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Abstract: Uncertainty is the likelihood that a quantity will statistically deviate from the desired value. Though
quality of a machined surface are attributed by many parameters, in this investigation, three surface textures
namely R,, R, and R, are considered to measure the uncertainties in quality of a surface during machining of
AISI 4140 Alloy Steel. First, these three surface textures are modeled using RSM with speed, feed, and depth
of cut as input parameters and thereafter uncertainties and sensitivities are measured. It is observed that the
uncertaintie of the model R,, R, and R, is 0.0440, 0.2567, and 0.2568 respectively using the Monte Carlo
Simulation. Principal contributors in uncertainty and sensitivity for R,, R,, and R, are feed, depth of cut, and
depth of cut respectively.
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1. Introduction

Uncertainty is the range of possible values within which the true value of the measurement lies.
Combination of input parameters or repeated measurements may cause uncertainties. Manufacturing an item
precisely to the desired size is not achievable in engineering. The precision of a measurement depends on a variety
of elements, including the environment, the operator's skill, and the measurement process. Therefore, any quantity
of a manufactured good that is measured is subject to uncertainty, and the measurement results are incomplete
without specific mention of uncertainty. The probabilistic character of this uncertainty indicates that we know
only a portion of the value of the quantity. Therefore, all measured quantity of a manufactured product are
subjected to uncertainty and the measured result is incomplete in a sense. This uncertainty have a probabilistic
nature and depicts incomplete knowledge of the quantity value. Uncertainty propagates based on the variables.
The uncertainty is expressed either by absolute error Ax or by relative error, Ax/x. In most of the situation in
manufacturing the uncertainty is quantified by the standard deviation, a. If we can presume the distribution of this
error, we can easily fix the confidence limits which describes the region within which the true value of the variable
may be found. For example, if the error of a particular measurement is normally distributed, it can be stated
approximately standard deviation from the central value x will cover approximately 68% cases.

Turning is one of the simple and old machining operations where excess materials are removed to convert
the blank into the desired shape. In any machining process, an error is the deviation of the actual value from the
desired value. Uncertainties are the probabilistic value of this error. Users as well as manufacturers must have
sufficient knowledge about these uncertainties to avoid scrap. Major part of the previous work dealt with only R,
to denote the surface characteristics but there can be a different surface with the same R, is the average value
only. The machining parameters as for example like speed, feed and depth of cut, etc. have the most dominant
effect on the machining performance. Therefore, it becomes more important to select them carefully to obtain a
machined component with high quality & accuracy. Uncertainty is an inherent property in any manufacturing
process. If these parameters are not selected properly, the uncertainty of the process may increase. The uncertainty
may be classified into two types, one is systematic and another is random. Systematic uncertainty can be
eliminated, but random uncertainty cannot be eliminated as they arise from the actual measurement of the product.
Therefore, random uncertainty can only be reduced. To evaluate the uncertainty, it is important to consider those
factors which have most influences on the responses. Fig.1 shows the factors that affect the uncertainty. In this
study, cutting speed, feed, and depth of cut, are considered as factors that affect the uncertainty of the responses.
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It is also the estimated range that considers all the possible outcomes of the measurement within a confidence
level.
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Fig. 1: Influencing Variables in Uncertainty

2. Related Work

J Wen et al. [2] observed that CNC turning is especially suitable for hard materials and opined that
selection of machining parameters is very important due to its narrow range of acceptable values. Li Hao et al. [3]
performed a multi-response optimization where they maximized quality and flexibility and minimized the cost.
Pandey et al [4] applied fuzzy approach to optimize the drilling process keeping minimum bone tissue damage.
Singh et al. [5] used Taguchi’s design of experiment and fuzzy approach, considering 4 parameters with 5 levels
to optimize bead geometry in submerged arc welding. Li et al. [6] used a special type of GA to perform an
optimization of performance of Ti alloy. Suresh et al. [7] applied grey-fuzzy to avoid uncertainties in the
experimentation. M. Libah et al. [8] compared wiper and ceramic tools based on roughness parameters (R, R;,
and R,) during hard turning of AISI4140 steel. They found out the most influencing parameters and optimal
cutting conditions. They used RSM and ANOVA for modelling. But surface roughness (SR) parameters have not
been considered in lateral direction. Akkus et al. [9] compared artificial neural network, and fuzzy technique for
modelling of SR based on mean squared error [MSE] during hard turning of AISI 4140 steel They used MATLAB
for ANN and fuzzy logic and Minitab for variance analysis. Aggarwal et al. [10] considered different types of
regression models namely multiple regression models, Random forest, and Quantile regression for surface
roughness parameters during hard turning of AISI 4340 steel. They opined that feed rate is the most influencing
factors and multiple regression models are most suitable when surface roughness is below 1 micrometer. Geier
et al. [11] developed empirical models of SR parameters R,, R;, and R, during finish turning of AISI 4140 steel
with wiper cutting tools. They developed linear models of surface parameters. Gadelmawla et al. illustrated
various surface parameters, and developed a new vision-based software package “Surfvision”, and used this
software to calculate the surface parameters. Lin et al. [13] investigated the EDM process and compared GRA
and fuzzy logic with Taguchi method. In [14-16], studies were conducted on surface integrity. C. L He [17] et al
explored the mechanism of creation of surface roughness. Sengottuvel et al. [18] used fuzzy logic to select input
parameters in EDM process and kept the tool wear, SR and MRR (material removal rate) and machining costs to
a desired level.

It is observed that ample research have been performed on the surface parameters during turning, present
investigation is different from the previous work with respect to the following points.

e A combined uncertainty is evaluated based on surface textures like R, R;, and R, using Monte Carlo

Simulation.
o Sensitivity analysis of the above three surface textures have been performed. Significant contributors
to sensitivity are identified.

3. Most Influencing Surface Texture Parameters

Surface texture or 3D topography of a machined surface generally varies periodically or randomly from
the mean surface. The description of surface texture includes roughness, waviness, lay and flaws. Geometric
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parameters can be categorized in two broad groups namely height parameters and spatial parameters. There are
many height parameters to designate a surface. Amongst this, three height parameters which are relevant in this
investigation are given hereunder.

Surface Roughness (R,): This is the surface profile's typical height above the mean line. Such a line that
divides the surface profile into two equal halves is known as the center line or mean line. Surface roughness is
shown in Fig.2.

Mean Line

Vi

Fig.2: Pictorial view of R,

All profile heights are measured from the reference line. Mathematically this can be written as,
L
Ro=CLA=AA==[lz=mldx .......c.............
1 L
Where m = - ["zdx

Variance ¢? = %fOL(z —m)?dx

The distance between the tallest peak and the deepest valley is represented byR; . In the event of high peaks or
severe scratches, this parameter is sensitive. R, is depicted in Fig. 3.

A

Fig.3: Pictorial view of R,

When surfaces feature sporadic high peaks and deep valleys, R, is more sensitive. According to the ISO
standard, this is the difference between the averages of the top five peaks and the bottom five valleys, as seen in
Fig. 4. This is shown mathematically in Eq. 2 as follows.

1 1
RZ(ISO) = ;Z?:l i — ;Z?:l Vi v (2)

Fig.4: Pictorial view of R,
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4. Uncertainty in Manufacturing Process

Measurement is a process of assigning a value to a physical variable. But when the true value of the
measurement is not known then a probable error of the measurement is determined instead of the actual error.
This type of estimation is known as the uncertainty of the measured value. Uncertainty analysis is a process which
is applied for quantifying & identifying the error in any measurement. In any experimental measurement, the
uncertainty may arise due the systematic or bias error and random error. During a set of measurements, the
systematic or bias error remains constant under the fixed working environment. This type of error can only be
determined by comparison. The random error may occur due to the personal fluctuations.

5. Modelling of Uncertainty

The standard uncertainties u¢(x;) can be evaluated by two methods, Type A and Type B. Type A is
basically a statistically evaluated method, based on repeated measurements. In this method, the arithmetic mean
and experimental standard deviation of the mean are employed as input estimation, x; , and the standard
uncertainty u,(x;) respectively. Type B is another method to evaluate the standard uncertainty by considering all
available resources and professional experience. Though there are more than one methods to evaluate the standard
uncertainties u,(x;) , there is hardly any difference between these methods for the purpose of uncertainty
propagation.

5.1 Steps for modelling of uncertainty

The steps to determine and report the uncertainty of any measurement are given as follows:

a) Identify the input parameters, X; and the responses Y for the mathematical model. The mathematical
expression between the responses and input parameters are expressed as Y = f(x, Xz, v ver e, Xpp)-

b) Determine an estimate,x;, considering the value of each input parameters, X;.

c) Evaluate the standard uncertainty,u,(x;), for each input estimate,x;, by using either Type A or Type
B technique of evaluation.

d) Determine the estimate, y, of the output from the relationship y = f(x, x5, cvv vov oo ,Xn), Where f is
the function evaluated from step a.

e) Calculate the combined standard uncertainty u.(y), of the estimate y.

5.2 Determination of Standard uncertainties

As mentioned earlier, there are two methods to determine the standard uncertainties. One is Type A and
another is Type B. These two methods are briefly discussed below.
5.2.1 Type A evaluations

Type A method for evaluation of standard uncertainties is based on the repeated measurements. The usual
steps to evaluate the standard uncertainties by Type A method are as follows:
o Calculate the arithmetic mean, X; , which is the actual value of the input estimate, x; and it is defined as,

x =X = % =1 XiJ M
Where,

X; is the input parameter in the mathematical model.
n denotes the number of experiments which have done under the same working conditions.

o Determine the experimental standard deviation, S(Xi,k) of data obtained from experimentation value and it is
defined as,

1 =\2
s(Xige) = Jﬁ i1 (Xie — Xi) )
e  Evaluated the experimental standard deviation of mean s(X;) and this can be calculated by dividing S(Xi,k)

by vn .

s(x) = 3)
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The experimental standard deviation of mean is also called the standard uncertainty, u,(x;). Therefore
the standard uncertainty, u(x;) is expressed as

us () = J Lsn (X — X)) (4)

nn-1)

5.2.2 Type B evaluations

The evaluation of standard uncertainty by using Type B method is done considering all available
resources and scientific judgment. The steps for evaluating the standard uncertainty by Type B is given as follows:
e  Calculation of the input estimate,x; using the following expression,

[ =re) (5)
Where, a*and a™ are the upper limit and lower limit of the probability distribution respectively.
e  Evaluated the standard uncertainty, u,(x;) .
In all most all cases the standard uncertainty is computed using the rectangular probability distribution
and the expression of standard uncertainty u,(x;) is given as,
us(x) = (6)
Where,

a = (at-a7)
2

If the distribution employed to the model is triangular instead of rectangular, the standard uncertainty wug(x;)
becomes,
6

us(xi) = \/i— (7)

5.3 Evaluation of Combined uncertainty
The combined standard uncertainty is denoted as u.(y) and it is calculate using the following expression,

af\2 - af of
u) = X (31) ws0a) + 235 By u(r ) (®)
The above expression is also called the law of propagation of uncertainty.
Where,

u,2(x;) is designated as the estimated variance of x;.
u(x;, x;) represents the estimated covariance related with x; andx;.

% is denoted as sensitivity coefficients.
J

u.2(y) is denoted as the combined variance of y.
u.(y) represents the combined uncertainty.

When the input estimate, x;, x5, ... ... ... , X, are not correlated then the equation (8) becomes,
af \?
ucz(y) = ?:1 (0_961) usz(xi) (9)

with respect to actual data.

6. Monte Carlo Simulation (MCS)

MCS is a statistical tool used to incorporate risk and uncertainty in a model which helps to visualize most
or all of the potential outcomes to have a better idea of uncertainty of a model. The Monte Carlo Simulation
considers probability distribution in order to design a random or a stochastic factor. Various probability
distributions are applied for designing input factors such as uniform, lognormal, normal, and triangular. The
probability distribution obtained from the input factor, different paths of outcome are generated. MCS method
includes the following steps:
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Specify the range and type of distribution for each input parameter.

Create a random dataset from the input parameters

Distribution of the dataset through the mathematical model under evaluation.
Simulation of uncertainty analysis.

Global sensitivity analysis is an alternative method of sensitivity analysis and is implemented with MCS.
This technique applies global set of combination of input variables to explore the design space. Following three
methods are generally applied to perform sensitivity analysis.

1. Measurement of sensitivity considering one parameter: This is the most fundamental method which

uses partial derivatives where only one input parameter is considered at a time. It is considered local
analysis in the sense that only one-point estimate is considered and not entire gamut of distribution.
Differential sensitivity analysis : This technique is the most-straight forward. It involves a solution of
simple partial derivatives. Although this is computationally efficient, more often it creates an
intensive task to solve the equation of partial derivatives.

Sensitivity analysis with factorial : In this method, first a given no. of samples of a specific parameter
are selected, then the model is run with different combinations. The outcomes are studied to carry out
parameter sensitivity.

Sensitivity index is defined as the difference in % output when a single input parameter varies from
minimum to maximum value. Following techniques are used to perform sensitivity analysis.

Correlation analysis is used to establish the relation between independent and dependent variables
Regression analysis is used generally to get a response for complex models.

Subjective sensitivity analysis is used to analyses the input parameter. This method is subjective in
the sense, it is simple, qualitative and easy to rule out input parameters.

Fig.5 indicates how uncertainty and sensitivity influences each other.

Responses
Model 1 with higher sensitivity
Ouput uncertainty
Model 1 /
Model 2 with lower sensitivity
Model 2

Input uncertainty

Fig.5: Relation between uncertainty and sensitivity

7. Experimentation
7.1 Machineries:

In the present work, MTAB MAXTURN PLUS CNC turning centre is used for dry turning operation. It
is a 2-axis production machine with 8 stations programmable turret and BTP 50 tools. The experimental setup is
demonstrated in Fig.6.
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Fig.6: Dry turning operation in CNC Turning Centre

7.2 Measuring instruments:
Surface parameters are measured by Surface Roughness Tester SJ-410 series of Mitutoyo. The Surface
Roughness Tester is shown in Fig.7.

Vertical
Column

Stylus

Work piece

Display Unit

Fig.7: Measurement of surface textures

7.3 Work piece:
In the present work, AISI 4140 alloy steel is taken as work piece material. The diameter of the work piece
is 25 mm and the length of this is 150 mm. The chemical composition of AlSI4140 is shown in Table 1.

Table 1: Chemical Composition of AISI 4140
Mn Si Cr C
0.85 0.22.2 0.90 0.402

7.4 Cutting tool:

Coated carbide tool Grade T9115 is used to perform the experiments and CNMG 12-04-08 type of insert
is used. T-type tool holder is used to hold the tool insert. The cross section of the holder is squared type having
height and width of 20 mm.

7.5 Process Variables and their Limits:

Using Mini Tab 17 software and the variables and their bounds, an experiment's design has been carried
out in accordance with RSM. Central composite face-centered design (CCD) is used to decide how many tests to
run and how to combine the input parameters. Spindle speed, feed rate, and depth of cut are the input cutting
parameters; they are designated as A, B, and C, respectively, and their ranges are displayed in Table 2.
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Table 2: Variables and their levels

Cutting parameters Code Level 1 Level 2 Level 3
-1 0 1
Spindle speed (m/min) A 80 120 150
Feed(mm/min) B 0.1 0.2 0.3
Depth of cut (mm) Cc 0.1 0.2 0.3

8. Results and Discussions

This inquiry uses AISI4140 alloy steel as the work piece material in 27 experiments that are carried out
in a dry environment on a CNC machine. Cutting tools are coated carbide tools. Based on the material qualities,
prior study, and capacity of the available machining set up, the input parameter ranges for speed, feed, and depth
of cut are chosen. A surface roughness tester is used to measure the surface height parameters like R, R, R;
and the results are displayed in Table 3. These variables are all expressed in millimeters. All of these values are
seen to be randomly distributed and lack any discernible pattern.

Table 3: Responses with combination of input parameters

Input parameters Surface texture parameters
sk No. Speed Feeg ~ DePthof Ra R, R
cut

1 80 0.3 0.1 3.78 13.86 11.23
2 80 0.3 0.3 3.98 12.65 12.37
3 120 0.2 0.3 411 17.88 12.5
4 80 0.1 0.3 3.4 15.55 14.17
5 80 0.2 0.2 3.62 14.06 13.02
6 150 0.1 0.2 3.64 11.24 11.95
7 150 0.2 0.1 3.7 11.88 11.79

8 150 0.1 0.1 3.48 10.86 12
9 120 0.2 0.2 4.05 14.48 13.76
10 80 0.2 0.3 3.84 15.08 14.87
11 150 0.2 0.2 3.34 13.16 13.89
12 150 0.3 0.3 4.05 14.42 17.04
13 120 0.1 0.3 3.86 14.83 13.52
14 80 0.1 0.1 3.24 13.24 11.86
15 120 0.1 0.2 3.68 12.74 11.54
16 150 0.1 0.3 3.73 13.64 13.87
17 150 0.3 0.1 401 12.88 12.76
18 120 0.3 0.2 4.24 12.08 14.54
19 120 0.2 0.1 3.84 13.45 11.86
20 120 0.3 0.1 3.96 14.18 12.83
21 80 0.2 0.1 3.84 12.11 11.53
22 150 0.3 0.1 3.98 13.21 14.01
23 80 0.1 0.2 3.91 11.01 11.78
24 80 0.3 0.2 4.01 14.12 12.58
25 150 0.3 0.2 4.06 13.98 13.52
26 120 0.1 0.1 3.99 11.15 11.12
27 150 0.2 0.3 4,12 13.58 13.68
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Since main objective of this investigation is to find out the uncertainty and sensitivity of the models
developed by widely used Response Surface Methodology (RSM) as per the current available literature. Three
regression models using Response Surface Methodology (RSM) are developed for R, and R,, and R, and are
shown in Eq. 11, Eq. 12, and Eq. 13 using Minitab version 17. Fig.8 shows the distribution of the errors obtained
from the model. This error or residual is defined as the deviation of the model value from the experimental value.

R, =1.19 +0.0438 S + 0.17 F - 0.84 D - 0.000194 SxS + 2.81 FxF + 1.31 DxD + 0.0025 SxF + 0.0063 SxD
+ 201 FXD.eovioieeeeel (11)
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Fig.8: Residual Plots for Surface Roughness, R, (um). (a) shows the normal probability plot of the residuals, (b)

indicates residual Vs the best fit value (c) shows the histogram of residual distribution and (d) shows individual
residual for each observation.

Fig.9 (a) indicates the probability distribution function (PDF) of the normal probability plot of R, shown
in Fig.8 (a). It estimates the uncertainty (standard deviation) of R, as 0.0440. Fig.9 (b) shows that feed (F) is the
most sensitive parameter in the model of R, . Therefore, it can be stated that feed (F) also incorporates most

uncertainty in the model as per Fig.5. Speed and depth of cut incorporate very low uncertainty and sensitivity in
the model as per Fig.9 (b).
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Fig. 9: Uncertainty (a) and sensitivity (a) of R,
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Fig.10 (a) indicates the probability distribution function (PDF) of the normal probability plot of R, . It
estimates the uncertainty (standard deviation) of R, as 0.2567. Fig.10 (b) shows that depth of cut (D) is the most
sensitive parameter in the model of R, . Therefore, it can be stated that depth of cut (D) also incorporates most
uncertainty in the model as per Fig. 5. Speed and feed incorporate low (but more than in R,) uncertainty and
sensitivity in the model as per Fig.10 (b).

Simulation Results
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Fig.10: Uncertainty (a) and sensitivity (a) of R,

Fig.11(a) indicates the probability distribution function (PDF) of the normal probability plot of R,. It
estimates the uncertainty (standard deviation) of R, as 0.2568. Fig.11(b) shows that depth of cut (D) is the most
sensitive parameter in the model of R, . Therefore, it can be stated that depth of cut (D) also incorporates most
uncertainty in the model as per Fig. 6. Speed and feed incorporate low (but more than in R,) uncertainty and
sensitivity in the model as per Fig.11(b).

Simulation Results
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Fig.11 Uncertainty (a) and sensitivity (a) of R,
Table 4 indicates a summary of mean and uncertainty of the three surface textures under investigation.

Table 4: Summary of uncertainties of surface textures

No. of .
Responses itethizns Mean Uncertainty
R, 150000 3.971 0.044
R, 150000 14.023 0.256
R, 150000 12.877 0.256
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9. Conclusions

In this investigation, uncertainties and sensitivities of the statistical models obtained from RSM of three

surface textures are analyzed. AISI4140 alloy steel and carbide tools are considered as workpiece and cutting tools
respectively. The best surface in terms of minimum value of R, R, and R, has been determined. Objective
weights of the responses are determined with PCA. Significant observations of this investigation are as follows.

e Uncertainty of the model of R, is 0.0440. The feed is identified as the most significant contributor to
uncertainty. The sensitivity of the model of R, has been performed and feed is also identified as the
most sensitive parameter.

¢ Uncertainty of the model of R, is 0.2567. The speed is identified as the most significant contributor
to uncertainty. Sensitivity of the model of R, has been performed and speed is also identified as the
most sensitive parameter.

e Uncertainty of the model of R, is 0.2568. The speed is identified as the most significant contributor
in uncertainty. Sensitivity of the model of R, has been performed and speed is also identified as the
most sensitive parameter.
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