Vol. 44 No. 5 (2023)

A Review: On Self Compacting Concrete

^[1]O.Ankamma Raju, ^[2]Dr.T.V.S.Vara Lakshmi

[1] Dr.Y.S.R Acharya Nagarjuna University/Civil Engineering, Guntur, India [2] Dr.Y.S.R Acharya Nagarjuna University/Civil Engineering, Guntur, India

Abstract— This study unveils an overview of self-compacting concrete (SCC) and how it may be churn out using a variety of mineral Admixtures and fibers. The Desire for enormous and intricate constructions in the present construction industry situation often leads to extreme concreting conditions. It can be tricky to ensure that an enormous quantity of heavy reinforcement in a reinforced concrete (RC) section is properly compacted without voids or honeycombs. Compaction by hand or mechanical vibrators is difficult in this situation. As a result, a new form of concrete dubbed self-compacting concrete (SCC) is designed. This concrete swiftly flows around the reinforcement and traverse the formwork's extremities. Self-compacting concrete is a form of concrete that can compact itself using only its own weight and no vibration. Self-compacting concrete is a type special concrete. This review studies demonstrates how fibers and other mineral admixtures are incorporated into SCC characteristics.

Index Terms—Self Compacting Concrete, Mineral Admixtures, Reinforced Concrete.

1. History

Self-Compacted Concrete was originally proposed in Japan in 1986 (Okamura et al., 2023) [1]. North America used SCC with a relatively high binder concentration as well as a high dosage of chemical admixtures to improve flow passage capacity and workability. The capability of SCC to penetrate through and fill massive buildings with its own weight makes it important. SCC is a concrete that can flow into form work without separation or leakage, which reduces labor, improves finishing, makes installation easier, increases dependability, allows for a smaller composite structure, reduced sound levels, no friction, and a healthier work site. SCC mixtures include a substantial number of fine-grained inorganic components, allowing the utilization of "dusts," which are frequently dumping products with little real use and are costly to manage well. Manufacturing waste such as fly ash, marble waste powder, silica fume, copper slag, dolomite, and GGBS get used as cement alternates in SCC in today's building operations, resulting in fewer CO2 emissions.

2. Introduction

SCC is a strategy that doesn't demand any other kind of vibration, which suggests no vibrator to be used for insertion and compaction. In this unique technology, concrete flows under its own weight, entirely covering the form work and obtaining full compaction. Self-compaction Concrete has low yield stress, high deformability, beneficial segregation, and low viscosity (Rakibul Hasan et al., 2023) [2]. This method is suitable for use in comparatively reinforced sections and in areas where a vibrator is not required for compaction and frequent convoluted forms and form works. Self-compacting concrete provides simpler to conclude construction work in an assortment of categories, resulting in quicker development and increased flow in petite areas with congestion. High level homogeneity, fell concrete voids, and even concrete strength are the results of SCC fluidity and segregation .This means, the conceivable ability and durability of the structure are brought. This SCC thoughts not only has benefited the speed with which construction work is carried out, but it is also highly environmentally conscious beneficial because the usage of vibrators may create noise, resulting in noise pollution and adverse environmental repercussions. This improved enhancing method necessitates into account not just the economy but also the environment. The contemporary building scene in India demonstrates a boom in the construction of massive and intricate structures, which frequently results in severe concreting situations. Vibrating concrete in crowded locations can harm workers and cause noise stress. Structures erected in such settings are frequently questioned for their strength and longevity. Avoid vibration in practice .(M. Harihanandh et al.,2023)[3] if at all practicable, SCC abilities have moved from study to adoption in nations such as Japan, Sweden, Thailand, and the United Kingdom, among others. Fortunately, this is not prevalent in India.

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

3. Literature Review

jawad Ahmad et al., [4] According to research, marble debris may be utilized up to 20% in concrete without impacting the strength and longevity of the concrete. The results of the experiments demonstrate that the inclusion of marble debris may be a good substitute for concrete and, as a consequence, can be utilized effectively in industrial applications. Due to micro-filling cavities, the flow characteristics of SCC improved with the substitution of marble debris. As a result, another material is available to reduce the attraction among concrete ingredients. M.Arun Kumar et al., [5] the fresh concrete qualities of SCC generated using marble waste as a fine aggregate replacement and polypropylene fibre as a supplementary component at a constant ratio of 0.4%, as well as the chemical admixtures used in the study, were evaluated. Nonetheless, friction between the powder particles and the fibre surface area reduced the passing and filling abilities compared to the control mix. In addition, there was some bleeding in the concrete mix. A marble waste substitution of up to 40% provided suitable fresh concrete results, and the compressive strength increased with a marble waste substitution of 20% before falling with repeated mixing. Furthermore, as compared to the control mix, the compressive strength values of the other mix fractions were more significant and acceptable. And Increase in flexural and split tensile strength As a result, supplanting fine aggregate with 40% marble waste and fiber furtherance is considered the optimal quantity. Daniyar Akhmetov et al., [6] the effect of low-modulus polypropylene fibre on the physical and mechanical properties of self-compacting concrete was investigated.AR Premium AH hyperplasticizer is used. After summarizing and analyzing the test results, a conclusion about the potential of disperse reinforcement of concrete can be generated, namely, the addition of 0.5 kg of polypropylene fibre with a diameter of 11 or 15 mm improves the physical, technical, and distortion characteristics of the operating SCC structures, particularly increasing flexural strength up to 10.5% and decreasing shrinkage deformations to 71%. Volumetric fibre reinforcing of SCC mixtures using low-modular polypropylene fibre is suggested for usage in creation. The resulting linear patterns can be useful in making practical recommendations for the optimal choice of size and fibre content in self-compacting concrete to obtain the optimal price-quality ratio, especially when working in the summer time. Atizaz Ali et al., [7] The major goal of this research was to investigate the impact of polypropylene fibre reinforced self-compacting concrete (SCC) during both the fresh and hardened phases, as well as its long-term dependability. The characteristics of marble powder-based fibre reinforced SCC in its fresh state were investigated using slump flow diameter and time, V-funnel, and L-box tests. The compressive strength, split tensile strength, and flexural strength of cured concrete were examined. Cement was replaced with marble powder at 4%, 8%, 12%, and 16% substituting ratios, while polypropylene fibers were added at 0.1%, 0.2%, 0.3%, and 0.4% substituting ratios. The SCC was created using a poly-carboxylic ether-based high ranging water reducer (HRWR) with a specific gravity of 1.06 provided by a local firm. The durability properties were evaluated using water permeability and chlorine migration. The inclusion of a little amount of polypropylene fibre (up to 0.30% of concrete volume) had no effect on the compressive strength of SCC. When compared to the control mix, the addition of polypropylene fibers (0.30% by volume) to concrete greatly increases the split tensile strength. The use of polypropylene fibers up to 0.30% of the SSC concrete volume significantly improved flexural strength. Polypropylene fibers demonstrated resistance to water permeability and chloride penetration at low polypropylene fibre volumes. The findings also demonstrate concrete performance in terms of compressive strength. Chloride penetration was decreased by 5% with the addition of 0.30% PP fibers. Arash Karimipour n et al., [8] studied the physical and mechanical characteristics of self-compacting concrete (SCC) including polypropylene fibers (PPF) were explored, as well as the effects of these fibers on temperature influence and resistance. To achieve this goal, 99 SCC specimens with varying PPF levels (0%, 0.1%, and 0.3% by volume) were made and tested, and results showed that increasing the quantity of fibre enhanced mechanical qualities while decreasing workability or rheological properties. Ruslan Ibragimov et al., [9] studied the Numerous studies have been conducted, and the most productive combinations of fibre across different sorts, as well as their corresponding volumetric concentrations, have been found. The impact of the coupled fibre content on the workability, extreme shear stresses, and viscosity of the concrete mixture, in addition to the physical and mechanical characteristics of self-compacting concretes, is explored. B. Ramesh, et al., [10] studied the flexural performance of the M sand-based polypropylene fibre-enhanced SCC has significantly adapted. The variation was between the ranges of values of 6-9%. As an outcome, M Sand may be utilized efficiently for constructing polypropylene fibre enhanced SCC with no loss in flexural quality. Flexural enhancements in polypropylene

fibre reinforced concrete showed an increase of 25% as compared to 1.2%. The test ideas provided to be the ideal approach or path for offering solid and strong cements. Ilker Bekir Topçu et al., [11] researched When new SCC attributes such as slump-flow, V-funnel duration, blocking ratio, air content, and unit weight are examined to determine the ideal Marble dust usage ratio in SCC, it is indicated that a usage quantity less than 200 kg/m3 would be appropriate to maximize all of these qualities. Slump flow values and viscosities of SCC containing a substantial amount of fly ash are both fairly high. As a result, the possibility of blockage increases. When a high amount of marble dust is utilized, the viscosity is lowered, which is similar to how marble dust is used as a filler component in SCC. Vijendra Jarugumalli et al., [12] the workability of SCC using marble waste powder as a limited replacement for cement was studied at 10%, 20%, 30%, 40%, and 50%. With certain poly carboxylic groups, slumping flow increases up to 40% of Marble Waste Powder until it begins to decline at 50%. As the quantity of Marble Waste Powder grows, so do the U-box and J-ring values. The detachment statistics are much lower when the Marble Waste Powder content is raised by 40% opposed to the previous percentile values... Gulden Cagin Ulubeyli et al., [13] studied the use of marble dust as a cement substitute or a sand replacement has no influence on the ultrasonic pulse velocity value. The porosity of concrete decreases as the amount of marble dust added increases, exhibiting equivalent findings to control specimens in the case of 0.50 and 0.40 w/p ratios. In addition, the use of marble dust as a partial replacement for sand raised porosity values. This increase in porosity might be related to the filling effect of marble dust. S. Hima Venkata Maha lakshmi et al., [14] studied the goal of the research is to make self-compacting concrete (SCC) by substituting 100% of river sand with M-sand (manufactured sand). Using M-sand instead of river sand in SCC provides enough strength, reduces environmental difficulties, and is an environmentally benign material. Actually, SCC demands a high slump to avoid segregation; hence the percentage of fine aggregates should be raised along with the cement amount. Under the recommendations of European Federation of Specialist Construction Chemicals and Concrete Systems (EFNARC 2002), and several mix designs of SCC with and without silica-fume were constructed to evaluate the impact on mechanical and rheological characteristics. SCC's enforceability. The modulus of elasticity of SCC, increased as the total amount of Silica fume increased. Higher Silica-fume concentration raises the viscosity of the SCC, lowering the L-box test ratio. When compared to standard SCC, adding Silica-fume improves the mechanical qualities of SCC. Abdullah M. Zeyad et al., [15] studied the incorporation of fibre to concrete mixes alters the latter's fresh and hardened characteristics; the consequences vary depending on the kind of fibre and its shapes. When Poly propylene and Hook end fibers were added to the mixes, the adverse impact of fibers on the slump flow, slump flow T5, L-box, and V-funnel findings for fresh concrete was the majority obvious. Poly propylene and Basalt rock fibers addition reduced segregation by 44.6% and 48.6%, respectively, The minimal segregation of SCRFCR and SCRFCP might be attributed to the extensive distribution of fibers inside the concrete, which limits the downward migration of coarse aggregate. rahmi Karolina et al., [16] Studied that it does not fulfil all of the criteria for Filling Ability, Passing Ability, and Segregation Resistance Ability, a concrete combination of 0.50 PP SCC and 0.75 PP SCC cannot be classified as Self Compacting Concrete. The findings of concrete compressive strength tests show that the addition of polypropylene fibre to SCC concrete reduces the value of concrete compressive strength. The maximum average value of concrete is 22.31 MPa at 1 day of age and 46.24 MPa at 28 days of age in a 0 Poly propylene SCC mixture. Yamuna Bhagwat et al., [17] newly improved characteristics, toughened properties, drying shrinkage, water absorption, permeability, acid resistance, and corrosion The crack initiation time of self-compacting concrete created with Portland pozolona cement, natural sand, and M-sand, as well as varied volume fractions of polypropylene fibers with M-sand (0%, 0.1%, 0.15%, and 0.2%) is thoroughly investigated. Using a poly caarboxylate ether-based super plasticizer. The influence of polypropylene fibre on the concrete microstructure was also investigated using SEM. A 0.15% by volume percentage of polypropylene fibers in concrete improved the mechanical properties and durability of the SCC while introducing surprising new properties. As a consequence, this ratio is regarded to be optimal for increasing steel resistance in SCC against deterioration and corrosion. Due to corrosion pressure, the incorporation of optimum Poly propylene fibers enhanced the fracture start time of concrete. jawad Ahmad et al., [18] studied, The inclusion of Polypropylene fibers significantly lowered SCC's filling and passing capabilities. This is because fibers have a larger surface area. The mortar must cover the fibers in addition to the coarse aggregate. More slurry must be used to fill less space between coarse aggregate and fibre, resulting in lower SSC filling and passing capabilities. Using polypropylene up to

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

2.0% delivers adequate fresh properties, according to SCC technical criteria. As a result, polypropylene fibers containing up to 2.0% cement by weight are advised.O. Gencel et al., [19] the current study investigated the workability and mechanical properties of SCC reinforced with monofilament polypropylene fibers and fly ash. Four fibre contents of 3, 6, 9, and 12 kg/m³ were looked into together with two cement concentrations of 350 and 450 kg/m³. The fly ash concentration, cement percentage, and water/cement ratio were all set to 0, 40, 120 kg/m², and 1%, respectively. Researchers can add fibers up to 9 kg/m³ by limiting workability and enhancing the material's mechanical properties.

4. Materials

A. Super plasticizer:

Some poly carboxylic ether codal provisions comply with IS 9103:1999 plasticizers with a specific gravity of up to 23% and a solid composition of not less than 25% by weight. The blends for SCC were created using regular water from the faucet that was free of organic pollutants.

B. Cement:

53 Grades OPC and PPC cement is used as a binder, which is a chemical component used in building that sets, hardens, and binds to other materials to bond them together.

C. Marble waste powder:

Marble dust is a by product of the marble manufacturing process. During the cutting operation, a huge amount of powder is produced. As a result, around 25% of the initial marble mass is lost as dust. Leaving these waste products in the environment might result in environmental concerns such as increased soil alkalinity, effects on plants, effects on the human body, and so on.

D. Fibers:

Some steel fibers, jute fibers, and polypropylene fibers are especially intended for the reinforcing of cementious mortars and concrete mixes and may be simply integrated into the concrete mix. It is commonly acknowledged that typical concrete mixes are susceptible to plastic shrinkage during the setting period, which can result in cracking.

E. M-sand:

Manufactured sand, also known as manufactured fine aggregate (MFA), is created by delaying bigger aggregate portions into sand-sized aggregate particles. M-sands are commonly utilized in combinations in regions where natural sand is unavailable or too expensive to transport to the required site.

5. Test Carried Out

Fresh SCC must have the required levels of key properties such as packing capacity, passage ability, and segregation resistance. Filling ability refers to the SCC's capacity to flow into each aperture in the formwork while carrying the weight of the formwork. SCC must fill any gaps in the formwork and flow horizontally and vertically without trapping air at the surface or within the concrete itself, all without disturbing the concrete first. The ability of the SCC to pass through small spaces, such as those between steel reinforcing bars, while carrying its own weight is referred to as its passage ability. Passing ability is required to provide a consistent distribution of SCC components near obstacles.. The SCC's components resist migrate or separation and maintain a constant level of resistance to segregation throughout the transport and placement processes. As per the European standard codes specific test procedures to full fill these criteria.

A. For Fresh And Mechanical Properties

These prerequisites must be met at the time of assignment. It is essential to account for any changes in workability during transport while manufacturing. Table 1 displays typical acceptance standards for Self-compacting Concrete with a maximum aggregate size of 20 mm. The usage of admixtures in the SCC may be examined in relation to the hardened characteristics of SCC, such as Compressive strength (IS 516: 1959), Split tensile strength (IS 5816 (1999), and Flexural strength (IS 516-1959).

S.	Method	Property	Unit	Typical range of values	
No				Minimum	Maximum
1	Slump flow	Filling ability	mm	650	800
2	T50cmslumpflow	Filling ability	sec	2	5
3	J-ring	Passing ability	mm	0	10
4	V-funnel	Filling ability	mm	6	12
5	Time increase, V-funnel at	Segregation resistance	sec	0	+3
	T5minutes				
6	L-box	Passing ability	h2/h1	0,8	1,0
7	U-box (h2-h1)	Passing ability	(h2-h1) mm	0	30
8	Fill-box	Passing ability	%	90	100

 Table 1: EFNARC's Acceptance Regulations for Self-compacting Concrete

B. For **Durability Properties**

When measuring the durability of SCC, the chloride attack/acid attack (RCPT-ASTM C 1202), carrosion crack:IS 9077 (1979), water absorption (IS 1124:1974), Permeability Test(IS 3085:1965), and Dry Shrinkage (IS: 1199 - 1959) are performed.

ACKNOWLEDGEMENT

The authors gratefully appreciate Dr.Y S R ANUCET, Guntur, and Andhra Pradesh, India, for their ongoing backing. Every bit of experimental work was completed in the Civil Engineering Department's research centre in Dr.Y.S.R Acharya Nagarjuna University. The enormous help of the University administrative team and researchers was respectfully acknowledged here.

6. Conclusions

- 1. In accordance to the findings, marble waste powder, M-sand, fine aggregate may be used diligently as a substitute material in SCC. It is also acknowledged that various items have unique characteristics when they are fresh and hardened. It is recognized that a partially substituted set of components considerably fosters the durability competencies of the concrete.
- 2. Self Compacting Concrete (SCC) has the potential for heightened quality and durability while safeguarding time and money. It is a green strategy as well. There may be a significant reduction in the number of qualified supervisors, technicians, vibrator operators, and pipe fitters. Formwork can be used a countless number of times.
- 3. Fibers, can contribute up to 4% of the cement composition. Furthermore, the partial substitution of marble waste powder with cement and manufacturing sand with fine aggregate promotes the mechanical traits of SCC.
- 4. The use of viscosity-modifying substances mixed with a high-range water-reducing agent is critical for flow ability and segregation management. A better understanding of SCC rheology has made it easier to understand the functions of fines, super plasticizers, and viscosity modifying agent in SCC, as well as the compatibility between these, and has supplied designers with a clear understanding of the mechanical properties of SCC in its hardened state, including stress strain characteristics. SCC may produce practically defect-free concrete due to its capacity to guide itself into every nook of the form work. The number of pouring locations may be reduced, which shortens the time-consuming procedure of installing pipe over the pour.
- 5. Using M sand in concrete reduced drying shrinkage as fibre concentration increased whereas water absorption depth increased as fibre content declined. In addition, by enhancing fibers, we may see an improvement in acid resistance in the chloride test.

ISSN: 1001-4055 Vol. 44 No. 5 (2023)

REFERENCES

- [1].Hajime okamura, Masahiro ouchi "self compacting concrete". International Journal of Engineering Research & Technology, 1(1), 5-15, April 2003.
- [2]. Rakibul Hasan,Md.Habibur Rahman Sobuz, Abu Sayed Mohammad Akid,Md. Robiul Awall,Moustafa Houda et al., "Eco-friendly self-consolidating concrete production with reinforcing jute fiber,Journal of Building Engineering,vol 63,January 2023.
- [3]. M. Harihanandh, V. Rajesh Kumar, K.S. Elango, "Study on mechanical properties of fiber reinforced self compacting concrete", Materials Today Proceedings, December 2020.
- [4].Jawad Ahmad, Zhiguang Zhou and Ahmed Farouk Deifalla, "Self-Compacting Concrete with Partially Substitution of Waste Marble A Review".International Journal of Concrete Structures and Materials, 17:25, 2023.
- [5] .M. Arun Kumar, S. Balaji, S. Selvapraveen, P. Kulanthaivel, Laboratory. "Study on mechanical properties of self compacting concrete using marble waste and polypropylene fibre". Cleaner Materials, 6.100156,2022.
- [6]. Daniyar Akhmetov, Sungat Akhazhanov, Ainur Jetpisbayeva, Yuri Pukharenko, Yelena Root, Yelbek Utepov e, Akbulat Akhmetov, "Effect of low-modulus polypropylene fibre on physical and mechanical properties of self-compacting concrete". Case Studies in Construction Materials, 16:e00814, 2022.
- [7]. Atizaz Ali,Zahoor Hussain ,Muhammad Akbar, Ayub Elahi , Samiullah Bhatti, Muhammad Imran,Pu Zhang, and Nembo Leslie Ndam , "Influence of marble powder and polypropylene fibers on the strength and durability properties of self-compacting concrete (scc)". Advances in Materials Science and Engineering, 2022
- [8].Arash Karimipoura , MansourGhalehnovib, JorgedeBritoc, Mohammad Attarid, "The effect of polypropylene fibers on the compressive strength, impact and heat resistance of self-compacting concrete". Structures, 25:72-87, 2020.
- [9]. Ruslan Ibragimov , Ruslan Bogdanov , Liya Miftakhutdinova , Roman Fediuk , Nikolai Ivanovich Vatin , Afonso R.G.de Azevedo, "Effect of polydisperse reinforcement on the fresh and physical-mechanical properties of self-compacting concrete". Case Studies in Construction Materials, 17:e01188, 2022
- [10]. B. Ramesh, V. Gokulnath, M. Ranjith Kumar, Detailed study on flexural strength of polypropylene fibre reinforced self-compacting concrete. Materials Today: Proceedings, 22(3):1054-1058, 2020.
- [11].Ilker Bekir Topçu, Turhan Bilir, Tayfun Uygunog, "Effect of waste marble dust content as filler on properties of self-compacting concrete". Construction and Building Materials, 23:1947–1953, 2009.
- [12]. Vijendra Jarugumalli, L.N.K. Sai Madupu, "The flow properties of scc with marble waste powder as a partial substitute for cement". Materials Today: Proceedings, 52(3), 617-621, 2022.
- [13].Gulden Cagin Ulubeylia, Recep Artir, "Properties of hardened concrete produced by waste marble powder".Procedia Social and Behavioral Sciences, 195: 2181 2190, 2015.
- [14]. S. Hima Venkata Mahalakshmi, Veerendra kumar C. Khed, "Experimental study on m-sand in self-compacting concrete with and without silica fume". Materials Today: Proceedings, 27(2):1061-1065, 2020.
- [15] .Abdullah M. Zeyad, "Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete". Journal of Materials Research and Technology, 9(3): 4147-41582020.
- [16].Rahmi Karolina, Abdiansyah Putra Siregar, "Influence of polypropylene fibre on early strength of self compacting concrete". MATEC Web of Conferences, 258:01020, 2019.
- [17].Yamuna Bhagwat, Gopinatha Nayak, Poornachandra Pandit & Aishwarya Lakshmi, "Effect of polypropylene fibers on strength and durability performance of m-sand self compacting concrete". Cogent, 10:issue1.2023.
- [18]. Jawad Ahmad, Fahid Aslam, Osama Zaid, Rayed Alyousef, Hisham Alabduljabbar, and Aneel Manan, "Self-fibers compacting concrete properties reinforced with propylene fibers". Science Engineering Compos, 28:64–72, 2021.
- [19] O. Gencel, C. Ozel ,W. Brostow and G. Martı'nez-Barrera, "Mechanical properties of self-compacting concrete reinforced with polypropylene fibres". Materials Research Innovations, 15(3):216-225, 2011.

- [20].Smain Benyamina, Belkacem Menadi, Siham Kamali Bernar and Said Kenai, "Performance of self-compacting concrete with manufactured crushed sand". Advances in Concrete Construction, 7(2): 87-96, 2019.
- [21].B. Udayasreep and G. Shravan Kumar, "Properties of self-compacting concrete modified with m-sand and spent foundry slag". International Review of Applied Sciences and Engineering. 2023.
- [22]. V A Noorhidana , L Irianti , and T Junaedi, "Mechanical properties improvement of self compacting concrete using polypropylene fibre". Journal of Engineering and Scientific Research, 3(1):41-46.
- [23].K. Sathish Raja, Dinesh A, "Study on Self compacting concrete a review".International Journal of Engineering Research & Technology, 5 (02), 2016.