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Abstract: We examine the characteristics of nonlinear localized excitations in a one-dimensional Heisenberg 

helimagnetic spin system incorporating Next Nearest Neighbour (NNN) interactions. By using the Dyson-

Maleev transformation and coherent state ansatz, we deduce a discrete nonlinear equation which governs the 

dynamics of the system. Also, we analyze the propagation dynamics and stability of the localized modes under 

various exchange interaction parameters using linear stability analysis. 
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1. Introduction 

  The study of localized modes in nonlinear discrete systems has received significant attention in the 

recent past. Intrinsic localized modes or discrete breathers refers to the nonlinear excitations which are localized 

in space and periodic in time [1,2]. The formation of the discrete breather require the combination of two crucial 

elements such as discreteness and nonlinearity. They have been studied in a number of systems like 

antiferromagnetic chains, Josephson’s junctions, micromechanical oscillators, optical wave guides, granular 

crystals etc, due to the potential fascinating applications [3-8]. The structural stability for these spatially localized 

excitations depends on the discreteness of space. Thus the interacting spins in the lattices makes them ideal for 

observing discrete breathers [9]. Previous studies indicate that, the occurrence of localized modes is associated 

with an instability of the corresponding nonlinear plane waves and the energy localization in discrete lattices may 

be facilitated by the phenomena of Modulational Instability (MI) [10-11]. 

One of the fascinating aspect that may be seen in many nonlinear systems is the modulational instability 

which was first reported by Benjamin and Feir in 1967 [12]. MI occurs when a weak perturbation of a amplitude 

of the wave increases exponentially as the wave propagates. Initially, Kivshar et al. [13] reported that localized 

states in nonlinear oscillator lattices may be produced through modulational instability. Later, in another report of 

Kivshar [14] he revealed that bright type localized mode exist in the parameter regions where the system displays 

MI. If MI does not occur, then a dark type localized mode might exist in the system. So far the characteristics of 

localized modes and the associated MI in different nonlinear systems have received a lot of attention [15-17]. Not 

a long ago, Vasanthi et al. [18] investigate the impact of different kinds of inhomogeneities and modulational 

instability in a one-dimensional antiferromagnetic spin system. A highly localized discrete breather mode and 

modulational instability in a one-dimensional ferromagnetic spin lattice was reported by Kavitha et al. [19] and 

they explores the conditions for the excitation of localized modes with the help of modulational instability 

analysis. 

Besides this well known magnetic systems, there is an incommensurate form of magnetic ordering known 

as helimagnetism arises from competing ferromagnetic and antiferromagnetic exchange interactions. Usually 

helimagnetism is only observed at liquid helium temperatures and in a helimagnet spins of adjacent magnetic 

moments organize themselves in a spiral or pattern exhibiting a characteristic turn angle ranging from 0 to 180 

degrees [20,21]. Above a certain temperature and at low temperatures, rare earth metals such as, Terbium (TB), 

Dysprosium (Dy) and Holmium (Ho) persist in a helical phase. The thermodynamic and other magnetic features 

of helimagnets have been studied extensively by putting forth various models [22,23]. Nevertheless, the spin 

dynamics of helimagnetic lattices are still in the infant stage and only a few works has been reported regarding 

the nonlinear spin excitations of the helimagnet. Daniel et al. [24,25] has recently contributed few works on the 
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characteristics of nonlinear spin excitations in a one-dimensional Heisenberg helimagnet. By proposing a spin 

rotator model of a helimagnet, Felcy et al. [26] studied the influence of various kinds of inhomogeneities on the 

dynamics of solitons and found that the inhomogeneity produces a fluctuatation in the localized or tail region of 

the soliton above the limiting values. Bostrem et al. [27] studied the occurrence of dark discrete breather modes 

in a chiral helimagnet with easy-plane anisotropy and the stability of the breather modes were confirmed by means 

of Floquet stability analysis. Prompted by this in our current work we examine the stability criteria for the 

nonlinear localized modes in a quasi-discrete helimagnetic spin lattice. 

Further more, the previous research on the properties of MI and localized excitations so far concentrated 

only with nearest neighbour interactions. But, NNN interactions play a vital role in explaining some significant 

physical phenomena in nonlinear systems and therefore leads to wide range of applications in quantum 

information storage and magnetic multilayer systems [28]. With these in mind, we also investigate the influence 

of NNN interaction on the localized modes and their stability in a one-dimensional Heisenberg helimagnetic spin 

system in the semiclassical limit. 

The paper is organized as follows. In section 2, we present a suitable model Hamiltonian and deduce the 

dynamical equation by employing Dyson-Maleev transformation and Glauber’s coherent state representation. In 

section 3, we analyze the existence conditions of the discrete localized modes via linear stability analysis. 

Additionally, we explores the impact of NNN interactions on the localized modes under various physical 

conditions. Finally, in section 4, we provide the conclusions.  

 

2. Hamiltonion Model and Dynamical equation 

  In this paper, we focus on a one-dimensional Heisenberg helimagnetic spin system by including NNN 

interactions. The Hamiltonian for this kind of spin model can be expressed as 

 

        𝐻 = −∑𝑖 [𝐽(𝑆𝑖 ⋅ 𝑆𝑖+1) + Γ[𝑘̂ ⋅ (𝑆𝑖 × 𝑆𝑖+1)] − 𝑞]2 + 𝜆[𝐽(𝑆𝑖 ⋅ 𝑆𝑖+2)] − 𝐴(𝑆𝑖
𝑧)2],       (1) 

 

where 𝑆𝑖 = (𝑆𝑖
𝑥, 𝑆𝑖

𝑦
, 𝑆𝑖

𝑧)  represents the spin at the lattice site 𝑖 . 𝐽  indicate the bilinear exchange 

interaction and Γ stands for the twisted arrangement of spins in the helimagnet where 𝑞 is the pitch wave vector 

of the helimagnet. 𝜆 denotes the contribution of NNN interaction and 𝐴 is the crystal field anisotropy interaction. 

Now we may write the Hamiltonian in Eq. (1) into its dimensionless form by introducing the dimensionless spin 

𝑆̂𝑖 = 𝑆𝑖/ℏ and defining 𝑆̂𝑖
± = 𝑆̂𝑖

𝑥 ± 𝑖𝑆̂𝑖
𝑦
. The Hamiltonian now transforms into,  

𝐻 = −∑

𝑖

[
𝐽

2
(𝑆𝑖

+𝑆𝑖+1
− + 𝑆𝑖

−𝑆𝑖+1
+ + 2𝑆𝑖

𝑧𝑆𝑖+1
𝑧 ) +

Γ

4
(2𝑆𝑖

+𝑆𝑖+1
+ 𝑆𝑖

−𝑆𝑖+1
− − 𝑆𝑖

+𝑆𝑖+1
− 𝑆𝑖

+𝑆𝑖+1
−  

 −𝑆𝑖
−𝑆𝑖+1

+ 𝑆𝑖
−𝑆𝑖+1

+ ) + Γ𝑞2 −
Γ𝑞

𝑖
(𝑆𝑖

−𝑆𝑖+1
+ − 𝑆𝑖

+𝑆𝑖+1
− ) + 𝜆{

𝐽

2
(𝑆𝑖

+𝑆𝑖+2
− + 

 +𝑆𝑖
−𝑆𝑖+2

+ 2𝑆𝑖
𝑧𝑆𝑖+2

𝑧 )} − 𝐴(𝑆𝑖
𝑧)2].                                               (2) 

 

To comprehend the spin dynamics of the present system, we need to bosonize the Hamiltonian in the 

semiclassical treatment by employing Dyson-Maleev bosonic reprsentation of spin operators [29,30] given by  

 

 𝑆𝑖
+ = √2𝑆(1 −

1

2𝑆
𝑎𝑖
†𝑎𝑖)𝑎𝑖 , 

 𝑆𝑖
− = √2𝑆𝑎𝑖

†, 

 𝑆𝑖
𝑧 = 𝑆 − 𝑎𝑖

†𝑎𝑖 , (3) 

 

where 𝑎𝑖, 𝑎𝑖
†
 stands for the boson annihilation and creation operators respectively and these bosonic 

operators satisfy the following commutation relations, [𝑎𝑚, 𝑎𝑛] = 𝛿𝑚𝑛 and [𝑎𝑚 , 𝑎𝑛] = [𝑎𝑚
† , 𝑎𝑛

†] = 0. Inserting 

Eq. (3) leads to a bosonized Hamiltonian  

 

 𝐻 = −∑𝑖 [𝐽𝑆
2 + Γ𝑞2 + 𝜆𝐽𝑆2 − 𝐴𝑆2 + 𝐽𝑆(𝑎𝑖𝑎𝑖+1

† + 𝑎𝑖
†𝑎𝑖+1 − 𝑎𝑖+1

† 𝑎𝑖+1 

 −𝑎𝑖
†𝑎𝑖) + 𝜆𝐽𝑆(𝑎𝑖𝑎𝑖+2

† + 𝑎𝑖
†𝑎𝑖+2 − 𝑎𝑖+2

† 𝑎𝑖+2 − 𝑎𝑖
†𝑎𝑖) −

𝐽

2
(𝑎𝑖

†𝑎𝑖𝑎𝑖𝑎𝑖+1
†
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 −𝑎𝑖
†𝑎𝑖+1

† 𝑎𝑖+1𝑎𝑖+1 − 2𝑎𝑖
†𝑎𝑖𝑎𝑖+1

† 𝑎𝑖+1) −
𝜆𝐽

2
(𝑎𝑖

†𝑎𝑖𝑎𝑖𝑎𝑖+2
† + 𝑎𝑖

†𝑎𝑖+2
† 𝑎𝑖+2𝑎𝑖+2 

 −2𝑎𝑖
†𝑎𝑖𝑎𝑖+2

† 𝑎𝑖+2) + Γ𝑆2(2𝑎𝑖𝑎𝑖+1𝑎𝑖
†𝑎𝑖+1

† − 𝑎𝑖𝑎𝑖+1
† 𝑎𝑖𝑎𝑖+1

† − 𝑎𝑖
†𝑎𝑖+1𝑎𝑖

†𝑎𝑖+1) 

 −
Γ𝑞

𝑖
(2𝑆𝑎𝑖

†𝑎𝑖+1 − 𝑎𝑖
†𝑎𝑖+1

† 𝑎𝑖+1𝑎𝑖+1 − 2𝑆𝑎𝑖𝑎𝑖+1
† + 𝑎𝑖+1

† 𝑎𝑖
†𝑎𝑖𝑎𝑖) 

 +𝐴(2𝑆𝑎𝑖
†𝑎𝑖 − 𝑎𝑖

†𝑎𝑖𝑎𝑖
†𝑎𝑖)]. (4) 

 

Since we are interested in nonlinear excitations of spins that results from nonlinearity in the magnetic 

system in which a subset of spins may move considerably in relation to the other spins. Coherent states may serve 

as a description for the quantum state of collective modes with such large amplitudes. Therefore, to express the 

elements of the system states, we introduce Glauber’s coherent state representation [31] for the bosonic operators, 

𝑎𝑛
†|𝑢〉 = 𝑢𝑛

∗ |𝑢〉, 𝑎𝑛|𝑢〉 = 𝑢𝑛|𝑢〉, |𝑢〉 = Π𝑛|𝑢𝑛〉 with 〈𝑢|𝑢〉 = 1. By utilizing Ehrenfest theorem, we obtain the 

following equation of motion for 𝑢𝑛 as  

 

 𝑖
𝑑𝑢𝑛

𝑑𝑡
= 𝜔0𝑢𝑛 − 𝐽𝑆(𝑢𝑛+1 + 𝑢𝑛−1) − 𝜆𝐽𝑆(𝑢𝑛+2 + 𝑢𝑛−2) +

𝐽

2
(|𝑢𝑛−1|

2𝑢𝑛−1 

 +𝑢𝑛
2𝑢𝑛+1

∗ + |𝑢𝑛+1|
2𝑢𝑛+1 + 𝑢𝑛

2𝑢𝑛−1
∗ ) +

𝜆𝐽

2
(|𝑢𝑛−2|

2𝑢𝑛−2 + 𝑢𝑛
2𝑢𝑛+2

∗  

 +|𝑢𝑛+2|
2𝑢𝑛+2 + 𝑢𝑛

2𝑢𝑛−2
∗ ) − 𝐽(|𝑢𝑛−1|

2𝑢𝑛 + |𝑢𝑛+1|
2𝑢𝑛) − 𝜆𝐽 

 (|𝑢𝑛−2|
2𝑢𝑛 + |𝑢𝑛+2|

2𝑢𝑛) − 2Γ𝑆2(|𝑢𝑛−1|
2𝑢𝑛 + |𝑢𝑛+1|

2𝑢𝑛 + 

 𝑢𝑛−1
2 𝑢𝑛

∗ − 𝑢𝑛+1
2 𝑢𝑛

∗ ) +
2𝑆Γ𝑞

𝑖
(𝑢𝑛+1 − 𝑢𝑛−1) +

Γ𝑞

𝑖
(|𝑢𝑛−1|

2𝑢𝑛−1 + 

 𝑢𝑛
2𝑢𝑛+1

∗ − |𝑢𝑛+1|
2𝑢𝑛+1 − 𝑢𝑛

2𝑢𝑛−1
∗ ) + 2𝐴|𝑢𝑛|

2𝑢𝑛, (5) 

 

   where 𝜔0 = 2𝐽𝑆(1 + 𝜆) − 2𝑆𝐴. It can be seen that, the nonlinearity in the magnetic system is completely 

considered in Eq. (5), and it describes the nonlinear spin dynamics of the one-dimensional quasi-discrete 

helimagnet. 

  

3. Linear Stability Analysis 

 A crucial feature of a nonlinear localized mode is its linear stability which is determined by the nature 

of the mode dynamics under the action of minor perturbations of its stationary state. Generally, there are two 

possibilities for the dynamics of the perturbation induced modes. In the first case, a nonlinear mode receive only 

small distortions to its steady state profile and the parameters of a nonlinear mode oscillate in the neighbourhood 

of its stationary state. Thus, we refer this type of nonlinear mode as linearly stable. On the other hand, we describe 

the nonlinear mode as linearly unstable when initial deviations of the nonlinear mode parameters from their 

stationary values grow exponentially under the effect of small perturbations.  

   In this section we investigate the generation of localized modes in a one-dimensional helical spin system and 

the MI of the plane waves analytically. The purpose of stability analysis is to introduce a small perturbation into 

the system and analyse whether this perturbation grows or decays with propagation. To carry out linear stability 

analysis, we consider a plane wave solution with constant amplitude of the form  

 

 𝑢𝑛(𝑡) = 𝑢0𝑒
𝑖(𝑛𝑘−𝜔𝑡), (6) 

 

   where 𝑢0 denote the amplitude of perturbation. 𝑘 and 𝜔 refers to the wave number and frequency of the 

plane waves respectively. Inserting Eq. (6) into the dynamical equation results in a dispersion relation of the 

magnetic system which reads 

  

𝜔 = 𝜔0 − 2𝐽𝑆𝑐𝑜𝑠(𝑘) − 2𝜆𝐽𝑆𝑐𝑜𝑠(2𝑘) − 2𝐽𝑢0
2[1 − 𝑐𝑜𝑠(𝑘)] − 2𝜆𝐽𝑢0

2[1 − 𝑐𝑜𝑠(2𝑘)] 

 +4Γ𝑆2𝑢0
2(1 − 𝑐𝑜𝑠(2𝑘) + 4𝑆Γ𝑞𝑠𝑖𝑛(𝑘) − 4Γ𝑞𝑢0

2𝑠𝑖𝑛(𝑘) + 2𝐴𝑢0
2. (7) 

 

Next, the plane wave solution in Eq. (6) is perturbed by a small amount given by  

 

 𝑢𝑛(𝑡) = 𝑢0(1 + 𝜂𝑛(𝑡))𝑒
𝑖(𝑛𝑘−𝜔𝑡). (8) 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 

 

2240 
 

   Inserting Eq. (6) in to Eq. (7) we get a linear differential equation  

 

𝑖𝜂̇𝑛 +
𝐽𝑢0

2

2
𝐵1 +

𝜆𝐽𝑢0
2

2
𝐵2 + Γ𝑆2𝑢0

2𝐵3 − 𝐴𝐵4 + 𝑐𝑜𝑠(𝑘)𝐵5 + 𝑐𝑜𝑠(2𝑘)𝐵6 

 +𝑖𝑠𝑖𝑛(𝑘)𝐵7 + 𝑖𝑠𝑖𝑛(2𝑘)𝐵8 = 0, (9) 

 

   where 𝐵1 , 𝐵2, . . . . . . 𝐵8 are given in Appendix A. Moreover, we assume a general solution as  

 

 𝑢𝑛(𝑡) = 𝛽𝑒𝑖(𝑛𝑄−Ω𝑡) + 𝛽∗𝑒−𝑖(𝑛𝑄−Ω𝑡), (10) 

 

where, 𝑄  and Ω  correspond to the wave number and frequency of perturbation respectively. 

Substituting Eq. (10) into Eq. (9) we get a linearized evolution equation  

 

 Ω2𝛽𝛽∗ + Ω(𝛽𝑀 + 𝛽∗𝑁) +𝑀𝑁 = 0, (11) 

 

 with  

 𝑀 = −𝛽∗[4𝐽𝑢0
2𝑐𝑜𝑠(𝑄) + 4𝐽𝑢0

2𝛽𝛽∗ + 2𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(2𝑄) + 4𝜆𝐽𝑢0

2𝑐𝑜𝑠(2𝑄) 

 +2𝜆𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(4𝑄) + 4𝜆𝐽𝑢0

2𝛽𝛽∗ + 8Γ𝑆2𝑢0
2𝑐𝑜𝑠(𝑄) + 4Γ𝑆2𝑢0

2𝛽𝛽∗ 

 𝑐𝑜𝑠(2𝑄) + 8Γ𝑆2𝑢0
2𝛽𝛽∗ + 4𝐴𝑢0

2 + 6𝐴𝑢0
2𝛽𝛽∗ + 𝑐𝑜𝑠(𝑘)𝐶1 + 𝑠𝑖𝑛(𝑘)𝐶2 

 +𝑐𝑜𝑠(2𝑘)𝐶3 + 𝑠𝑖𝑛(2𝑘)𝐶4], (12)   

   

 𝑁 = 𝛽[4𝐽𝑢0
2𝑐𝑜𝑠(𝑄) + 4𝐽𝑢0

2𝛽𝛽∗ + 2𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(2𝑄) + 4𝜆𝐽𝑢0

2𝑐𝑜𝑠(2𝑄) 

 +2𝜆𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(4𝑄) + 4𝜆𝐽𝑢0

2𝛽𝛽∗ + 8Γ𝑆2𝑢0
2𝑐𝑜𝑠(𝑄) + 4Γ𝑆2𝑢0

2𝛽𝛽∗ 

 𝑐𝑜𝑠(2𝑄) + 8Γ𝑆2𝑢0
2𝛽𝛽∗ + 4𝐴𝑢0

2 + 6𝐴𝑢0
2𝛽𝛽∗ + 𝑐𝑜𝑠(𝑘)𝐶5 + 𝑠𝑖𝑛(𝑘)𝐶6 

 +𝑐𝑜𝑠(2𝑘)𝐶7 + 𝑠𝑖𝑛(2𝑘)𝐶8]. (13) 

 

   where 𝐶1, 𝐶2, . . . . . . 𝐶8 are given in Appendix B. Solving Eq. (11) gives  

 

 Ω =
−(𝛽𝑀+𝛽∗𝑁)±√(𝛽𝑀+𝛽∗𝑁)2−4𝛽𝛽∗𝑀𝑁

2𝛽𝛽∗
. (14) 

 

The stability of the nonlinear helimagnetic spin system is determined by the imaginary component of the 

perturbation frequency Ω. If the perturbation frequency is real, then the perturbation at any wave number 𝑘 does 

not grow with time. But, for an imaginary frequency i.e,((𝛽𝑀 + 𝛽∗𝑁)2 < 4𝛽𝛽∗𝑀𝑁) the perturbation grows 

exponentially with the intensity being defined by the growth rate or gain given by, 𝐺(Ω) = 𝐼𝑚(Ω) where, Im 

stands for the imaginary part. 

Fig. 1 and Fig. 2 depicts the modulational instability zones in the (𝑘, 𝑄) plane for various values of NNN 

interaction 𝜆, in the absence of helicity. In figure, the lighter regions are unstable regions and have high values of 

modulational instability. The darker regions are stable regions which have low values of MI. Fig. 1 describes the 

effect of NNN interaction 𝜆 in the absence of helicity. As one can see, the increase in the value of 𝜆 increases 

the instability regions and favours the stability of the localized excitations.  
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Figure  1: Modulational Instability regions in (𝑘, 𝑄) plane for various values of 𝜆, (𝑎) 𝜆 = 0.2, (𝑏) 𝜆 = 0.4, 

(𝑐) 𝜆 = 0.6, (𝑑) 𝜆 = 0.8 with 𝐽 = 12 and Γ = 0. 

 

The effect of NNN interaction with helicity on MI zones is shown in Fig. 2. The presence of helicity 

shifts the stability/instability zones to the left of the Brillouin zone and it does not affect the MI zones significantly. 

In the following, we discuss the impact of NNN interaction and helicity on the growth rate curves in the long and 

short wavelength limits.  
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Figure  2: Modulational Instability regions in (𝑘, 𝑄) plane for various values of 𝜆, (𝑎) 𝜆 = 0.2, (𝑏) 𝜆 = 0.4, 

(𝑐) 𝜆 = 0.6, (𝑑) 𝜆 = 0.8 with 𝐽 = 12 and Γ = 3. 

 

3.1 Long Wavelength Limit 

 First we consider the long wavelength limit, where the wave number 𝑘 = 0, and from Eq. (14) the gain 

𝐺(Ω) Can be calculated. The growth rate curves under various interaction parameters for this case is depicted in 

Fig. 3 and Fig. 4. From Fig. 3, it can be notable that the amplitude and width of the growth rate curve increases 

with increase in the values of NNN interaction parameter with helicity, which predicts the stability of localized 

modes in the presence system. In Fig. 4, the dotted lines shows the contribution of helicity and as seen the helicity 

does not affect the growth rate curve significantly.  
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Figure  3: Growth rate curves for various values of 𝜆 with 𝐽 = 12 and Γ = 3. 

   

   

 
   

Figure  4: Growth rate curves for (𝑖) 𝜆 = 0, Γ = 0, (𝑖𝑖) 𝜆 = 0, Γ = 3, (𝑖𝑖𝑖) 𝜆 = 0.8, Γ = 0, (𝑖𝑣) 𝜆 =

0.8, Γ = 3 with 𝐽 = 12. 
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3.2 Short Wavelength Limit 

 In this case the wave number and the expression for gain 𝐺(Ω) is obtained from Eq. (14). The growth 

rate curves for various NNN interaction parameter and helicity is plotted in Fig. 5 and Fig. 6. The presence of 

NNN interaction without helicity affect the width of the growth rate curve as shown in Fig. 5 which supports for 

the formation of localized modes. Fig. 6 represents the effect of helicity on the growth rate curves and a similar 

behaviour as in the case of long wavelength limit is observed.  

 

 
   

Figure  5: Growth rate curves for various values of 𝜆 with 𝐽 = 12 and Γ = 0. 

  

 
   

Figure  6: Growth rate curves for (𝑖) 𝜆 = 0, Γ = 0, (𝑖𝑖) 𝜆 = 0, Γ = 3, (𝑖𝑖𝑖) 𝜆 = 0.8, Γ = 0, (𝑖𝑣) 𝜆 =

0.8, Γ = 3 with 𝐽 = 12   
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4. Conclusion 

 We have analyzed the stability aspects of the nonlinear localized modes in a one-dimensional 

helimagnetic spin system incorporating NNN interaction in the semiclassical limit. By employing Dyson-Maleev 

transformation and coherent state representation, we deduce the dynamical equation for the present system. We 

studied the modulational instability properties of the localized modes via linear stability analysis under various 

physical conditions. From our results it is found that, the introduction of NNN interaction affect the MI of the 

helical spin system significantly. When the NNN interaction is increased the amplitude and width of the growth 

rate curve increases which confirms the stability of the localized modes. Moreover, the presence of helicity shifts 

the MI regions to the left of the Brillouin zone, and it does not affect the growth rate curves notably. Thus from 

our outcomes, the stability of the localized modes in a helimagnetic spin system can be modulated using NNN 

interaction and it may found possible applications in energy localization processes in various fields. 

 

Appendix A 

 

𝐵1 = 2𝜂𝑛−1
2 + 4𝜂𝑛−1 + 2𝜂𝑛𝜂𝑛−1

2 + 4𝜂𝑛𝜂𝑛−1 + 2𝜂𝑛+1
2 4𝜂𝑛+1 + 2𝜂𝑛𝜂𝑛+1

2 + 4𝜂𝑛𝜂𝑛+1, 

𝐵2 = 2𝜂𝑛−2
2 + 4𝜂𝑛−2 + 2𝜂𝑛𝜂𝑛−2

2 + 4𝜂𝑛𝜂𝑛−2 + 2𝜂𝑛+2
2 4𝜂𝑛+2 + 2𝜂𝑛𝜂𝑛+2

2 + 4𝜂𝑛𝜂𝑛+2, 

𝐵3 = 2𝜂𝑛−1
2 + 4𝜂𝑛−1 + 2𝜂𝑛𝜂𝑛−1

2 + 4𝜂𝑛𝜂𝑛−1 + 2𝜂𝑛+1
2 + 4𝜂𝑛+1 + 2𝜂𝑛𝜂𝑛+1

2 + 4𝜂𝑛𝜂𝑛+1, 

𝐵4 = 6𝑢0
2𝜂𝑛

2 + 4𝑢0
2𝜂𝑛 + 2𝑢0

2𝜂𝑛
3 , 

𝐵5 = 𝐽𝑆[𝜂𝑛+1 + 𝜂𝑛−1 − 2𝜂𝑛] −
𝐽𝑢0

2

2
[3𝜂𝑛−1

2 + 4𝜂𝑛−1 + 𝜂𝑛−1
3 + 2𝜂𝑛2 + 4𝜂𝑛+1 + 𝜂𝑛+1𝜂𝑛

2 + 2𝜂𝑛+1𝜂𝑛 + 𝜂𝑛+1
3 +

3𝜂𝑛+1
2 + 𝜂𝑛−1𝜂𝑛

2 + 2𝜂𝑛−1𝜂𝑛] −
2𝑆Γ𝑞

𝑖
[𝜂𝑛+1 − 𝜂𝑛−1] −

Γ𝑞

𝑖
𝑢0
2[3𝜂𝑛−1

2 + 2𝜂𝑛−1 + 𝜂𝑛−1
3 + 𝜂𝑛+1𝜂𝑛

2 + 2𝜂𝑛𝜂𝑛+1 −

𝜂𝑛−1𝜂𝑛
2 − 2𝜂𝑛−1𝜂𝑛 − 3𝜂𝑛+1

2 − 2𝜂𝑛+1 − 𝜂𝑛+1
3 , 

𝐵6 = 𝐽𝑆[𝜂𝑛+1 − 𝜂𝑛−1] +
𝐽𝑢0

2

2
[3𝜂𝑛−1

2 + 2𝜂𝑛−1 + 𝜂𝑛−1
3 + 𝜂𝑛+1𝜂𝑛

2 + 2𝜂𝑛+1𝜂𝑛 − 3𝜂𝑛+1
2 − 2𝜂𝑛+1 − 𝜂𝑛+1

3 −

𝜂𝑛−1𝜂𝑛
2 − 2𝜂𝑛−1𝜂𝑛] −

2𝑆Γ𝑞

𝑖
[𝜂𝑛+1 + 𝜂𝑛−1 − 2𝜂𝑛] +

Γ𝑞

𝑖
𝑢0
2[3𝜂𝑛−1

2 + 𝜂𝑛−1
3 + 2𝜂𝑛

2 + 𝜂𝑛+1𝜂𝑛
2 + 2𝜂𝑛𝜂𝑛+1 +

4𝜂𝑛−1 + 𝜂𝑛−1𝜂𝑛
2 + 2𝜂𝑛−1𝜂𝑛 + 4𝜂𝑛+1 + 𝜂𝑛+1

3 + 3𝜂𝑛+1
2 , 

𝐵7 = 𝜆𝐽𝑆[𝜂𝑛+2 + 𝜂𝑛−2 − 2𝜂𝑛] −
𝜆𝐽𝑢0

2

2
[3𝜂𝑛−2

2 + 4𝜂𝑛−2 + 𝜂𝑛−2
3 + 2𝜂𝑛2 + 4𝜂𝑛+2 + 𝜂𝑛+2𝜂𝑛

2 + 2𝜂𝑛+2𝜂𝑛 + 𝜂𝑛+2
3 +

3𝜂𝑛+2
2 + 𝜂𝑛−2𝜂𝑛

2 + 2𝜂𝑛−2𝜂𝑛] + Γ𝑆2𝑢0
2[2𝜂𝑛−1

2 + 4𝜂𝑛−1 + 2𝜂𝑛𝜂𝑛−1
2 + 4𝜂𝑛𝜂𝑛−1 + 2𝜂𝑛+1

2 + 4𝜂𝑛+1 + 2𝜂𝑛𝜂𝑛+1
2 +

4𝜂𝑛𝜂𝑛+1, 

𝐵8 = 𝜆𝐽𝑆[𝜂𝑛+2 − 𝜂𝑛−2] −
𝜆𝐽𝑢0

2

2
[3𝜂𝑛−2

2 + 2𝜂𝑛−2 + 𝜂𝑛−2
3 + 𝜂𝑛+2𝜂𝑛

2 + 2𝜂𝑛+2𝜂𝑛 − 𝜂𝑛−2𝜂𝑛
2 − 2𝜂𝑛−2𝜂𝑛 − 𝜂𝑛+2

3 −

2𝜂𝑛+2 − 3𝜂𝑛+2
2 + Γ𝑆2𝑢0

2[2𝜂𝑛−1
2 + 4𝜂𝑛−1 + 2𝜂𝑛𝜂𝑛−1

2 + 4𝜂𝑛𝜂𝑛−1 − 2𝜂𝑛+1
2 − 4𝜂𝑛+1 − 2𝜂𝑛𝜂𝑛+1

2 − 4𝜂𝑛𝜂𝑛+1. 
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𝐶1 = −2𝐽𝑆 + 2𝐽𝑆𝑐𝑜𝑠(𝑄) − 6𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(𝑄) − 4𝐽𝑢0

2𝑐𝑜𝑠(𝑄) + 4Γ𝑆𝑞𝑠𝑖𝑛(𝑄) − 4Γ𝑞𝑢0
2𝑠𝑖𝑛(𝑄) −

4Γ𝑢0
2𝛽𝛽∗𝑠𝑖𝑛(𝑄), 

𝐶2 = −2𝐽𝑆𝑠𝑖𝑛(𝑄) + 2𝐽𝑢0
2𝑠𝑖𝑛(𝑄) + 2𝐽𝑢0

2𝛽𝛽∗𝑠𝑖𝑛(𝑄) − 4Γ𝑆𝑞 + 4𝑆Γ𝑞𝑐𝑜𝑠(𝑄) − 8Γ𝑞𝑢0
2𝑐𝑜𝑠(𝑄) −

12Γ𝑞𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(𝑄), 

𝐶3 = 2𝜆𝐽𝑆𝑐𝑜𝑠(2𝑄) − 2𝜆𝐽𝑆 − 6𝜆𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(2𝑄) − 4𝜆𝐽𝑢0

2𝑐𝑜𝑠(2𝑄) − 8Γ𝑆2𝑢0
2𝑐𝑜𝑠(𝑄) − 4Γ𝑆2𝑢0

2𝛽𝛽∗𝑐𝑜𝑠(2𝑄) −

8Γ𝑆2𝑢0
2𝛽𝛽∗, 

𝐶4 = −2𝜆𝐽𝑆𝑠𝑖𝑛(2𝑄) + 2𝜆𝐽𝑢0
2𝛽𝛽∗𝑠𝑖𝑛(2𝑄) + 2𝜆𝐽𝑢0

2𝑠𝑖𝑛(2𝑄) + 8Γ𝑆2𝑢0
2𝑠𝑖𝑛(𝑄) + 4Γ𝑆2𝑢0

2𝛽𝛽∗𝑠𝑖𝑛(2𝑄), 

𝐶5 = −2𝐽𝑆 + 2𝐽𝑆𝑐𝑜𝑠(𝑄) − 6𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(𝑄) − 4𝐽𝑢0

2𝑐𝑜𝑠(𝑄) − 4Γ𝑆𝑞𝑠𝑖𝑛(𝑄) + 4Γ𝑞𝑢0
2𝑠𝑖𝑛(𝑄) +

4Γ𝑢0
2𝛽𝛽∗𝑠𝑖𝑛(𝑄), 

𝐶6 = −2𝐽𝑆𝑠𝑖𝑛(𝑄) − 2𝐽𝑢0
2𝑠𝑖𝑛(𝑄) − 2𝐽𝑢0

2𝛽𝛽∗𝑠𝑖𝑛(𝑄) − 4Γ𝑆𝑞 + 4𝑆Γ𝑞𝑐𝑜𝑠(𝑄) − 8Γ𝑞𝑢0
2𝑐𝑜𝑠(𝑄) −

12Γ𝑞𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(𝑄), 

𝐶7 = 2𝜆𝐽𝑆𝑐𝑜𝑠(2𝑄) − 2𝜆𝐽𝑆 − 6𝜆𝐽𝑢0
2𝛽𝛽∗𝑐𝑜𝑠(2𝑄) − 4𝜆𝐽𝑢0

2𝑐𝑜𝑠(2𝑄) − 8Γ𝑆2𝑢0
2𝑐𝑜𝑠(𝑄) − 4Γ𝑆2𝑢0

2𝛽𝛽∗𝑐𝑜𝑠(2𝑄) −

8Γ𝑆2𝑢0
2𝛽𝛽∗, 

𝐶8 = 2𝜆𝐽𝑆𝑠𝑖𝑛(2𝑄) − 2𝜆𝐽𝑢0
2𝛽𝛽∗𝑠𝑖𝑛(2𝑄) − 2𝜆𝐽𝑢0

2𝑠𝑖𝑛(2𝑄) − 8Γ𝑆2𝑢0
2𝑠𝑖𝑛(𝑄) − 4Γ𝑆2𝑢0

2𝛽𝛽∗𝑠𝑖𝑛(2𝑄). 

 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 

 

2246 
 

References  

[1]  R. S. Mackay and S. Aubry, “Proof of existence of breathers for time-reversible or Hamiltonian networks 

of weakly coupled oscillators”,  Nonlinearity  vol. 7, pp. 1623, (1994).  

[2]  S. Flach and A. V. Gorbach, “Discrete breathers - Advances in theory and applications”,  Physics Reports  

vol. 467, pp. 1, (2008).  

[3]  U. T. Schwarz, L. Q. English and A. J. Sievers, “Experimental generation and observation of intrinsic 

localized spin wave modes in an antiferromagnet”,  Physical Review Letters  vol. 83, pp. 223, (1999).  

[4]  E. Trias, J. J. Mazo and T. P. Orlando, “Discrete breathers in nonlinear lattices: Experimental detection 

in a Josephson array ”,  Physical Review Letters  vol. 84, pp. 741, (2000).  

[5]  A. V. Ustinov, “Imaging of discrete breathers”,  Chaos  vol. 13, pp. 716, (2003).  

[6]  M. Sato, B. E. Hubbard and A. J. Sievers, “Colloquium: Nonlinear energy localization and its 

manipulation in micromechanical oscillator arrays”,  Reviews of Modern Physics   vol. 78, pp. 137, (2006).  

[7]  H. N. Chan and K. W. Chow, “Periodic and localized wave patterns for couple Ablowitz-Ladik Sysems 

with nagative cross phase modulation”, Communications in Nonlinear Science and Numerical Simulation   

vol. 65, pp. 185, (2018).  

[8]  M. A. Porter, P. G. Kevrekidis and C. Daraio, “Granular crystals: Nonlinear dynamics meets materials 

engineering”,  Physics Today  vol. 68, pp. 44, (2015).  

[9]  Y. Zolotaryuk, S. Flach and V. Fleurov, “Discrete breathers in classical spin lattices ”,  Physical Review 

B  vol. 63,pp. 214422, (2001).  

[10]  J. M. Bilbault and P. Marqui𝑒′, “Energy localization in a nonlinear discrete system ”,  Physical Review 

E  vol. 53, pp. 5403, (1996).  

[11]  I. Daumont, T. Dauxois and M. Peyard, “Modulational Instability: first step towards energy localization 

in nonlinear lattices”,  Nonlinearity  vol. 10, pp. 617, (1997).  

[12]  T. B. Benjamin and J. E. Feir, “The disintegration of wave trains on deep water Part 1. Theory”,  

Journal of Fluid Mechanics  vol. 27, pp. 417, (1967).  

[13]  Y. S. Kivshar and M. Peyrard, “Modulational instabilities in discrete lattices”,  Physical Review A  vol. 

46, pp. 3198, (1992).  

[14]  Y. S. Kivshar, “Localized modes in a chain with nonlinear on-site potential”,  Physics Letters A  vol. 

173, pp. 172, (1993).  

[15]  L. kavitha, A. Mohamadou, E. Parasuraman, D. Gopi, N. Akila and A. Prabhu, “Modulational instability 

and nano-scale energy localization in ferromagnetic spin chain with higher order dispersive interactions”,  

Journal of magnetism and magnetic materials   vol. 404, pp. 91, (2016).  

[16]  J. P. Nguenang, M. Peyrard, A. J. Kenfack and T. C. Kofane “On modulational instability of nonlinear 

waves in 1D ferromagnetic spin chains ”,  Journal of Physics: Condensed Matter   vol. 17, pp. 3083, (2005).  

[17]  K. Yoshimura, “Modulational instability of zone boundary mode in nonlinear lattices: Rigorous results 

”,  Physical Review E   vol. 70, pp. 016611, (2004).  

[18]  C. Christal Vasanthi and M. M. Latha, “Localized spin excitations in a disordered antiferromagnetic 

chain with biquadratic interactions ”,  The European Physical Journal D  vol. 69, pp. 268, (2015).  

[19]  L. Kavitha, E. Parasuraman, D. Gopi, A. Prabhu and Rodrigo A. Vicencio, “Nonlinear nano-scale 

localized breather modes in a discrete weak ferromagnetic spin lattice”,  Journal of Magnetism and Magnetic 

Materials  vol. 401, pp. 394, (2016).  

[20]  O. Prokhnenko, J. Kam𝑎′rad, K. Proke𝑠̆, Z. Arnold and A. V. Andreev “Helimagnetism of Fe: High 

pressure study of an 𝑌2𝐹𝑒17 single crystals”, Physical Review Letters  vol. 94, pp. 107201, (2005).  

[21]  R. M. White, “Quantum Theory of Magnetism”, Springer, New York, (1982).  

[22]  R. Quartu and H. T. Diep, “Phase diagram of body-centered tetragonal helimagnets”,  Journal of 

Magnetism and Magnetic Materials  vol. 182, pp. 38, (1998).  

[23]  V. Laliena, J. Campo and Y. Kousaka, “Understanding the H-T phase diagram of the monoaxial 

helimagnet”,  Physical Review B  vol. 94, pp. 094439, (2016).  

[24]  M. Daniel and J. Beaula, “Soliton spin excititaons in a Heisenberg helimagent”,  Chaos, Solitons and 

Fractals  vol. 41, pp. 1842, (2009).  

[25]  M. Daniel and J. Beaula, “Nonlinear spin excitations in a classical Heisenberg anisotropic helimagnet”, 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 

 

2247 
 

Physica D  vol. 239, pp. 397, (2010).  

[26]  A. Ludvin Felcy and M. M. Latha, “A spin rotator model for Heisenberg helimagnet”, Physica A  vol. 

491, pp. 1, (2018).  

[27]  I. G. Bostrem, E. G. Ekomasov, Jun-Ichiro Kishine, A. S. Ovchinnikov and VI. E. Sinitsyn, “Dark 

discrete breather modes in a monoaxial chiral helimagnet with easy-plane anisotropy”,  Physical Review B  

vol. 104, pp. 214420, (2021).  

[28]  Sunjae Chung, Sangyeop Lee, Taehee Yoo, Hakjoon Lee, J H Chung, M S Choi, Sanghoon Lee, X Lu, 

J K Furdyna, Jae-Ho Han, Hyun-Woo Lee and Kyung-Jin Lee , “The critical role of next-nearest-neighbour 

interlayer interaction in the magnetic behavior of magnetic/non-magnetic multilayers ”,  New Journal of 

Physics  vol. 15, pp. 1, (2013).  

[29]  F. J. Dyson, “General theory of spin wave interactions ”,  Physical Review B  vol. 102, pp. 1217, 

(1956).  

[30]  Maleev, “Scattering of slow neutrons in ferromagnets”,  Soviet Journal of Experimental and Theortical 

Phyics  vol. 6, pp. 776, (1958).  

[31]  R. J. Glauber, “Coherent and In-Coherent states of the radiation field”,  Physical Review  vol. 131, pp. 

2766, (1963).  

  


