
Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 

 

2398 
 

Subspace Discovery through Evolutionary Multi-

objective Optimization in Overlapping Clustering 
 

[1]Ramesh marpu, [2]Dr. Bairam Manjula 

 
[1]Research scholar, Bir Tikendrajit University 

 [2]Research Supervisor, Bir Tikendrajit University 

 

Abstract: This paper employs a multi-objective optimization technique to concurrently partition data into 

multiple overlapping subspace clusters. Simultaneously, the data grouping and the identification of relevant 

subspace feature sets corresponding to these groups are performed. The study utilizes validity indices, including 

the ICC-index, PSM-index, and a novel MNR-index, where the latter optimizes the overlapping of objects into 

distinct clusters. Furthermore, existing mutation operators such as large deletions, large duplications, and large 

translocations are adapted to enhance the exploration of the search space effectively. The proposed method is 

tested on ten standard real-life datasets and sixteen synthetic datasets to identify diverse overlapping subspace 

clusters. Comparative analyses with existing methods highlight the advantages of incorporating multiple 

objectives and the newly defined objective function, demonstrating superior performance in the majority of 

cases. Additionally, the paper illustrates the application of this method in the bi-clustering of gene expression 

profile data, showcasing its versatility and efficacy across different domains. 
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1 Introduction 

Subspace clustering methods aim to categorize a dataset into sets of objects that may overlap or remain 

distinct. However, when dealing with many features representing each object, it is common to encounter irrelevant 

or redundant features. To tackle this problem, the suggested method picks unique sets of features for different 

groups of objects. In subspace clustering, an object can be associated with multiple sets of features, so it's not 

uncommon for an object to be part of more than one cluster. To address this challenge, an overlapping subspace 

clustering technique is introduced, allowing objects to be part of multiple clusters. 

In unsupervised ML, the idea of optimization [1] is commonly used to solve various real-world issues. 

The suggested method follows the MOO framework and uses evolutionary techniques to create overlapping 

clusters in subspaces. To achieve high-quality subspace clusters, optimization is essential, focusing on both cluster 

compactness and the selection of subspace feature sets. Furthermore, to create overlapping clusters, optimization 

is necessary to manage the overlapping of objects [7]. The objective function is designed to limit object overlaps 

and ensure that only those objects relevant to multiple subspace feature sets are included in more than one cluster. 

The developed method is an evolutionary approach where we create a genotype, also known as a genome, 

made up of a set of tuples. Each tuple is denoted as = {𝜏1, 𝜏2, . . . 𝜏𝑡} . In this representation, '𝜏𝑖 ' signifies a 

functional element, while '< ℎ𝑖 , 𝑘𝑖 , 𝑥𝑖 >' signifies a non-functional one. In each tuple, hi signifies the quantity of 

cluster, and fi denotes number of the feature selected. ki and fi are uniformly chosen from {1,2, … 𝑆𝐶𝑚𝑎𝑥} and 

{1,2, … , 𝐹} their respective 𝑆𝐶𝑚𝑎𝑥  limits, k: upper limit for the number of clusters. Again, x ∈ Coord, with 

𝐶𝑜𝑜𝑟𝑑 = {𝑗 ×
𝑥𝑚𝑎𝑥

1000
 | 𝑗 ∈ {−1000,… ,1000}} , 𝑥𝑚𝑎𝑥  is the highest associated with every feature in normalized 

dataset. 

A phenotype, denoted as Pθ, includes a collection of fundamental points. The genotype, Gθ, is then 

translated into a phenotype to establish the locations of core points or centers for subspace clusters. The clusters, 

θi, created by considering the tuples in the genotype where i ∈ {1, 2, ...,K}.  

The phenotype is shown as a matrix having a size of SCmax ∗ ̥. The clusters get reorganized by modifying the tuples 

found in the Gθ. Just the practical tuples, ∀i  hi = 1, contribute to updating a phenotype. Inefficient components 

need to pause till they progress into practical through mutation operators. The components ki and fi of a tuple, 

representing number of the cluster and number of the feature, and their matching location (kth row, fth column) in 

the phenotype, are revised with the value xi from that tuple. 
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The 𝐺𝜃 in eq. illustrates how the genotype maps to the phenotype. By a specific instant, with a 

genome dimension of t = 8, the largest amount of clusters, is set at is SCmax = 4, and the feature set comprises 

F = {f1, f2, f3}. 

𝐺𝜃 =

𝜏1
𝜏2
𝜏3
𝜏4
𝜏5
𝜏6
𝜏7
𝜏8 [
 
 
 
 
 
 
 
0 2 1 𝑥2
0 3 2 𝑥3
1 1 3 𝑥2
1 3 1 𝑥5
1 2 2 𝑥4
1 1 3 𝑥6
1 2 1 𝑥6
1 3 3 𝑥7]

 
 
 
 
 
 
 

      𝑃𝜃 =

𝜃1
𝜃2
𝜃3
𝜃4 [
 
 
 0 0

𝑥2+𝑥6

2

𝑥6 𝑥4 0
𝑥5 0 𝑥7
0 0 0 ]

 
 
 

 

 

The tuples in the genome generate three clusters with centers θ1, θ2 & θ3, along with the associated 

subspace features: F1, F2 and F3. In this approach, the initial genome size is set at 100, with one-third of them 

being non-functional. 

The exploration of the search space involves the application of mutation operators to existing genomes, 

generating novel genomes. The choice of the most promising genomes for the next steps relies on their objective 

values, expressed as validity indices.  

In this scenario, a novel weight index called the MNR is introduced to measure how much overlap exists among 

multiple subspace clusters. This is accompanied by further weight indices like the ICC and PSM, each evaluating 

various aspects of subspace cluster quality. All discussed objectives are simultaneously improved through a multi-

objective optimization (MOO) framework. The algorithm we created underwent thorough testing, using seven 

real-world datasets and sixteen synthetic datasets. We assessed the effectiveness of MOO technique by comparing 

it to SOO. The evaluation of our method on two categorical datasets and three large datasets demonstrated that 

our approach is not only competitive but often outperforms state-of-the-art methods. 

 

II. Proposed Methodology 

In this section, we have explored various mutation operators employed to traverse the exploring space 

and objective functions utilized to optimize the resultant clusters. 

 

(a) Mutation Operators 

This method includes 2 mutation operators: large-scale reorganization and replacement. The mutation 

operator of large-scale reorganization involves extensive removal, extensive replication, and extensive 

displacement. The mutation operators applied to a genome T are as follows: 

 

(b) Point Substitution 

Point mutation specifically targets an individual tuple which changes an section inside particular tuple. 

Mutation operator of substitution uniformly chooses a tuple τi ∈ T and swaps the nth element. 

𝜏𝑖 ←

{
 

 
< 𝜌({0,1}), 𝑏, 𝑐, 𝑑 >, 𝑓𝑜𝑟 = 1

< 𝑎, 𝜌({1,2, … 𝑆𝐶𝑚𝑎𝑥}), 𝑐, 𝑑 >, 𝑓𝑜𝑟 𝑛 = 2 

< 𝑎, 𝑏, 𝜌({1,2, … , 𝐹}), 𝑑 >, 𝑓𝑜𝑟 𝑛 = 3

< 𝑎, 𝑏, 𝑐, 𝜌({𝐶𝑜𝑜𝑟𝑑}), >, 𝑓𝑜𝑟 𝑛 = 4 }
 

 

 

 

The 𝜌 operator equally picks a component from the scale of respective tuple and substitutes it. 

 

(c) Merge Operator 𝑴̃ 

For instance, dual tuples represented as 𝜏𝑖 =< 𝑎, 𝑏, 𝑐, 𝑑 > 𝑎𝑛𝑑𝜏𝑗 =< 𝑎′, 𝑏′, 𝑐′, 𝑑′ > 𝑎𝑛𝑑𝑎𝑛𝑢𝑚𝑏𝑒𝑟𝑚 ∈

{1,2,3,4} is selected consistently. The 𝑴̃ can be illustrated as. 

𝑀̃(𝜏𝑖 , 𝜏𝑗 , 𝑚) =

{
 

 
< 𝑎, 𝑏′, 𝑐′, 𝑑′ >, 𝑓𝑜𝑟 𝑛 = 1

< 𝑎, 𝑏, 𝑐′, 𝑑′ >, 𝑓𝑜𝑟 𝑛 = 2

< 𝑎, 𝑏, 𝑐, 𝑑′ >, 𝑓𝑜𝑟 𝑛 = 3

< 𝑎, 𝑏, 𝑐, 𝑑 >, 𝑓𝑜𝑟 𝑛 = 4}
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Rearrangement operators influence the size of the genome, leading to either an increase or decrease. 

These breakpoints within a tuple are reassembled to create new tuples. There are 3 types of operators for this 

enhancement: 

Extensive removal, extensive replication, and extensive displacement involve selecting 2 integers, i and 

j, evenly inside extent of the genome size. Once again, a discontinuity factor is evenly selected to determine where 

the change bound is set surrounded by the adjoining tuples. The 3 types of reorganization operators are described 

as: 

 

(d) Extensive removal  

If i less than or equal to j, the portion between the tuples τi and τj is deleted. If j is less than i, the deletion 

is carried out with consideration for the circular nature of the genome. 

𝑇 ← {
𝑇1,𝑖−1 + 𝑀̃(𝜏𝑖 , 𝜏𝑗 , 𝑛) + 𝜏𝑗+1,𝑡, 𝑓𝑜𝑟 𝑖 ≤ 𝑗

𝑇𝑗+1,𝑖−1 + 𝑀̃(𝜏𝑖 , 𝜏𝑗 , 𝑛), 𝑓𝑜𝑟 𝑖 >  𝑗
} 

 

(e) Extensive replication  

If i ≤ j , the portion among tuples τi and τj is replicated from the primary tuple T and included at a casually 

selected 3rd position, p. If j<i, the portion is reproduced, respecting the circular nature of the genome. 

 

𝑇 ←

{
 
 

 
 

𝑇𝐼,𝑝−1 + 𝑀̃(𝜏𝑝, 𝜏𝑖 , 𝑛) + 𝑇𝑖+1.𝑗−1 +

𝑀̃(𝜏𝑗 , 𝜏𝑝, 𝑛) + 𝑇𝑝+1,𝑡, 𝑓𝑜𝑟 𝑖 ≤ 𝑗

𝑇𝐼,𝑝−1 + 𝑀̃(𝜏𝑝, 𝜏𝑗 , 𝑛) + 𝑇𝑖+1,𝑡 + 𝑇1,𝑗−1 +

𝑀̃(𝜏𝑖 , 𝜏𝑝, 𝑛) + 𝑇𝑝+1,𝑡 𝑓𝑜𝑟 𝑖 >  𝑗}
 
 

 
 

 

 

(f) Extensive Displacement  

The portion among tuples τi and τj is removed after the prime tuple T and placed at a casually selected 

third position, p. For cases where i is less than or equal to j, p 6∈ [i, j] if 𝑗 >= 𝑖 and p 6∈ [1, j] ∪ [i, t] if 𝑗 < 𝑖. 

After applying these relocation operatives, the step replacement factor is then employed to the revised genome. 

The quantity of point substitutions to implement is established through the utilization of the binomial distribution, 

β (ηr, t′), in which t' is order of the genome after relocations and ηr is the rate of mutation. Still, to prevent order 

of the genome from becoming zero, the limits of i to j restricted to 1/ 3 rd of the order. The mutation rate ηr is set 

at 0.005. 

 

III. Objective Functions 

Objective functions serve the purpose of minimizing or maximizing certain criteria, and they can also be 

formulated as validity indices. Consequently, during each step, validity indices are progressively optimized, 

leading to an optimal solution. The method employs non-conquered ordering and crowding distance, to arrange 

the results depending on real values and select the best solutions. 

The objective values for the subspace are computed once the dataset X is divided into K subspace 

clusters. Each subspace cluster, denoted as Ci, is characterized by a subspace feature set Fi, where i ranges from 

1 to K. The validity indices considered in this approach consist of the ICC index, the PSM index and a newly 

introduced MNR index. The MNR is defined to address the overlap of objects in overlapping subspace clustering.  

In overlapping subspace clustering, this objective function aims to reduce substantial object overlap by 

curtailing the count of overlying points [2]. If µi and µj represent the membership degrees of objects i and j 

correspondingly, the MNR can be described as follows: 

𝑀𝑁𝑅(𝑋, 𝑃𝜃) =
1

𝑘𝐶2
∑ ∑ |𝜇𝑖 ∩ 𝜇𝑗|

𝐾

𝑗=𝑖+1

𝐾−1

𝑖=1

; ∀𝜇𝑖, 𝜇𝑗 = 1. . . . . . . . . . . . . . . (4.1) 

The term KC2 represents the grouping of 2 clusters selected from K clusters, and | . | denotes the size of the set. 
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IV. Production of Overlapping Subspace Clusters 

The Pθ includes clusters along with their respective subspace. The main goal is to allocate every single 

thing to one or more clusters, as the proposed method permits object overlap, allowing a particular object to be 

portion of many clusters. 

This assignment process is denoted by a membership matrix, µ, where the size is equal to (clusters, 

objects). The values within µ are either '0' or '1', indicating whether the i-th object is present ('1') or absent ('0') in 

the kth cluster.  In this methodology, every objective is allocated to a minimum of one cluster. If a specific line 

has multiple '1's, it means the object belongs to multiple clusters. The suggested process utilizes a distance-based 

approximate to assign objects to clusters, calculating the distance between any two points according to Equation 

4.1. 

Usually, an object is allocated along a specific cluster depending on lowest gap amongst them. However, 

the proposed method introduces a degree of flexibility by allowing an object to be assigned to clusters within 10% 

of the minimum distance. Therefore, the technique designates an object to clusters that meet the following 

condition: 

( ) ( )    =  
 =  

  

1, , 1.1 min ,
...............(4.2)

0,

i k k i k

ki

if d x th d x

oherwise
 

The suggested method transfers an object to every cluster within 1.5 times of the minimum distance 

which enables objects associated with several clusters that have practically equal distances. Additionally, 

experimental observations indicate that the average cluster compactness remains largely consistent, whether the 

10% flexibility is applied. Moreover, introducing a 10% flexibility results in a minor quantity of objects being 

allocated to more groups, particularly those located at nearly equal distances. 

 

V. Data Sets and Implementation Details 

The presented algorithm underwent evaluation with 30 actual and synthetic datasets, results were 

matched to various existing algorithms using different evaluation metrics. The parameter settings applied are 

consistent with those outlined, except for the number of iterations, which is set to I=400. Furthermore, the mutation 

rate ηr is established at 0.005, and the initial genome size is set at 100 for real datasets and 200 for synthetic 

datasets. 

 

VI.  Results and Analysis 

Here, showcased and analyzed the outcomes achieved by implementing the recommended method on 

various real and synthetic datasets to evaluate its performance.  

 

(a) Actual Life Data Sets 

The ranks of each procedure for different evaluation metrics were established using a method like the 

one outlined. The least and highest scores from the 20 runs are presented in Table 1. The rankings of the various 

algorithms are depicted in Fig. 1, leading to the following observations: 

• The outcomes in Table 1 have statistical significance and are not merely the result of chance. Welch's 

t-test [reference 9] was performed on different datasets for various evaluation metrics at a 5% 

significance level, and all obtained p-values [reference 10] were less than 0.05, indicating statistical 

significance.  

• The proposed algorithm excels, securing the top position in metrics primarily designed to assess 

subspace clustering quality, namely CE and RNIA (Fig. 1(c) and 1(d)).  

Moreover, in terms of accuracy, the technique gives competitive results, securing the 2nd position (Fig. 

1(b)). 

However, the suggested approach holds the 6th position in the Entropy metric (Fig. 1(e)) due to the 

clusters formed by an algorithm. A higher number of clusters often leads to a better entropy score. 
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Table 1: the actual-life data sets 
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(a) Ranks based on F-Measure                                     (b)Ranks based on Accuracy

 
(c) CE                                                                          (d) RNIA 
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(e) Entropy                                                     (f) Coverage 

 
(g)Number of clusters                                                            (h) Runtimes 

Figure 1: Rankings of different clustering algorithms 

 

In contrast, algorithms like INSCY, MINECLUS, and others excel when it comes to the entropy metric. 

However, they struggle to effectively control the quantity of generated clusters, as depicted in Figure 1(g). These 

algorithms often generate a significant number of clusters, resulting in a lower ranking compared to the proposed 

approach. However, when considering F-Measure (Figure 1(a)), the proposed method may not claim the top spot 

but still positions itself among the top-performing approaches. 

 

(b) Synthetic Data Sets 

A similar procedure is followed by solutions for 20 datasets to that of the real-life. Each dataset undergoes 

10 runs, and the recorded highest and least scores are outlined in Table 2. The proposed technique draws 

inspiration from the ChameleoClust process, our emphasis lies in directly comparing it with ChameleoClust across 

various synthetic datasets, streamlining the analysis. Figure 2 visually presents the best metric values attained by 

both approaches for these 20 datasets, along with their averages. These graphs specifically concentrate on key 

metrics, with the metric score versus the average number of clusters obtained after 10 runs for each dataset (Fig. 

2(a) to 2(e)). From these graphs, we can make the following observations: 

•  The proposed algorithm generates several clusters, typically between 10 and 15, closely aligning 

with the quantity of clusters for datasets, which is 20. In contrast, ChameleoClust produces a broader 

range of clusters, spanning from 9 to 16. P3C and KymereoClust are other approaches which create 

clusters within the ranges of 6-16 and 9-14, respectively. The remaining algorithms produce even 

larger numbers of clusters and are not included in the comparison. 

• In terms of the main evaluation metrics, the proposed algorithm stands out in FM, CE, and RNIA. 

Yet, ChameleoClust performs well in the accuracy metric. ChameleoClust also excels in terms of 

entropy, possibly because it generates a larger number of clusters assessed to the presented technique.  

 

(c) Results on Categorical and Big Data Sets 

For evaluating the effectiveness while applying various objectives, conducted experiments on 2 definite 

and 3 large datasets. We implemented and tested single and multi-objective optimization, which focuses merely 

on the ICC of the proposed process. The datasets utilized were gathered from UCI [183]. Additionally, two 
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categorical datasets, Soybean (with 50 occurrences and 40 size) and the Molecular dataset (with 1640 occurrences 

and 72 size), were also considered. 

 

Table 2: For the synthetic data sets 

 
 

 
                       (a) CE                                          (b) Accuracy                                      (c) F1 

 

                                    
                                                   (d) RNIA                  (e) Entropy 

Figure 2: Comparison of Chameleo Clust (orange) and proposed (blue) method 
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Table 3: categorical and big data sets concerning valuation metrics 

 
 

The resemblance in 2 data points is determined by comparing respective characteristics. Table 3 shows 

that utilizing multiple objectives (MOO) yields better outcomes than single-objective approaches. MOO allows 

greater flexibility in selecting a solution. 

 

(d) Comparison with Existing Overlapping Methods 

Our proposed method is subjected to a comparative analysis against several existing overlapping 

techniques, namely OKM, OKMED, and WOKM [4]. This comparison is performed on various datasets, including 

Iris [4], Yeast [52], Scene [4], and Emotions [4]. Importantly, these existing methods necessitate the user to specify 

the number of clusters beforehand, while our proposed method autonomously determines the number of clusters. 

For the Yeast, Scene, and Emotions datasets, which are multi-label datasets, the existent amount of 

clusters matches the sum of labels. To ensure a fair comparison, we modified our proposed method to generate a 

few clusters that match the entire labels. We assess the results using precision, recall, and F-measure metrics, and 

the findings are shown in Table 4. Values in bold indicate the best results obtained for a specific dataset in relation 

to a particular metric. The results in Table 4 clearly show the implementation of proposed method is better than 

other existing techniques. 

 

Table 4: Results on real data sets considering the metrics 

 
 

Furthermore, our explained method is subjected to a comparative assessment against other existing 

algorithms, specifically OKM and KHM-OKM (K-harmonic means overlapping K-means) [5]. In order to ensure 

an equitable evaluation, we employed the same real-world datasets that were utilized for testing the existing 

methods, including Breast cancer Wisconsin (Original) [5], Indian liver patients [5], Iris, Heart disease (Statlog) 

[5], Lung Cancer [5], and more. The evaluation is conducted using precision, recall, and F-measure metrics, with 

the best-performing results highlighted in bold. The findings tabulated in Table 4.5 clearly indicate that our method 

excels in generating high-quality clusters, as it consistently outperforms other algorithms in most cases. 
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Table 5: real-life data sets 

 
 

Furthermore, our proposed method is subjected to a comparative assessment against other existing 

algorithms, specifically OKM and KHM-OKM (K-harmonic means overlapping K-means) [5]. To ensure an 

equitable evaluation, we utilized the same real-world datasets that were employed for testing the existing methods, 

including Breast Cancer Wisconsin (Original) [5], Indian Liver Patients [5], Iris, Heart Disease (Statlog) [5], Lung 

Cancer [5], and more. The evaluation is conducted using precision, recall, and F-measure metrics, with the best-

performing results highlighted in bold. The findings presented in Table 5 conclusively demonstrate that our 

proposed method consistently generates high-quality clusters, as it outperforms other algorithms in most cases. 

 

(e) Proposed Method in Bi clustering with real life application 

To show the practicality of our developed method, we selected two datasets: Human Large B Cell 

Lymphoma [6] and Yeast [6].We rigorously tested our proposed method using a variety of evaluation metrics as 

detailed in Section. The comparative outcomes shown in Table 6 (for the human dataset) and Table 7 (for the yeast 

dataset). Notably, our proposed approach consistently outperforms existing methods in most cases, as indicated 

by the highlighted values. 

 

Table 6: Results for Human Large B Cell Lymphoma data set 
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Table 7: Results of the proposed method on Yeast data set obtained by different algorithms. 

 
 

VII. Chapter Summary 

An overlapping subspace clustering approach based on multi-objective optimization is explained in this 

chapter. We have devised a novel objective function, referred to as the MNR-index, to optimize the inclusion of 

overlapping objects. Moreover, we improved the existing mutation operators to enhance our capability to discover 

effectively and efficiently. We conducted experiments on numerous real and synthetic datasets and compared our 

results with those from various established methods. This comparative analysis underscores the superior 

performance of our method in most cases. 

Additionally, we demonstrate the application of subspace clustering in bi-clustering gene expression 

profile datasets. This chapter enables the clustering of objects with overlapping attributes, creating overlapping 

subspace clusters within the framework of multi-objective optimization. Our analysis of the results obtained in 

both this chapter and the previous one indicates that subspace clustering approaches are valuable for handling 

high-dimensional data. However, in today's context, many application domains continuously generate features in 

an online fashion. In such scenarios, not all features may be available initially and may arrive continuously. To 

address the continuous arrival of features, the following chapter introduces an approach for feature selection aimed 

at selecting the optimals. 
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