57 0.79 0.19 0.37 0.32 0.63 0.40 0.63
Molecular 0.53 0.66 0.58 0.70 0.17 0.33 0.78 0.94 0.11 0.24

The resemblance in 2 data points is determined by comparing respective characteristics. Table 3 shows
that utilizing multiple objectives (MOO) yields better outcomes than single-objective approaches. MOO allows
greater flexibility in selecting a solution.

(d) Comparison with Existing Overlapping Methods

Our proposed method is subjected to a comparative analysis against several existing overlapping
techniques, namely OKM, OKMED, and WOKM [4]. This comparison is performed on various datasets, including
Iris [4], Yeast [52], Scene [4], and Emotions [4]. Importantly, these existing methods necessitate the user to specify
the number of clusters beforehand, while our proposed method autonomously determines the number of clusters.

For the Yeast, Scene, and Emotions datasets, which are multi-label datasets, the existent amount of
clusters matches the sum of labels. To ensure a fair comparison, we modified our proposed method to generate a
few clusters that match the entire labels. We assess the results using precision, recall, and F-measure metrics, and
the findings are shown in Table 4. Values in bold indicate the best results obtained for a specific dataset in relation
to a particular metric. The results in Table 4 clearly show the implementation of proposed method is better than
other existing techniques.

Table 4: Results on real data sets considering the metrics

Precision Recall F-Measure

Iri S OKM | OKMED | WOKM | Proposed OKM | OKMED [ WOKM | Proposed OKM | OKMED | WOKM | Proposed
Emotions | 0.57 | 0.61 0.62 | 0.9176|0.98 | 0.88 0.98 |0.9210 | 0.72 | 0.71 0.76 109193
Scene 0.49 1 0.49 0.49 | 0.8351|0.65|0.53 0.65 |0.9759|0.56|0.50 0.56 | 0.8787

Yeast 0231024 021 |0.3623 094074 |0.59 |04419 036|036 |0.31 |0.3981

Furthermore, our explained method is subjected to a comparative assessment against other existing
algorithms, specifically OKM and KHM-OKM (K-harmonic means overlapping K-means) [5]. In order to ensure
an equitable evaluation, we employed the same real-world datasets that were utilized for testing the existing
methods, including Breast cancer Wisconsin (Original) [5], Indian liver patients [5], Iris, Heart disease (Statlog)
[5], Lung Cancer [5], and more. The evaluation is conducted using precision, recall, and F-measure metrics, with
the best-performing results highlighted in bold. The findings tabulated in Table 4.5 clearly indicate that our method
excels in generating high-quality clusters, as it consistently outperforms other algorithms in most cases.
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Table 5: real-life data sets

Datasets Precision Recall F-Measure
OKM | KHM-OKM | Proposed | OKM | KHM-OKM | Proposed | OKM | KHM-OKM | Proposed

Breast cancer

Wisconsin 0.8471 | 0.8471 0.9286 0.9846 | 0.9846 0.9677 0.9107 | 0.9107 0.9478
(Original)

Indian liver 0.5927 | 0.5927 0.6449 0.9229 | 0.9176 0.9998 0.7218 | 0.7180 0.784
patients

Iris 0.57 - 0.9176 0.98 - 0.9210 0.72 - 0.9193
Heart disease | 0.4957 | 0.4957 0.7626 0.7733 | 0.7733 0.7624 0.6041 | 0.6041 0.7625
(Statlog)

Lung Cancer | 0.4315 | 0.4645 0.7564 0.7365 | 0.6563 0.7194 0.5441 | 0.5439 0.7235

Furthermore, our proposed method is subjected to a comparative assessment against other existing
algorithms, specifically OKM and KHM-OKM (K-harmonic means overlapping K-means) [5]. To ensure an
equitable evaluation, we utilized the same real-world datasets that were employed for testing the existing methods,
including Breast Cancer Wisconsin (Original) [5], Indian Liver Patients [5], Iris, Heart Disease (Statlog) [5], Lung
Cancer [5], and more. The evaluation is conducted using precision, recall, and F-measure metrics, with the best-
performing results highlighted in bold. The findings presented in Table 5 conclusively demonstrate that our
proposed method consistently generates high-quality clusters, as it outperforms other algorithms in most cases.

(e) Proposed Method in Bi clustering with real life application

To show the practicality of our developed method, we selected two datasets: Human Large B Cell
Lymphoma [6] and Yeast [6].We rigorously tested our proposed method using a variety of evaluation metrics as
detailed in Section. The comparative outcomes shown in Table 6 (for the human dataset) and Table 7 (for the yeast
dataset). Notably, our proposed approach consistently outperforms existing methods in most cases, as indicated
by the highlighted values.

Table 6: Results for Human Large B Cell Lymphoma data set

Algorithm MSR RV BI-Index
Average Best(min) Average Best (Max) Average Best(min)
Proposed 285.63 12.21 1569.86 6223.36 0.162 0.127
SGAB 855.36 572.54 2222.19 5301.83 0.5208 0.3564 |
MOPSOB 927.47 745.25 4348.2 8745.65 0.213 0.09
MOGAB 801.37 569.23 2378.25 5377.51 0.4710 0.2283
OPSM 1249.73 43.07 6374.64 11854.63 0.2520 0.1024
RWB 1185.69 992.76 1698.99 3575.40 0.7227 0.3386
BiVisu 1680.23 1553.43 1913.24 2468.63 0.8814 0.6537
ISA 2006.83 245.28 4780.65 14682.47 0.6300 0.0853
Bimax 387.71 96.98 670.83 3204.35 0.7120 0.1402
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Table 7: Results of the proposed method on Yeast data set obtained by different algorithms.

Algorithm MSR RV BIl-Index
Average Best(min) Average Best (Max) Average Best(min)
Proposed 58.78 10.91 2419.61 5738.32 0.07 0.032
SGAB 198.88 138.75 638.23 3605.93 0.4026 0.2714
MOPSOB 218.54 200.58 789.85 1254.56 0.28 0.16
MOGAB 185.85 116.34 932.04 3823.46 0.3329 0.2123
OPSM 320.39 118.53 1083.24 3804.56 0.3962 0.0012
RWB 295.81 231.28 528.97 1044.37 0.5869 0.2788
BiVisu 290.59 240.96 390.73 775.41 0.7770 0.3940
ISA 281.59 125.76 409.29 1252.34 0.7812 0.1235
Bimax 32.16 5.73 39.53 80.42 0.4600 0.2104

VII. Chapter Summary

An overlapping subspace clustering approach based on multi-objective optimization is explained in this
chapter. We have devised a novel objective function, referred to as the MNR-index, to optimize the inclusion of
overlapping objects. Moreover, we improved the existing mutation operators to enhance our capability to discover
effectively and efficiently. We conducted experiments on numerous real and synthetic datasets and compared our
results with those from various established methods. This comparative analysis underscores the superior
performance of our method in most cases.

Additionally, we demonstrate the application of subspace clustering in bi-clustering gene expression
profile datasets. This chapter enables the clustering of objects with overlapping attributes, creating overlapping
subspace clusters within the framework of multi-objective optimization. Our analysis of the results obtained in
both this chapter and the previous one indicates that subspace clustering approaches are valuable for handling
high-dimensional data. However, in today's context, many application domains continuously generate features in
an online fashion. In such scenarios, not all features may be available initially and may arrive continuously. To
address the continuous arrival of features, the following chapter introduces an approach for feature selection aimed
at selecting the optimals.
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