A Comprehensive Study on Geopolymer Concrete Optimized by Taguchi Method Subjected to Elevated Temperature

[1]Dilip Srinivas, [2]Dr. N. Suresh

[1][2] Research Scholar, National Institute of Engineering Professor, Department of Civil Engineering, National Institute of Engineering

E-mail: [1] dilipsrinivas1989@gmail.com, [2]suresh61.nie@gmail.com

Abstract: Geopolymer Concrete (GPC), an innovation in the field of green concrete, is the best alternative to cement in the construction industry. It reduces the carbon footprint *vis-a-vis* conventional cement production, thus reducing the potential for global warming. Adding boric acid during GPC production improves workability. The scope of this work is to determine the best possible design mix, created with the backing of the Taguchi analysis. The results detail the optimum combination of ingredients required to meet both fresh and hardened properties of GPC at ambient and elevated temperatures.

Key words: Workability, Optimum Mix design, Fresh & hardened properties.

Introduction

Worldwide, the construction boom seems never-ending, for which, concrete is indispensable. Cement manufacture is one of the main culprits in global warming - to obtain one ton_of cement, 4.7 million BTU of energy, corresponding to 400 pounds of coal, is used, generating a whole ton of carbon dioxide. A 'green' binder is the alternative, and endeavours have been effected using saw-dust, rice-husk ash, sugarcane ash, metakaolin, silica fumes *et al*, to control and reduce the detrimental effect of cement manufacture, without compromising either on quality of material or durability of the structure.

A potential, sustainable alternative for cement concrete is GPC (1). Several researchers have implemented the Taguchi analysis for cost-effective production of GPC. Shadi, Rahi et al. studied the effects of water and oven-curing at 90° C in GPC trials and concluded that oven-curing produces maximises compressive strength (2). Ankur Mehta et al. studied the water-absorption capabilities of GPC at various curing temperatures (3), analysing the results to determine the best combination of materials. Fly-ash-based GPC needs oven-curing, incorporation of GGBFS contributed to desired workability, setting time and compressive strength (4). Blending GGBS and fly-ash with sodium-based alkaline activators provides better workability and compressive strength (5). Substituting manufactured sand instead of river sand to GPC enhances the freezing and thawing effect and also improves residual compressive strength at elevated temperatures (6). M. Bastami et al. used analysis of variance to evaluate the mechanical and physical properties of conventional concrete. The data obtained from the studies depicts that ANOVA can be useful to understand the effect of each parameter for strength (7). Marble dust & glass fibres can substitute cement by upto 50% in cement concrete (Orguzhan Kelestemur et al.) the results are analysed with L16 orthogonal array (8). Muhammad et al. carried out L9 orthogonal array for assessing the behaviour of GGBS based GPC and results show that GGBS increases the setting time (9). Harun Tanyildizi et al. used L32 orthogonal array for evaluating the mechanical properties of GPC (10). The main parameters are polymerization type, percent of silica fume and heating temperature. The specimens are exposed to 600° C. The results determined that with increase in temperature polymerisation and strength decreases.

Several trials have been made by multiple authors on fly ash, GGBS, OPC, a combination of fly ash and GGBS, and marble dust using L9 orthogonal array system of Taguchi method. Since there is limited research in L18 orthogonal array, it is necessary to arrive at an optimal mix proportion of geopolymer concrete (GGBS+SCBA) using L18 orthogonal array, considering 7 variables with 3 levels of factors to identify the critical values of the control factors of the GPC. The Taguchi method was used to design an experiment to find out the effect of seven parameters on the cost and strength of concrete mixes.

1. Materials

The preliminary requisites on the selected materials tabulated below:

1.1 Preliminary test on aggregates

Physical	10mm aggregate	20mm aggregate	M Sand
property			
Sieve	IS:383-1970	IS:383-1970	Zone-IV
Analysis			
Bulk density	The density of loose sand =	The density of loose sand =	The density of loose sand =
	1353.31 Kg/m ³	1264Kg/m ³	1317.53 Kg/m ³
	The density of compacted	The density of compacted	The density of compacted
	sand = 1534.16 Kg/m^3	sand = 1479 Kg/m^3	sand = 1572.96 Kg/m^3
Water	1.4%	1.6%	1.25%
absorption			
Specific	2.72	2.7	2.6
gravity			

1.2 Preliminary test on source materials and alkaline materials

Table 1.2.1: Physical properties of source materials

Physical property	GGBS	SCBA
Specific gravity	2.92	1.6
Fineness	3.1%	64%

 Table 1.2.2 : Physical properties of alkaline materials

Molecular formula	NaOH	Na ₂ SiO ₃
Molecular weight	40g	122.062g
Density	1470kg/m^3	1600kg/m^3

Table 1.2.3: Chemical composition of GGBS

Test Conducted	Results	Requirements As Per Is:16714-2018
Manganese oxide (MnO)(%)	0.07	Maximum 5.5
Magnesium oxide (MgO)(%)	7.07	Maximum 17.0
Sulfide sulphur (S)(%)	0.47	Maximum 2.0
Sulphate (SO ₃)	0.18	Maximum 3.0
Insoluble residue (Max) (%)	0.78	Maximum 3.0
Chloride content	0.021	Maximum 0.1
Loss on ignition	0.08	Maximum 3.0
$\frac{CaO + MgO + \frac{1}{3}Al_2O_3}{2}$	1.28	Minimum 1.0
$SiO_2 + \frac{2}{3}Al_2O_3$		
$CaO + MgO + Al_2O_3$	2.00	Minimum 1.0
SiO_2		
Glass content (%)	88.7	Minimum 85.0

Table 1.2.4; Chemical composition of bagasse ash

Sl.no.	Test	Unit	Results
	a::: a: a	0.4	7.0.0
	Silicon as SiO ₂	%	76.062
	Iron as Fe ₂ O ₃	%	5.609
	Aluminum as Al ₂ O ₃	%	4.948
	Calcium as CaO	%	1.860
	Magnesium as MgO	%	1.487
	Sodium as Na ₂ O	%	0.552
	Potassium as K ₂ O	%	1.776
	Fixed carbon	%	0.71

2. Specimen Preparation & Testing

GPC specimens were prepared by dry-mixing materials such as binder contents, 20mm &10mm down size aggregates and crusher sand as fine aggregates. Liquid chemicals (alkali activators) along with boric acid were added. The Rangan method of operating procedure was followed and trial mixes were blended for a duration of 2 min. After achieving homogeneity, liquid concrete workability of each trial mix was recorded. Finally, a metal mould of size 150mm was used to cast concrete. Specimens were subjected to ambient curing at lab temperature.

Table 2.1: Mix design for 1m³ of concrete

Mix-proportion per cubic meter		
GGBS	280kg	
SCBA	120kg	
Sodium hydroxide- solids	18.28	
Distilled water	38.86	
Sodium silicate	142.86	
Fine aggregate –M sand	680	
Coarse aggregate	1100	
20 mm downsize aggregates	550	
10 mm downsize aggregates	550	
Water	50	
Boric acid	1%	

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

Figure 2.1.1: Batching of the materials as per mix design

Figure 2.1.2: Dry mix in the pan mixer (left) and the wet mix (right)

Figure 2.1.3 : Compaction by tamping rod

Figure 2.1.4 : Cast specimens

3. Optimization of trial mix by Taguchi method

In this study Taguchi method of analysis has been used to determine the optimum mix proportion for M30 grade geopolymer concrete. Five parameters are considered as a factor codes which includes Binder content (GGBS+SCBA) % (70%+30%, 80%+20%), Alkali activator to binder ratio (0.4, 0.5 & 0.6), Molarity (4, 8 &12M), ratio of sodium silicate to hydroxide (1:2.5, 1:2 & 1:1.5) and boric acid (1, 2 & 3%). Experimental layout considers eight response factors. L-18 orthogonal array has been utilized for trial mix design (MD).

The compressive strength obtained from all the 18 mixes were used in calculating response index for each of trial mix. The response index was determined by taking the average strength at 3 days, 7 days & 28 days, at ambient & elevated temperatures, with final results evaluated by ANOVA.

Materials	Level 1	Level 2	Level3
GGBS + SCBA	(70% + 30%)	(80% + 20%)	-
NaoH + NasiO ₃ ratio	1:2.5	1:2	1:1.5
Molarity	4M	8M	12M
Admixture	1%	2%	3%
AAC/BC	0.5	0.4	0.6
Curing days	3 days	7 days	28 days

Table 3.1: Table of control factors with factor levels

Code	Parameter/control factors	Unit
A	Alkaline liquid	Kg/m ³
В	Binder content	Kg/m ³
С	Coarse aggregate	Kg/m ³
d	Manufacture sand	Kg/m ³
e	water	Kg/m ³

The orthogonal array of Taguchi method selected for the experiment is (2¹x 3⁶).

The value of these three levels is calculated by varying the positive and negative values for the obtained mix design. This experiment's orthogonal array is $L18 = (2^{1}x \ 3^{2})$ as it is mixed level.

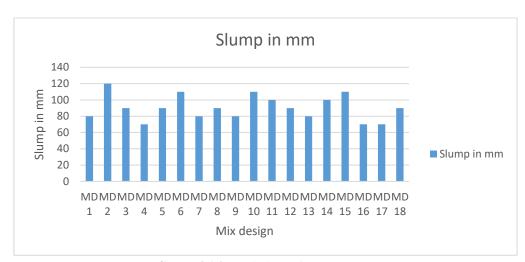
Table: 3.2: Mix Proportion with various parameters

Mix design	Binder	AAC/BC	Molarity	Ratio of NaOH	Boric acid
	content			+ Na ₂ SiO ₃	
	(GGBS+SCB				
	A)%				
MD 1	(70+30)	0.5	4	1:2.5	1%
MD 2	(70+30)	0.5	8	1:2.5	1%
MD 3	(70+30)	0.5	12	1:2.5	1%
MD 4	(70+30)	0.4	4	1:2	2%
MD 5	(70+30)	0.4	8	1:2	3%
MD 6	(70+30)	0.4	12	1:1.5	2%
MD 7	(70+30)	0.6	4	1:2	3%
MD 8	(70+30)	0.6	8	1:1.5	2%
MD 9	(70+30)	0.6	12	1:1.5	3%
MD 10	(80+20)	0.5	4	1:1.5	3%
MD 11	(80+20)	0.5	8	1:2.5	1%
MD 12	(80+20)	0.5	12	1:2	2%
MD 13	(80+20)	0.4	4	1:2	3%
MD 14	(80+20)	0.4	8	1:1.5	1%
MD 15	(80+20)	0.4	12	1:2.5	2%
MD 16	(80+20)	0.6	4	1:1.5	2%
MD 17	(80+20)	0.6	8	1:2.5	3%
MD 18	(80+20)	0.6	12	1:2	1%

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

4. Results and Discussion

The compressive strength of GPC at ambient and elevated temperatures followed by workability readings have been considered for assessing the response index evaluation criteria, as per the Taguchi method as shown in Table 1.


4.1 Slump test

Various attempts were made varying the percentages of boric acid from 1 to 3% in the trial mix. It was observed that as the percentage of boric acid increases the workability decreases. The optimum percentage of boric acid is 1% only. The slump results of the attempted trial mixes appear in the following table with graphical representation.

Table 4.1.1. : Slump values

Mix Design	3 days Compressive	7 days Compressive	28 days compressive
	strength(N/mm²)	strength(N/mm²)	strength(N/mm²)
MD1	19.4	35.7	40.79
MD2	24.7	42	55
MD3	25.02	43.30	57.76
MD4	28.74	50.30	50.60
MD5	35.7	62.49	66.40
MD6	19.6	35.3	39.5
MD7	16.7	30.2	34.6
MD8	25.3	36.3	40.84
MD9	30.2	35.7	41.19
MD10	31	52.70	53.30
MD11	39.4	67.17	67.97
MD12	31.1	49.89	58.50
MD13	29.4	59.50	56.49
MD14	43.3	73.77	74.09
MD15	43.96	74.74	77.11
MD16	24.29	41.3	47.23
MD17	25.1	43.18	45.75
MD18	26.3	44.9	45.08

Vol. 44 No. 5 (2023)

Graph 4.1.2: Variations of slump values

5. Test On Properties Of Hardened Concrete Compressive Strength At Ambient And At Elevated Temperatures

5.1 Compressive Strength of GPC at Ambient Temperature

Using the Taguchi method L18 of orthogonal array, 18 mix-design GPC cubes were cast. Compressive strength of all designs, measured after 3, 7 and 28 days of curing, are displayed in the graph below:

Mix design	Slump in mm	Mix design	Slump in mm
MD1	80	MD10	110
MD2	120	MD11	100
MD3	90	MD12	90
MD4	70	MD13	80
MD5	90	MD14	100
MD6	110	MD15	110
MD7	80	MD16	70
MD8	90	MD17	70
MD9	80	MD18	90

Table 5.2: Results of compressive strength of GPC at ambient temperature

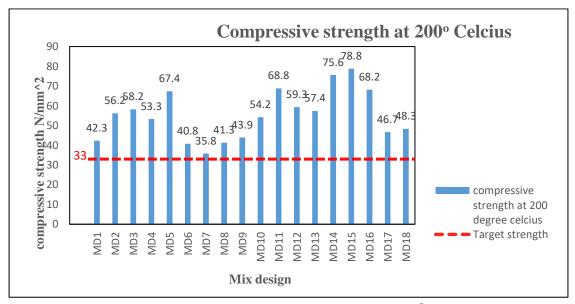
Compressive strength at Ambient temperature 90 74.09^{77.11} 80 67.97 66.4 70 58.5_{56.49} ₅₅ 57.76 compressive strength (N/mm^2) 0 0 00 0 10 0 00 0 00 53.3 50.6 47.2345.7545.08 40.79 40.8441.19 34.6 MD8 MDIO MD16 MDS MD6 MOT MDS MDJ2 MD13 MOIA MDA MOIS MOLI Mix design 3 days Compressive strength(N/mm2) 7 days Compressive strength(N/mm2) 28 days compressive strength(N/mm2) ······ Target strength

Graph 5.3: Variations of compressive strength at ambient temperature

As per mix design the compressive strength is 33 N/mm2 (target strength) for grade M30 after 28 days. The graph depicts the test result strength of all 18 mix designs using the Taguchi approach. Taguchi analysis indicated that the optimum parameters for compressive strength of concrete at ambient temperature were obtained. MD7= 34.6 N/mm2, MD 6= 39.5 N/mm2, MD 1=40.79 N/mm2, and MD 8 =40.84 N/mm2 were close to the target strength. Mix designs 7, 2, 1 and 8 are sufficient for the manufacturing of geopolymer concrete. Mix design 7 of 4M with compressive strength of 34.6 N/mm^2 (which is close to the target strength), proves the variables of the MD7 are best combination for the optimal geopolymer concrete.

The strength levels of the other design mixes being higher than necessary, are presently superfluous.

5.4 Compressive strength (N/mm²) of GPC at elevated temperature


Changes in mechanical properties of concrete subjected to elevated temperatures depend on the type of materials and the effect of environmental conditions, like moisture content and initial strength of the concrete, before exposure to high temperature [15].

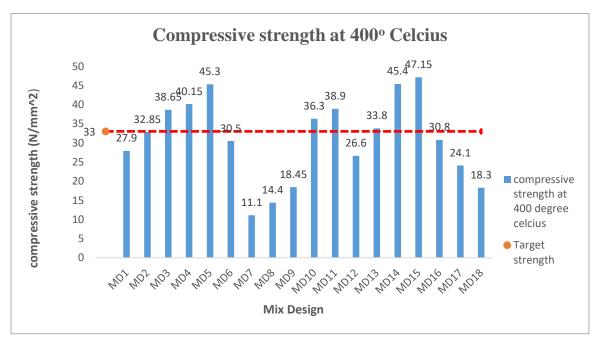
The residual Compressive strength of geopolymer concrete at elevated temperature diminishes as the temperature rises. Specimens are tested at elevated temperatures of 200° C, 400° C, 600° C and 800° C. The test results are tabulated below:

Compressive strength of GPC at 200° C

Table 5.3.1: Results of compressive strength of GPC at 200⁰ C

	Compressive strength (N/mm²) at 200° C				
Mix design	Compressive strength(N/mm²)	Mix design	Compressive strength(N/mm²)		
MD1	42.3	MD10	54.2		
MD2	56.2	MD11	68.8		
MD3	58.2	MD12	59.3		
MD4	53.3	MD13	57.4		
MD5	67.4	MD14	75.6		
MD6	40.8	MD15	78.8		
MD7	35.8	MD16	68.2		
MD8	41.3	MD17	46.7		
MD9	43.9	MD18	48.3		

Graph 5.3.2: Variations of compressive strength at 200^o C

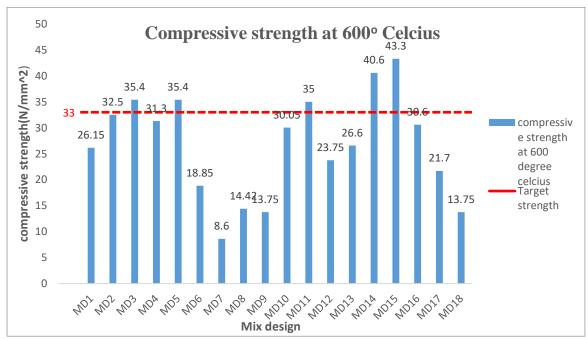

As per mix design the compressive strength is 33 N/mm2 (target strength) for grade M30 after 28 days. The graph depicts the test results strength of all 18 mix designs using the Taguchi approach.

The specimens of geopolymer concrete were subjected to elevated temperature of 200° C for 2 hours. It was observed that MD 7 = 35.8 N/mm², followed by MD 6 = 40.8 N/mm², providing the best combination of variables for proximity to targeted strength. All other mix designs displayed higher increases in strength when subjected to elevated temperature of 200° C.

Compressive strength of GPC at 400° C

Table 5.3.2 : Results of compressive strength of GPC at 400° C

Compressive strength at (N/mm²) 400° C					
Mix design	Compressive	Mix design	Compressive		
	strength(N/mm ²)		strength(N/mm²)		
MD1	27.9	MD10	36.3		
MD2	32.85	MD11	38.9		
MD3	38.65	MD12	26.6		
MD4	40.15	MD13	33.8		
MD5	45.3	MD14	45.4		
MD6	30.5	MD15	47.15		
MD7	11.1	MD16	30.8		
MD8	14.4	MD17	24.1		
MD9	18.45	MD18	18.3		

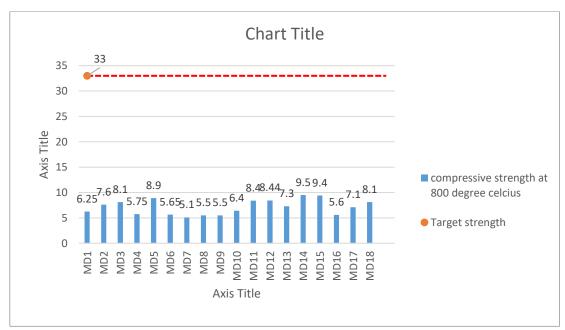

Graph 5.3.3: Variations of compressive strength at 400° C

After subjecting the specimens of GPC to elevated temperature of 400° C for 2 hours, the test results displayed that MD 2 = 32.8 N/mm², MD 3=38.65 N/mm², MD 13 =33.8 N/mm², MD 10 = 36.3 N/mm² and MD 11= 38.9 were the best combination of variables for proximity to targeted strength, since these mix designs were capable of withstanding 400° C.

Compressive strength of GPC at 600° C

Table 5.3.4: Results of compressive strength of GPC at 600⁰ C

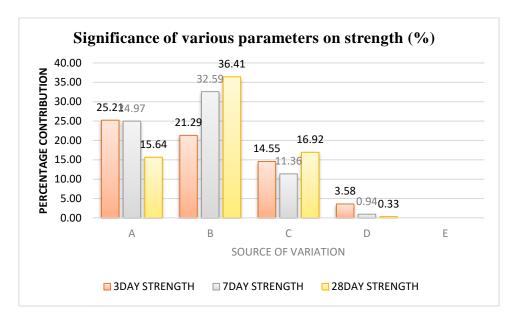
Compressive strength at (N/mm ²) 600° C					
Mix design	Compressive strength(N/mm²)	Mix design	Compressive strength(N/mm²)		
MD1	26.15	MD10	30.05		
MD2	32.5	MD11	35		
MD3	35.4	MD12	23.75		
MD4	31.3	MD13	26.6		
MD5	35.4	MD14	40.6		
MD6	18.85	MD15	43.3		
MD7	8.6	MD16	30.6		
MD8	14.42	MD17	21.7		
MD9	13.75	MD18	13.75		


Graph 5.3.5 :Variations of compressive strength at 600⁰ C

Subjecting the GPC specimens to 600° C for 2 hours resulted in readings of MD 3 = 35.4 N/mm² and MD 5 = 35.4 N/mm² having best combination of variables for proximity to targeted strength. These two mix designs (MD 3, MD5) were restrained to 600° C since they had the capacity to withstand that elevated temperature. Mix designs 3 and 5 are sufficient for the manufacturing of geopolymer concrete.

Compressive strength of GPC at $800^{\circ}\,\mathrm{C}$

Table 5.3.6 : Results of compressive strength of GPC at 800⁰ C


Compressive strength at (N/mm²) 800° C					
Mix design	Compressive strength(N/mm²)	Mix design	Compressive strength(N/mm²)		
MD1	6.25	MD10	6.4		
MD2	7.6	MD11	8.4		
MD3	8.1	MD12	8.44		
MD4	5.75	MD13	7.3		
MD5	8.9	MD14	9.5		
MD6	5.65	MD15	9.4		
MD7	5.1	MD16	5.6		
MD8	5.5	MD17	7.1		
MD9	5.5	MD18	8.1		

Graph 5.3.7: Variations of compressive strength at 800⁰ C

None of the 18 mix designs could with stand an elevated temperature of 800° C, proving that they are inadequate for use of GPC.

5.3.8 Overall Summary of Individual Parameters

Effect of Parameter A

The effect of binder additive on strength measured after 3, 7 & 28 days is 25.21%, 24.97% and 15.64% respectively. The contribution of GGBS & SCBA in terms of strength is 27.82%, 4.32%, 4.32% and 20.39% at sustained elevated temperatures of 200, 400, 600 and 800° C respectively.

Effect of Parameter B

The ratio of effect of alkali activator to binder content on 3 days, 7 days & 28 days strength is 21.29%, 32.59% and 36.41% respectively. The contribution of parameter B in terms of strength will be 23.34%, 65.76%, 45.83% and 23.10% at sustained elevated temperatures of 200, 400, 600 and 800° C respectively.

Effect of Parameter C

The effect of Molar concentration of solution on 3 days, 7 days & 28 days strength is 14.55%, 11.36% and 16.92% respectively. The contribution of parameter C in terms of strength is 4.67%, 2.31%, 4.81% and 27.68% at sustained elevated temperatures of 200, 400, 600 and 800° C respectively.

Effect of Parameter D

The effect of ratio of sodium hydroxide to sodium silicate solution on 3 days, 7days & 28 days strength will be 3.58%, 0.94% and 0.33% respectively. The contribution of parameter Din terms of strength will be 0.91%, 0.81%, 2.25% and 3.86% at sustained elevated temperatures of 200, 400, 600 and 800° C respectively, indicating that parameter D in mix design calculation is less significant.

Effect of Parameter E

The effect of boric acid in mix design is not significant for either strength or workability but it does not mean that it has no role to play in trial mixes. The workability results for all the trial mixes are in the range of 100 to 150 mm.

6. Conclusion

GGBS and baggase-ash-based GPC was optimized using the dynamic Taguchi approach. The output results of slump, compaction factor and compressive strength of the geopolymer concrete obtained under optimized conditions are displayed by graphical representation. It was comfirmed that the geopolymer manufactured under optimum conditions exhibits good compressive strength at ambient temperature. The compressive strength reduces when it is exposed to elevated temperatures. Geopolymer concrete shows good workability with long term strength.

From experimental observation, the following conclusions are derived:

• GPC has been achived by the mixes designed by Taguchi method.

- Among the 7 control factors, AAC/BC, the ratio of NaOH+NaSiO₃ and molarity of NaOH have significant effects on the strength of GPC.
- Boric acid has no noteworthy impact on the strength of GPC.
- Taguchi analysis indicated that the optimum measurements for compressive strength of concrete at ambient temperature were obtained from MD 7 = 34.6 N/mm2, MD 6 = 39.5 N/mm2, MD 1 = 40.79 N/mm2, and MD 8 = 40.84 N/mm2, proximate to target strength.
- This investigation proves that MD 6 and MD7 display adequte strength for GPC at 200° C.
- The present investigation also displays that MD 2, MD3, MD 13, MD 10 and MD11 have adequte strength for use of geopolymer concrete at 400° C.
- MD3 and MD 5 has demonstrate adequate strength for GPC at 600° C.
- None of these 18 mix designs could sustain temperature of 800° C.
- As the percentage of the GGBS increases the strength increases.
- It has observed as the molarity increases the compressive strength also increases.
- No spalling, cracks or other physical changes are found till 600° C.
- From the ANOVA table it is clear that contribution of parameters A, B & C are significant in terms of strength and workability, whereas contribution of parameter E is negligible.

References

- [1] Olivia, M. and Nikraz, H. (2012) 'Properties of fly ash geopolymer concrete designed by Taguchi method', *Materials and Design*, 36, pp. 191–198. doi: 10.1016/j.matdes.2011.10.036.
- [2] Riahi, S. *et al.* (2012) 'Compressive strength of ash-based geopolymers at early ages designed by Taguchi method', *Materials and Design*, 37, pp. 443–449. doi: 10.1016/j.matdes.2012.01.030.
- [3] Siyal, A. A. *et al.* (2016) 'Effects of Parameters on the Setting Time of Fly Ash Based Geopolymers Using Taguchi Method', in *Procedia Engineering*. Elsevier Ltd, pp. 302–307. doi: 10.1016/j.proeng.2016.06.624.
- [4] Patil, P. V, Rathi, V. R. and Kolase, P. K. (2019) 'COMBINED EFFECTS OF FLY ASH AND FERRO SAND ON PROPERTIES OF CONCRETE DESIGNED BY TAGUCHI METHOD', *International Research Journal of Engineering and Technology*. Available at: www.irjet.net.
- [5] Ozbay, E. *et al.* (2009) 'Investigating mix proportions of high strength self compacting concrete by using Taguchi method', *Construction and Building Materials*, 23(2), pp. 694–702. doi: 10.1016/j.conbuildmat.2008.02.014.
- [6] Keleştemur, O. *et al.* (2014) 'Performance evaluation of cement mortars containing marble dust and glass fiber exposed to high temperature by using Taguchi method', *Construction and Building Materials*, 60, pp. 17–24. doi: 10.1016/j.conbuildmat.2014.02.061.
- [7] Mehta, A. *et al.* (2017) 'Influence of various parameters on strength and absorption properties of fly ash based geopolymer concrete designed by Taguchi method', *Construction and Building Materials*, 150, pp. 817–824. doi: 10.1016/j.conbuildmat.2017.06.066.
- [8] Bastami, M. et al. (2011) 'Performance of high strength concretes at elevated temperatures', Scientia Iranica, 18(5), pp. 1028–1036. doi: 10.1016/j.scient.2011.09.001
- [9] Salih, M. A. *et al.* (2015) 'Development of high strength alkali activated binder using palm oil fuel ash and GGBS at ambient temperature', *Construction and Building Materials*, 93, pp. 289–300. doi: 10.1016/j.conbuildmat.2015.05.119.
- [10] Behfarnia, K. and Shahbaz, M. (2018) 'The effect of elevated temperature on the residual tensile strength and physical properties of the alkali-activated slag concrete', *Journal of Building Engineering*, 20, pp. 442–454. doi: 10.1016/j.jobe.2018.08.015.
- [11] Khalaj, M. J. *et al.* (2015) 'Split tensile strength of slag-based geopolymer composites reinforced with steel fibers: Application of Taguchi method in evaluating the effect of production parameters and their optimum condition', *Ceramics International*, 41(9), pp. 10697–10701. doi: 10.1016/j.ceramint.2015.05.002.

- [12] Bashir, J. (2016) 'Bio Concrete- The Self-Healing Concrete', *Indian Journal of Science and Technology*, 9(1), pp. 1–5. doi: 10.17485/ijst/2016/v9i47/105252.
- [13] Olivia, M. and Nikraz, H. (2012) 'Properties of fly ash geopolymer concrete designed by Taguchi method', *Materials and Design*, 36, pp. 191–198. doi: 10.1016/j.matdes.2011.10.036.
- [14] Hadi, M. N. S., Farhan, N. A. and Sheikh, M. N. (2017) 'Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method', *Construction and Building Materials*, 140, pp. 424–431. doi: 10.1016/j.conbuildmat.2017.02.131.
- [15] Tanyildizi, H. (2009) 'Statistical analysis for mechanical properties of polypropylene fiber reinforced lightweight concrete containing silica fume exposed to high temperature', Materials and Design, 30(8), pp. 3252–3258. doi: 10.1016/j.matdes.2008.11.032.
- [16] Iwamoto, T. et al. (2018) 'Optimization of Fly Ash-Based Geopolymer Using a Dynamic Approach of the Taguchi Method', in International Congress on Polymers in Concrete (ICPIC 2018). Springer International Publishing, pp. 517–524. doi: 10.1007/978-3-319-78175-4_66.
- [17] Olivia, M. and Nikraz, H. (2012) 'Properties of fly ash geopolymer concrete designed by Taguchi method', Materials and Design, 36, pp. 191–198. doi: 10.1016/j.matdes.2011.10.03