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Abstract 

Graph coloring is a significant aspect within graph theory, offering various techniques tailored to different 

graph types. The exploration of graph domination represents another pivotal domain in graph theory. This 

paper delves into the nuanced realms of vertex domination and edge domination, specifically within the 

context of semigraph coloring. Additionally, our investigation extends to examining the dynamic alterations 

in color energy within semigraphs resulting from targeted edge deletions. 
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1. Introduction 

Graph theory serves as a fundamental field in mathematics, with graph coloring and domination standing out as 

key areas of study. The process of assigning colors to graph components and understanding dominance 

relationships contributes significantly to unraveling the intricate nature of graphs. This paper delves into the 

intersection of these two domains by focusing on vertex domination, edge domination, and their connection to 

the coloring of semigraphs. 

Graph coloring, a well-established concept, involves assigning colors to vertices or edges under certain 

constraints. Different types of graphs necessitate varied coloring techniques, each offering insights into the 

underlying structure of the graph. Simultaneously, the exploration of domination in graphs, which centers 

around the control and influence exerted by specific vertices or edges, represents another cornerstone in graph 

theory. 

In this study, we specifically direct our attention to semigraphs—a versatile class of graphs where edges may 

lack direction. Our objective is to investigate the intricacies of vertex domination and edge domination within 

the context of semigraph coloring. By delving into these interwoven concepts, we aim to enhance our 

understanding of the relationships between graph coloring and dominance structures. 

Furthermore, our exploration extends beyond conventional analyses as we delve into the dynamic realm of color 

energy within semigraphs. Specifically, we investigate how the removal of edges influences the overall color 

energy of semigraphs. This nuanced examination provides a fresh perspective on the dynamic nature of 

semigraphs and their response to structural alterations. 

Through this interdisciplinary exploration, we seek to contribute novel insights to the broader field of graph 

theory, shedding light on the complex interplay between graph coloring, domination, and the dynamic changes 

induced by edge deletions in semigraphs. 
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2. In this section we recall the definitions of graphs, semigraphs, coloring of graphs and domination in 

graphs. From [1, 2, and 3] we introduce new definitions in coloring of semigraphs and color domination of 

semigraphs with respect to vertices and edges. 

2.1.1 A Graph G is an ordered pair (V, E) where the vertex set V is non empty and the edge set E may be empty 

or non-empty. We say that the edge is incident with the vertices x and y if x and y are the end points of E.[4] 

2.1.2 A Semigraph S is a pair (V, X) where V is a nonempty set whose elements are observed as vertices of S 

and X is a set of ordered n-tuples n ≥ 2 of prescribed vertices called edges of S satisfying the following 

conditions: 

(i) Any two edges have at most one vertex in common place. 

(ii) Two edges E1 = (u1, u2, um) and E2 = (v1, v2, vn) are said to be identical if (a) m = n and (b) either ui = vi 

or ui = vn−i+1 for 1 ≤ i ≤ n 

The vertices in a semigraph are splitted into three types namely end vertices, middle vertices and middle-end 

vertices, based on their positions in an edge. The end vertices are represented by thick dots, middle vertices are 

represented by small circles, a small tangent is drawn at small circles to represent middle-end vertices. [4] 

2.1.3. Coloring of graphs: Graph Coloring problem is to assign colors to certain elements of a graph subject to 

certain constraints. Vertex coloring is the most common graph coloring problem. The problem is, given m 

colors, find a way of coloring the vertices of a graph such that no two adjacent vertices are colored using same 

color. The other graph coloring problems like Edge Coloring (No vertex is incident to two edges of same color) 

and Face Coloring (Geographical Map Coloring) can be transformed into vertex coloring. 

2.1.4 Domination in graphs: We introduce the concept of dominating set in graphs. A set S, a subset of V of 

vertices in a graph G= (V, E) is a dominating set if every vertex v in V is an element of S or adjacent to an 

element of S. We can also say that if S is a subset of C, then N(S) = V (G). A dominating set S is a minimal 

dominating set if no proper subset S’ of S is a dominating set. The dominating number of G is the minimal 

cardinality of the dominating set of G. [3] 

3. In this section we introduce new definitions in semigraphs with respect to coloring and domination in 

semigraphs with respect to vertices and edges. 

3.1.1 Coloring in semigraphs is defined as the set of colors assigned to vertices and edges in such a way that no 

two adjacent vertices and no two adjacent edges have the same color. The minimum number of colors used for 

vertices is called as the vertex chromatic number of the semigraph denoted by v (G) and the minimum number 

of colors used for edges is called as the edge chromatic number of the semigraph denoted by 

chromatic number of the graph is the maximum number of colors used for vertices or and edges. 

e (G) . The 

3.1.2 Equal coloring in semigraph: If the number of colors used for vertices and edges are same in a semigraph 

then it is called as equal coloring in a semigraph.   That is the vertex chromatic number v (G) and edge 

chromatic number e (G) are same. 
 

3.1.3 Uniform coloring in a semigraph: If the end vertices and all the middle vertices and middle end vertices of 

every edge receives the same color then it is defined as uniform coloring in a semigraph. 

3.1.4 Strong coloring in a semigraph: If the colors assigned for vertices and edges are repeated more than once 

then we have strong coloring in a semigraph. 

3.1.5 Bipartite semigraph: A bipartite semi graph is a graph whose vertices can be divided into disjoint vertex 

sets comprising end vertices and middle vertices such that no edge connect the vertices of the same set. A 

balanced bipartite semi graph is the one that has equal number of left vertices, right vertices, middle vertices, 

left end middle vertices and right end middle vertices. 
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4. In this section, we study the relation between the chromatic numbers of the semigraph, vertex chromatic 

number and edge chromatic number through the colors assigned to the vertices and edges of the semigraph. The 

chromatic number of the graph, vertex and edges of the few types of semigraphs are shared in the following 

table. 
 

S.No 

. 

Type of Graph Chromatic number of 

graph 

Vertex Chromatic number Edge Chromatic number 

1 Path 4 2 2 

2 Cycle C3 3 3 3 

 C4 4 2 2 

 C5 4 3 4 

 C6 4 2 2 

 C7 5 3 5 

 C8 4 2 2 

 C9 4 3 4 

3 Complete graph K2 2 2 1 

 K3 3 3 3 

 K4 5 4 5 

4 Pan graph P3 4 3 4 

 P4 4 3 4 

 P5 5 2 5 

5 Sun graph S4 5 3 5 

6 Star K1,n 4 2 4 

7 Particular eye graph 4 2 4 

8 Particular Arch 3 2 1 

9 Particular Caterpillar 

graph(1) 

4 2 4 

10 Particular Caterpillar 

graph(2) 

6 2 6 

11 Particular Snake 

graph with 2 vertices 

6 2 6 

12 Traingular snake 

graph with 3 vertices 

5 2 5 

13 Particular Lollipop 

graph 

4 2 4 

14 Complete bipartite 

graph K2,2 

4 2 4 

15 Bipartite graph K1,2 4 3 4 

16 Particular Lollipop 4 3 4 
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 semigraph    

17 Particular Lollipop 

semigraph 

5 2 5 

 

We have found the chromatic number of the graph, vertex chromatic number and edge chromatic number of few 

kinds of semigraphsby considering the following: 

1. We fix the number of the colors for the vertices in such a way that no two adjacent vertices receives the same 

color. 

2.We give colors to the edges in such a way that no edge shares the color assigned to the adjacent vertices and 

the adjacent edges. 

3. The chromatic number of the graph is the maximum number of colors used. 

The minimum chromatic number is same as vertex chromatic number in most of the graphs and the maximum 

chromatic number is same as edge chromatic number in most of the graphs. 

We find that color domination can be taken either with respect to vertex chromatic number or with respect to 

edge chromatic number. 

We find that for most of the graphs the chromatic number of the graph is same as the edge chromatic number of 

the graph. 

5. In this section, we discuss about singular value inequality and we introduce new definitions to discuss the 

relation with respect to the color energy of semigraphs due to edge deletion. 

5.1.1 Matrix sum inequality with respect to the singular values 

Let the n by n complex matrix be X and let us denote its singular values by 

s1(X) ≥ s2(X) ≥ s3(X) ≥……….≥ sn(X) ≥ 0. Let there be only real eigenvalues in X, that is 

1(X )  2 (X )  .....  n (X ). Consider positive semi definite X  where i ( X )  si ( X ) 

for all i. Then the Matrix sum inequality with respect to the singular values is 
n n n 

 si ( A  B)   si ( A)   si (B) 
i1 i1 i1 

5.1.2 Adjacency Matrix of a Color Semigraph 

Consider a semigraph SG (V, X). Let V  {1,2,....p}be vertex set and X={e1,e2,…eq}, the edge set where 

e j    (i1,i2 ,. .... i j ) and i1,i2 ,......i j are distinct elements of V, then the p  p matrix A is the Adjacency 

matrix of semigraph SG(V , X ) whose entries are given by 

a ij = 1, if vi and v 
j 
are adjacent 

= 0, otherwise. 

5.1.3 Color Energy of a graph 

Consider the graph G not directed, not infinite and not multiple graph with number of vertices n and number of 

edges  m. Consider  the  adjacency  matrix   A  aij  of  graph G ,  then  the  eigenvalues  assumed  in  non- 

increasing order 1, 2 ,.....n of A(G) , are the graph eigenvalues.   Then CE(G) color graph energy G , is 
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defined as 

 

 

CE(G)   i   
.   The spectrum G is the set 

i1 

{1, 2 ,. .. n} denoted by Spec G .   If G has 

distinct eigenvalues say, 1  2  ....  n and if their multiplicities are m(i ) then 
 

 1 2 .. .. n 
Spec G  m( ) m( ) .. .. m( )




 1 2 n 

The spectrum of the graph does not depend on the labeling of the vertex set of the graph. Since we have the 

matrix symmetric and real with the trace zero, we have sum of the real eigenvalues to be zero. 

5.1.4 A kind of color energy with respect to the distance in a semigraph 

If SG is a simple connected semigraph and the vertices are labelled as v1 , v2 , .. . vn . then the matrix of a 

semigraph SG with respect to the distance, is given by a square matrix D(G)= d  in which the entries are 

the distance between the vertices vi and v j in SG . The eigenvalues of the matrix we consider μ1 , μ2 ,. . . μn 

are said to be the distance eigenvalues. As we have a matrixwhich is symmetric, we have real eigenvalues in 

order μ1  μ2  ...  μn . The energy with respect to distance of a color semigraph CED (SG) is defined as 
 
 

 

C ED (SG)   μi . 
i=1 

 

5.1.5 Color Energy of a Semigraph 

Let SG be not directed, not infinite and not a multiple semigraph with number of vertices n and number of 

edges m. Consider A  aij  the adjacency matrix of color semigraph SG . The eigenvalues  1,2 ,.  . n 

of A(SG) , taken not increasing order, are the eigenvalues of the color semigraph CSG . Color energy of a 
n 

semigraph SG , denoted by CE(SG) is defined as CE(SG)   i 

i1 

. The set 1,2 ,. ... n is the spectrum 

of color semigraph and is denoted by Spec CSG. If the eigenvalues of SG are distinct say,1  2  ....  n 

with their multiples m(i) then we write 
 

 1 2 ..   .. n 
SpectrumC SG  m( ) m( ) ..   .. m( )




 1 2 n 

The spectrum of the above graph does not depend on the labeling of the vertex set of the graph. Since we have 

the matrix symmetric and real with the trace zero, we have sum of the real eigenvalues to be zero. 

5.1.6 Theorem 

If CSH is a non-empty induced color subsemigraph of a simple connected regular semigraph CSG then 

CE(CSG)  CE(CSH )  CE(CSG')  CE(CSG)  CE(CSH ) 

Proof 

CSG is a connected simple semigraph. CSH be an induced subsemigraph of CSG ,containing all edges of 

CSG connecting   two vertices of CSH . Let CSG  CSH be the semigraph, having got from CSG 

removing all vertices of CSH and the edges incident with CSH . If CSG1 and CSG2 are the two 

n 

n 
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semigraphs with out any vertices in common and if we consider CSG1 CSG2 as the semigraph with vertex 

set and the edge set V (CSG1) V (CSG2) ; E(CSG1)  E(CSG2) respectively. Hence 

A(CSG1 CSG2)  A(CSG1)  A(CSG2) 
 

 A(CSH ) X T 
A(CSG)  

 X 
 A(CSH ) 0


A(CSG  CSH ) 

 0 X T 
     

 0 0  X 0 

in which the edges joining CSH and CSG  CSH is X . 
 

 0 X T 

Also if A(CSG')   

 X 0 

Using the inequality theorem of matrices with respect to singular values, we get 

 
 

CE(SG)  CE(SH )  CE(SG ') , which gives one part of the inequality 

 

 

CE(SG)  CE(SH )  CE(SG ') 

 A(CSH ) 0
A(CSG ')  A(CSG)   

 0 0

By the inequality theorem with respect to singular values, 

CE(SG ')  CE(SG)  CE(SH ) 

CE(SG ')  CE(SG)  C(SH )    ii 

From i and ii ,itfollows 

CE(SG)  CE(SH )  CE(SG ')  CE(SG)  CE(SH ) 

Both the left and right equality holds when CE(SH )  

5.1.7 Theorem 

If CSH   is a non-empty induced color sub-semigraph of a simple connected semigraph   SG . Then 

CED (SG)  CED (SH )  E(CSG')  C ED (SG)  CED (SH ) 

Proof 

CSG is a connected simple color semigraph. CSH be an induced color subsemigraph of CSG , containing all 

edges of CSG joining two vertices of CSH Let CSG  CSH denote the semigraph, having got from SG 

removing all vertices of CSH and the edges that are incident with CSH . If CSG1 and CSG2 are the 

two semigraphs with out any vertices in common and if we consider CSG1 CSG2 as the semigraph with 

vertex set and the edge set V (CSG1) V (CSG2) ; E(CSG1)  E(CSG2) respectively. Hence 

A(CSG1 CSG2)  A(CSG1)  A(CSG2) 
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 D(CSH ) X T 
D(CSG)  

 X 


D(CSG  CSH ) 

 D(CSH ) 0
   
 0 0

 0 X T 
 

 X D(CSG  CSH ) 

X Represents theedges connecting CSH and CSG  CSH. 
 

 

 D(CSH ) 0  0 X T 
D(CSG)   0   0 X A(CSG  CSH ) 

   

 0 X T 
Also if A(CSG')  

 X 


A(CSG  CSH )





 D(CSH ) 0
D(CSG)  

 0 
  A(CSG') 

0

By singular value inequality theorem 

CED (SG)  CED (SH )  CE(SG') 

CED (SG)  CED (SH )  CE(SG')    i 

 D(CSH ) 0
A(CSG')  D(CSG)   

 0 0

By singular value inequality theorem, 

CE(SG')  CED (SG)  CED (SH ) 

CE(SG')  CED (SG)  CED (SH )    ii 

From i and ii , we have 

CED (SG)  CED (SH )  CE(SG')  CED (SG)  CED (SH ) 

Both the left and right equality holds when CED (SH )  

From i and ii ,we have 

CED (SG)  CED (SH )  CE(SG')  CED (SG)  CED (SH ) 

Both the left and right equality holds when CED (SH )  

6. Conclusion 

We find that color energy of semigraphs changes due to edge deletion. We can study the changes in color 

energy of semigraph due to vertex deletion. We can study the relation with other forms of color energies of 

semigraphs due to edge deletion and vertex deletion 
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