
Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

812 
 

Activating Illite kaolinite clay with CTAB for adsorbing 

Methylene blue: Isotherms, Kinetics, and 

thermodynamics studies 

 
Sara Bahemmi 1, Ammar Zobeidi1,2,*, Salem Atia1, Salah Neghmouche Nacer 2, Djamel 

Ghernaout 3,4 Noureddine Elboughdiri 3,5. 
 

1 Pollution and waste treatment laboratory (PWTL), University of Ouargla, P.O. Box 511, 30000, Algeria. 
2 Department of Chemistry, Faculty of Exact Sciences, University of El-Oued, P.O. Box 789, El-Oued 39000. 

3 Chemical Engineering Department, College of Engineering, University of Ha’il, P.O. Box 2440, Ha’il 

81441, Saudi Arabia. 
4 Chemical Engineering Department, Faculty of Engineering, University of Blida, Blida 09000, Algeria. 
5 Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 

Gabes 6029, Tunisia. 

 

*Corresponding author:  zobeidi.aa@gmail.com 

Abstract 

In this study, a stable multilayered adduct of maghemite surfactant and clay was created by sandwich-like 

electrostatic self-assembly of cationic polyelectrolytes of cetyltrimethylammonium bromide (CTAB) with illite 

kaolinite (IKaol) clay. The adsorptive property of  IKaol/CTAB towards MB from . Aquatic system uptake was 

investigated. Its characteristics were analysed using X-ray powder diffraction, Fourier transform-infrared 

spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and the zero point of 

charge. To attain higher performance of the IKaol/CTAB for MB adsorption, the primary key factors that 

influence the MB dye, such as (A: loading CTAB into the composite matrix of IKaol), adsorbent dose (B: 0.02–

0.06 g), pH (C: 4–10), temperature (D: 30–60 °C), and time (E: 5–60 min) , were optimised using the Box–

Behnken design method. The obtained results show that the highest MB removal efficiency of 86.24 % was 

observed at the following significant interactions: AB, BC, and AC and at optimum adsorption operation 

parameters (A: 0%, B: 0.06 g, C: 7, D: 45◦C, and E: 17.5 min). At these optimum conditions, the best adsorption 

capacity of MB dye (114.94 mg/g) was recorded at 45°C. The most effective isotherms and kinetic models were 

the Freundlich and pseudo-second-order kinetic models. The MB dye adsorption mechanism by IKaol can be 

assigned to several interactions, such as electrostatic attractions, n-π interaction, and hydrogen bonding 

interactions. The results of this study demonstrate the viability of IKaol as a promising precursor for 

the creation of an efficient adsorbent that can be used to remove cationic dye from an aqueous environment. 

 

 

1. Introduction 

 

Since a lot of wastewater containing dye is released from human activities without being treated, there has been a 

substantial decline in the quality of the environment and drinking water worldwide, even at low concentrations [1-

3]. Dyes in effluents are exceedingly dangerous to humans and harm the aquatic biological system [4, 5]. 

Biological treatments [5, 6], photochemical degradation [7], chemical precipitation [8, 9], membrane separation 

[10, 11], and adsorption are some of the technologies currently being developed for removing dyes [12, 13]. 

Methylene blue (MB) and other organic cationic dyes are considered to be more hazardous to humans and other 

living things than anionic dyes [14, 15]. This severe environmental issue can be solved by lowering or eliminating 
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the dye content of wastewater before its release into the aquatic environment [16]. 

The adsorption method, which has been widely employed for treating dye wastewater pollution, has the benefits 

of high efficiency, simplicity of design and availability, and non-generation of harmful compounds [17, 18]. 

However, the effectiveness of any adsorption procedure depends on the selection of a suitable medium 

[19]. Moreover, several researchers have focussed heavily on the study of adsorption technology employing 

inexpensive adsorbents [20]. Natural clays have garnered much attention as adsorbents because of their distinct 

capacity to remove contaminants from water at low concentrations and their reduced production cost [21]. Illite 

kaolinite (IKaol), which is found in rocks worldwide and has a crystalline structure, is a well-known, abundant, 

and affordable natural clay [22, 23]. IKaol is often composed primarily of illite and kaolinite, along with other 

minerals such as quartz and mica [8]. Depending on the pH of the solution, the surface of IKaol has a continuous 

structurally negative charge due to the isomorphous substitution of Si4+ by Al3+ in the silica layer [24], which is an 

active adsorption site for the removal of colours from wastewater [25]. IKaol has recently been used in a few 

studies as an adsorbent for removing water pollutants such as dyes [26] and heavy metal ions [27]. However, the 

direct application of pure IKaol clay is ineffective in efficiently removing anionic dyes, such as MB, from aqueous 

solutions. Therefore, it is advantageous to chemically modify pure IKaol with a suitable chemical agent to achieve 

a more favourable surface charge, which will enhance the clay’s adsorption capacity [28-30]. One approach to 

modify the  surface of IKaol is to use organic substances such as cetyltrimethylammonium bromide (CTAB) [31]. 

When ion exchange occurs in  IKaol and organoclay is formed, the surface charge, hydrophobicity, and 

physicochemical properties of the surfaces change. 

This study thoroughly evaluated the adsorption performance of MB using IKaol modified with CTAB from 

aqueous solutions. For multivariate modelling and optimising MB adsorption onto IKaol/CTAB considering input 

variables (loading CTAB into IKaol) in addition to adsorption essential parameters, response surface methodology 

(adsorbent dose, solution pH, temperature, and contact time) was used. In-depth research was also conducted on 

the adsorption kinetics, isotherms, and thermodynamics of MB dye removal using IKaol/CTAB. 

 2. Materials and methods 

2.1. Reagents and materials  

Raw illite kaolin (IKaol) clay was collected from El Oued in southern Algeria. The dye used in the study was MB 

(chemical formula: C16H18N3ClS, λmax = 664 nm, pKa: 3.5, and MW: 319.86 g/mol) purchased from Sigma-Aldrich. 

Chemical products, such as CTAB (chemical formula: C19H42BrN, and MW: 364.46 g/mol), hydrogen peroxide 

(H2O2), acetic acid (80%), sodium hydroxide (NaOH), silver nitrate (AgNO3), sodium carbonate (Na2CO3), sodium 

acetate (C2H3NaO2), and hydrochloric acid (HCl), were purchased from Merck (Germany). All chemicals and 

reagents used in this study were of analytical grade and did not require additional purification. 

 

2.2. Preparation of the IKaol/CTAB composites 

The clay was purified to remove all crystalline phases and organic matter according to a method reported in the 

literature [15, 23, 32] to obtain 2 μm particles. Initially, 150 mL of a buffer solution of pH 4.8 (16 g sodium acetate 

and 10 mL of acetic acid) was placed in a beaker, and 10 g of IKaol clay was slowly added under constant stirring. 

The Ikaol clay was treated with 50 mL of 6% H2O2 to remove organic impurities. The resulting solution was 

transferred to a graduated tube and allowed to decant for ~8 h. Subsequently, the float layer is collected at a depth 

of 10 cm to produce particles smaller than 2 μm. The clay was recovered by vacuum filtration, washed with 

distilled water, and dried in an oven at 105 °C for 24 h. After drying, the Ikaol clay was crushed to a particle size 

of 100 mesh. 

To fulfil the Box–Behnken design (BBD) optimisation process, a series of modified IKaol/CTAB 

composites were prepared as organic– nano clay by exchanging interlayer cations with CTAB in ratios with IKaol 

before dissolving in 80 mL HCl (4.10-4 M) under vigorous stirring at 80 °C for 3 h and leaving overnight. The 

residue was sonicated (30 min) to remove unreacted CTAB. The organic– nanoclay was washed perfectly until it 
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became free from Cl−, confirmed by AgNO3 testing. The preparation mentioned above was repeated to produce 

IKaol/CTAB-25 (75% IKaol: 25% CTAB) and IKaol/CTAB-50 (50% IKaol:50% CTAB). The composite powder 

was sieved to a constant particle size of 150 < particles size < 250 μm for future use. The entire scheme of the 

IKaol/CTAB composite material preparation is shown in Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic synthesis steps of IKaol/CTAB. 

 

2.3. Sample characterization 

To understand the amorphous and crystalline character of the produced materials, the X-ray diffraction (XRD) 

patterns were obtained using the XRD model PAN analytical X Pert Pro PMD with CuK = 1.5406 Å at wide-angle 

range (2ϴ value 5° - 80°), running at 40 kV and 30 mAof IKaol, IKaol/CTAB-50, and IKaol/CTAB-25. The 

Fourier transform infra-red (FTIR) spectrophotometer model Schimadzu 8202PC was used to characterise the 

functional groups of  IKaol before and after MB dye adsorption. The Hitachi TM3030Plus Tabletop Microscope 

from Tokyo (Japan) was used for scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) 

analysis to identify the morphological features and surface characteristics of IKaol before and after exposure to 

MB dye. This allowed direct verification of the purity, presence, and distribution of particular elements in the solid 

sample. A method previously described by Babic et al. [33] was used to determine the zero point of charge (pHpzc) 

of IKaol 

 

2.4. Design of experiments 

The effects of five parameters, including loading of CTAB into IKaol (A), adsorbent dosage (B), solution pH (C), 

temperature (D), and time (E) on the adsorption of MB dye onto the surface of the IKaol composite were optimized 

and studied in this work using BBD. The levels of the used independent parameters and their coded values are 

shown in Table 1. Preliminary tests were used to define the range of these independent characteristics. The 

experimental results were analyzed, and the MB dye clearance was predicted using Eq. (1): 

Y = β0 + ∑ βi χi
k
i=1 + ∑ βii χi

2k
i=1 + ∑ ∑ βij χi

k
j=1 χj

k
i=1 + Ԑ                                                   (1) 

where: Y is an objective to optimize the response, xi and xj represent the response of MB dye removal, k indicates 

the number of variables, i and j denote the index numbers for variables, 𝛽0 is the constant coefficient, 𝛽𝑖 is the 

linear coefficient, 𝛽𝑖𝑖 is the quadratic coefficient, 𝛽𝑖𝑗 is the interaction coefficient, and ε represents a random error. 
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Table 1. Experimental levels of independent factors and their codes in Box–Behnken design (BBD). 

 

Optimization and investigation of the effects of the five input parameters (i.e., A: loading (0-50%), B: adsorbent 

dose (0.02-0.06 g), C: solution pH (4-10), D: temperature (30 - 60 °C), and E: time (5-30 min)) on MB dye removal 

R (%) using IKaol composites were carried out using 46 experiments (runs) following BBD. Table 2 displays the 

BBD matrix and the MB dye removal response results (%). A specific amount of adsorbent was added to a 250 

mL Erlenmeyer flask with 100 mL of MB dye solution inside. A UV-vis spectrophotometer with a maximum 

wavelength of 664 nm (HACH DR 3900) was used to measure the MB dye concentration. Eq. (2) was used to 

express R (%) as follows: 

𝑅(%) =  
𝐶0−𝐶e

𝐶0
× 100                  (1) 

where, C0 and Ce represent the initial and equilibrium concentrations of MB dye (mg/L), respectively. 

 

2.6. Batch adsorption studies 

 

The best MB dye removal (86.24%) was found in experiment 4 ( Table 2, under the following experimental 

conditions: loading (A:0%, indicating that IKaol), adsorbent dosage (B) 0.06 g in 50 mL), pH (C) 7, temperature 

(D) 45°C, and contact time (E) 17.5 min. As a result, the batch adsorption inquiry used these ideal experimental 

parameters. Using the same methodology, batch adsorption studies for MB adsorption were performed with 

different starting MB concentrations (50-300 mg/L) and contact periods from 0 to 140 min. Using Eq. (3), the 

equilibrium adsorption capacity (qe) of MB was determined as follows: 

qe =  
(C0−Ce)V

W
                                                                                                                                            (3) 

where: V is the volume of the MB dye solution (L) and W is the total amount of the adsorbent (g). 

Table 2 .Five parameters for the Box–Behnken design (BBD) matrix and experimental data regarding MB dye 

removal using IKaol/CTAB. 

 

Run A: CTAB 

loading (%) 

B: Absorbent 

dose (g) 

C: pH D: Temperature 

(°C) 

E: Time 

(min) 

MB removal 

(%) 

1 25 0.04 7 30 30 29.19 

2 0 0.04 7 60 17.5 76.16 

3 50 0.04 10 45 17.5 42.33 

4 0 0.06 7 45 17.5 86.24 

5 0 0.04 7 45 30 81.05 

6 25 0.04 7 45 17.5 45.01 

7 25 0.04 7 60 30 35.33 

8 25 0.04 7 45 17.5 45.01 

9 25 0.06 7 45 30 53.29 

10 50 0.04 7 45 30 42.02 

11 25 0.04 4 30 17.5 25.5 

12 25 0.04 7 60 5 18.96 

Level 3 (+1) Level 2 (0) Level 1(-1)    Variables Codes 

50 25 0 Loading (%) A 

0.06 0.04 0.02 Adsorbent dose (g) B 

10 7 4 pH C 

60 45 30 Temperature (°C) D 

30 17.5 5 Time (min) E 
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13 50 0.04 7 45 5 29.997 

14 50 0.02 7 45 17.5 21.92 

15 25 0.02 7 60 17.5 15.04 

16 25 0.02 4 45 17.5 15.3 

17 50 0.04 4 45 17.5 34.02 

18 25 0.04 7 45 17.5 45.01 

19 50 0.04 7 30 17.5 36.96 

20 25 0.02 7 45 30 24.349 

21 25 0.04 10 45 30 41.3 

22 25 0.04 10 60 17.5 42.04 

23 0 0.04 7 45 5 64.739 

24 25 0.04 10 45 5 36.16 

25 25 0.04 7 30 5 14.666 

26 25 0.04 7 45 17.5 45.01 

27 25 0.02 10 45 17.5 25.78 

28 0 0.04 7 30 17.5 58.39 

29 25 0.04 7 45 17.5 45.01 

30 25 0.06 7 30 17.5 37.975 

31 25 0.06 10 45 17.5 51.36 

32 25 0.06 7 60 17.5 39.989 

33 50 0.04 7 60 17.5 30.75 

34 0 0.04 10 45 17.5 79.95 

35 25 0.02 7 30 17.5 2.82 

36 25 0.04 4 45 5 25.09 

37 25 0.04 4 45 30 38.02 

38 0 0.02 7 45 17.5 60.54 

39 25 0.02 7 45 5 9.01 

40 50 0.06 7 45 17.5 53.03 

41 0 0.04 4 45 17.5 72.15 

42 25 0.06 7 45 5 43.25 

43 25 0.04 10 30 17.5 26.7 

44 25 0.04 7 45 17.5 45.01 

45 25 0.06 4 45 17.5 44.3 

46 25 0.04 4 60 17.5 26.635 

 

3. Results and discussion 

 

3.1. Characterization 

XRD analysis assessed the amorphous and crystalline nature of the prepared materials. The XRD patterns of (a) 

IKaol and (b) IKaol/CTAB are shown in Fig. 2. It can be seen that IKaol (Fig. 2a) has a strong diffraction peak at 

a diffraction angle (2θ) of 26.1°, as well as less intense peaks at 2θ of 19.7°, 20.3°, 24.8°, 35.1°, and 39.1°. All are 

linked to kaolinite. Illite diffraction peaks were discovered at 2θ of 29.1° and 42.4°. Quartz was found at 2θ of 

20.9 and 26.6° [15, 23]. As depicted in Fig. 2b, the introduction of a surfactant expands the basal spacing within 

the resulting organoclay. This expansion signifies the presence of CTA+ ions between the clay layers, which 

reduces the amount of hydrated water. It is well established that the quantity of surfactant added directly influences 

the degree of interlayer expansion in IKaol [34]. Decreases in the 2θ values of IKaol were at 26.1°. 29.1°. In 

addition, new diffraction peaks appeared at 2θ = 14.3°, 20.8°, and 42.7° in the IKaol/CTAB sample, indicating an 
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arrangement of CTAB interlayer clay galleries. This provides evidence that CTAB intercalation occurs in clay 

intersheets. 
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Figure 2. X-ray diffraction (XRD) pattern of (a) IKaol, (b) IKaol/CTAB. 

 

The FTIR spectrum of IKaol (Fig. 3a) exhibits prominent peaks between 3695 and 3420 cm-1, which can be 

correlated with the stretching vibrations of the O– H bonds. A distinctive peak at 1633 cm-1 corresponds to the 

bending vibration of coordinated water molecules [32, 35]. Furthermore, the characteristic peaks at 914 and 420 

cm-1 are assignable to the stretching vibrations of Si–O– Si bonds in both kaolinite and illite. Meanwhile, the peak 

at 3620 cm-1 could be associated with the deformation of -OH groups connected to Al [15]. The FTIR spectrum of 

IKaol after the adsorption of the MB dye (Fig. 3b) displays the same bands in the spectrum of IKaol with slight 

shifting of some bands, indicating that the functional groups of IKaol were involved in the MB dye adsorption. 

Furthermore, a new band between 1200 and 1400 cm-1 can be attribute to the aromatic rings (C=C) of the MB dye 

adsorbed on the surface of IKaol [36]. 
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Figure 3. FTIR spectra of (a) IKoal and (b) IKoal after MB dye adsorption. 

 

Moreover, SEM-EDX analysis was performed to identify the surface morphology and chemical composition. 

Figure 4 displays the SEM images and EDX spectra of (a) IKaol and (b) after MB dye adsorption. As shown in 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

818 
 

Fig. 4a, the surface morphology of IKaol is irregular and heterogonous with crevices. The EDX spectrum of IKaol 

contains elements C, O, Al, Si, Fe, K, Na, and Mg. These elements are present in kaolinite, illite, and other clay 

constituents. Furthermore, the surface structure of the IKaol composite material following MB adsorption (Fig. 

4b) appeared to be more compact because of the loading of the MB dye molecules onto its surface. The spike in 

the carbonation rate in the related EDX spectrum indicates that the MB dye is on the surface of IKaol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4. SEM images and EDX spectra of (a) IKoal and (b) IKoal after the adsorption of the MB dye. 

 

3.2. Parametric optimisation of Box–Behnken design (BBD) 

Using BBD, we determined whether the adsorption input parameters of loading (A), adsorbent dosage (B), solution 

pH (C), temperature (D), and contact time (E) had independent or combined effects on MB dye removal. As shown 

in Table 3, a statistical analysis of the experimental results for MB dye removal was confirmed by analysis of 

variance (ANOVA). The F-value and p-value for the BBD model are 215.01 and <0.0001, respectively (Table 3). 

These findings [34] demonstrate the statistical importance of the BBD model for MB dye removal. The coefficient 

of determination (R2) was 0.99, indicating a strong correlation between the measured and expected levels of MB 

dye removal. The BBD model’s components are statistically significant when the p-value is less than 0.05 (Prob 

> F 0.0500) under the given conditions. As a result, the terms A, B, C, D, E, AD, BD, CD, A2, B2, C2, D2, and 

E2 presented in the BBD design are statistically significant regarding the removal of MB. Terms with p-values 

cps/eV 
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greater than 0.05 are excluded from the quadratic polynomial equation to obtain the best fit of the BBD model. 

The quadratic polynomial equation in Eq. (4) describes the relationship between the investigated parameters and 

the response (MB dye removal). 

 

MB removal (%) = + 45.01 –  18.01 A + 14.66B + 4.03C+3.29 D+6.41 E- 5.99AD - 2.55BD + 3.55 CD+16.84A2 

-6.99B2 -3.45C2 -12.58D2 -6.80E2                                             (4) 

 

The normal probability of the externally studentized residuals is shown in Fig. 5a. This figure depicts whether the 

distribution of residuals is normal. Points on a normal distribution should essentially lie in a straight line. Because 

the points in Fig. 5a are in a straight line, it can be assumed that their distribution is normal [15]. The normal 

distributions of the residuals demonstrate that the assumptions were reasonable and independent [37]. Fig. 5b 

Table 3. Analysis of variance (ANOVA) of the MB dye removal response surface quadratic model 

(Df: degree of freedom). 

 

Source Sum of Squares Df Mean Square F-value p-value 

Model 16311.78 20 815.59 215.01 < 0.0001 

A-Loading 5190.91 1 5190.91 1368.49 < 0.0001 

B-Dose 3442.02 1 3442.02 907.43 < 0.0001 

C-pH 260.86 1 260.86 68.77 < 0.0001 

D-Temper 173.60 1 173.60 45.77 < 0.0001 

E-Time 658.91 1 658.91 173.71 < 0.0001 

AB 7.32 1 7.32 1.93 0.1771 

AC 0.0650 1 0.0650 0.0171 0.8969 

AD 143.76 1 143.76 37.90 < 0.0001 

AE 4.60 1 4.60 1.21 0.2815 

BC 2.92 1 2.92 0.7709 0.3883 

BD 26.04 1 26.04 6.87 0.0147 

BE 7.02 1 7.02 1.85 0.1858 

CD 50.45 1 50.45 13.30 0.0012 

CE 15.17 1 15.17 4.00 0.0565 

DE 0.8519 1 0.8519 0.2246 0.6397 

A² 2475.69 1 2475.69 652.67 < 0.0001 

B² 427.05 1 427.05 112.58 < 0.0001 

C² 104.38 1 104.38 27.52 < 0.0001 

D² 1382.43 1 1382.43 364.45 < 0.0001 

E² 404.68 1 404.68 106.69 < 0.0001 

Residual 94.83 25                  3.79   

Cor Total 16406.61 45    
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displays the correlation between the actual and expected MB dye clearance values. Based on Fig. 5b, the expected 

and actual positions were typically close. Hence, the experimental outcomes were deemed acceptable. Finally, Fig. 

5c plots the residuals and the run number. The fact that all data were obtained in the residual rings (3 in Fig. 5c) 

indicated that the model was viable and could be used to establish the optimal working conditions that provide the 

highest removal of the MB dye [38]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Plots of (a) the normal (%) probability of residuals, (b) actual values vs. predicted values, and (c) 

residuals vs. the run order. 

 

3.3. Significant Interactions in the Adsorption Process 

Investigated was the significant impact of the interaction between the two input parameters on MB dye removal. 

Statistics show that the interaction between temperature (D) and loading (A) has an impact on the elimination of 

MB dye (p-value <0.0001). The remaining variables, such as the 0.06 g adsorbent dosage and pH 7 of the solution, 

do not change during this time. Fig. 6a shows a 3D response surface plot of the effect of the interaction between 

loading and temperature on MB dye removal, showing that the removal of the dye increased as the loading of the 

IKaol/CTAB matrix decreased (from 0 to 50%). Additionally, the IKaol material may reach the ideal alignment 

between surface area and amine group content, achieving the best adsorptive performance. Further, as shown in 

Fig. 6a, the removal of the MB dye somewhat increased as the temperature was lowered to 30°C. This finding 

indicates that the adsorption of MB dye molecules onto the surface of IKaol may have an exothermic nature. 

By holding the other operation parameters (CTAB loading 0%, pH of 7, and time of 17.5 min) constant, a further 

significant interaction of solution dose (B) with temperature (D) was the last statistically substantial interaction for 

the elimination of MB (p = 0.0146. The effect of the interaction between the adsorbent dose and time on MB dye 

removal (%) is shown in a 3D response surface plot in Fig. 6b. This Figure depicts that the MB dye removal 
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increased with an increase in adsorbent dose from 0.02 to 0.06 g; this result can be attributed to the increase in the 

adsorbent's active sites. Additionally, Fig. 6b demonstrates how dropping the temperature from 60 to 30°C 

improved the elimination of MB dye. This result shows the exothermic character of the MB adsorption process by 

the IKaol surface, which will be covered in more detail in the section below  

Finally, there is a statistically significant (p-value = 0.0012) interaction between solution pH (C) and temperature 

(D) on MB dye elimination. The other factors (0% CTAB loading, 0.06 g of adsorbent, and 17.5 min) are constant. 

Fig. 6c depicts a 3D response surface showing the relationship between temperature and solution pH. The plot 

demonstrates that as the pH of the solution dropped from 10 to 4, the amount of MB dye removed (%) increased 

from 2.82 to 86.24. Furthermore, as can be seen in Fig. 6d, the pHpzc of the IKaol is found to be 7.5. The IKaol can 

typically acquire negative surface charges at pH levels over pHpzc, which results in a significant electrostatic 

attraction between the IKaol and MB dye cations, as given in Eq. (5): 

 

      IKaol – SiO-  + MB+                  IKaol – SiO- – +MB                                                           (5) 

 

 

 

Figure 6. (a) 3D plot of the synergistic interaction of loading and the solution temperature on the MB removal; 

(b) 3D plot of the solution dose and the solution temperature; (c) 3D plot of the pH and solution temperature; (d) 

pHpzc of IKaol. 

 

3.4. Adsorption Study 

 

We investigated the impact of contact duration on the adsorption of MB dye at various starting MB dye 

concentrations (50 to 300 mg/L) onto the surface of IKaol. The study's other variables, including the adsorbent 

dosage (0.06 g/100 mL), solution pH (7), and temperature (45°C), were held constant. The graphs of the IKaol qt 

adsorption capacity (mg/g) against time (min) at various initial MB dye starting concentrations are displayed in 

Fig. 7. The adsorption capacity of IKaol toward MB dye molecules rose from 35.95 to 178.49 mg/g when the 

concentration of MB dye was increased from 50 to 300 mg/L (Fig. 7). This outcome could be explained by the 

driving force created by a large concentration gradient affecting the transport of the MB dye molecules to the 

interior pores and active sites in IKaol [39]. 
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Figure 7. Effect of the initial MB concentration on the IKaol adsorption capacity as a function of the contact 

time (dosage 0.06 g, pH 7, temperature 45°C, agitation speed = 150 strokes/min, and volume of solution = 100 

mL). 

 

3.5. Adsorption kinetics  

Adsorption kinetic is a vital character to understand the adsorption behavior of MB on the IKaol surface and 

inspect the adsorption mechanism. In this regard, pseudo-first-order (PFO) and pseudo-second-order (PSO) kinetic 

models were applied. The equations of the kinetic models PFO [40] and PSO [41] are presented in a non-linear 

form in Eqs. 6 and 7, respectively, as follows: 

𝑞𝑡 = 𝑞𝑒  (1 −

𝑒𝑥𝑝−𝑘1 𝑡)                                                                                                                                                               (6)                                               

𝑞𝑡 =
𝑞𝑒  𝑘2

2 𝑡

1+𝑞𝑒𝑘2𝑡
                                                                                                                                                                                   (7)                                                          

where: qt (mg/g) is the amount of MB dye adsorbed at time t (min), k1 (1/min) is the rate constant of PFO, and k2 

(g/mg×min) is the rate constant of PSO. 

Table 4 contains the kinetic models' parameters. The experimental findings (Table 4) lead to the conclusion that 

the PSO model describes the adsorption of MB dye molecules by the IKaol adsorbent because of the better 

correlation coefficient (R2) values and the excellent fit between the estimated and experimental qe (i.e., qe,exp) 

values than it was in the case of the PFO kinetic model. This finding suggests that the chemisorption phenomenon 

predominates in the adsorption of MB dye molecules on the IKaol surface [41]. 

 

Table 4. PFO and PSO kinetic parameters for MB adsorption by IKaol 

PSO PFO qe.exp (mg/g) Concentration 

(mg/L) R2 k2*102 

(g/mg×min) 

qecal 

(mg/g) 

R2 k1 (1/min) qe.cal (mg/g) 

1 8.873 32.15 0.66 0.0023 31.15 33.8 50 

1 7.26 75.76 0.90 0.05018 74.39 75.5 100 

0.99 0.499 104.38 0.956 0.0899 101.86 104.7 150 

0.99 0.191 108.70 0.96 0.0495 104.37 107.6 200 

0.99 0.107 113.28 0.95 0.0899 112.86 113.7 300 
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3.6. Adsorption isotherm 

Adsorption isotherm is significant in describing the interaction between MB dye molecules and IKaol. The most 

commonly utilized isotherms, namely Langmuir [42], Freundlich [43], and Temkin [44], are adopted for analyzing 

the equilibrium adsorption data and calculating the adsorption capacity of IKaol. The non-linear forms of the 

Langmuir, Freundlich, and Temkin are expressed in Eqs. (8) - (10), respectively, as follows: 

                       
Ce

qe
=

qmax Ka   Ce

1+ Ka Ce
                                                                                                                                     (8)                                                       

                       qe = KF Ce

1
n                                                                                                                                             (9) 

                      qe =
RT

bT
(ln KTCe)                                                                                                                                   (10)                                                                                                                                                    

 

where: Ce (mg/L) is the concentration of MB dye at equilibrium, qmax (mg/g) is the maximum quantity of the MB 

dye per unit mass of IKaol, qe (mg/g) is the amount of MB dye uptake at per unit weight of Kaol, Ka (L/mg) is 

Langmuir constant, KF (mg/g)(L/mg)1/n is the Freundlich constant, n is the dimensionless constant that indicates 

the adsorption intensity, KT (L/mg) is Temkin constant, T (K) is temperature, R (8.314 J/mol×K) is the universal 

gas constant, and bT (J/mol) represent adsorption intensity and heat of adsorption, respectively. 

 

Table 5. Isotherm model parameters for the MB adsorption by the IKaol composite material at 45°C. 

 

According to Table 5, the uptake of MB dye by IKaol obeys the Langmuir isotherm model, which is better than 

the Freundlich and Temkin adsorption isotherm models due to its higher coefficient of determination (R2 = 0.99) 

value compared to the other models. This finding suggests that the adsorption occurred on the homogenous 

surfaces through the monolayer coverage [45]. Moreover, the qmax for the IKaol was found to be 114.94 mg/g at 

45°C based on the Langmuir model. Thus, the qmax of MB dye onto IKaol was compared with other adsorbents 

reported in the literature for removing MB, as listed in Table 6, revealing that IKaol represents a promising and 

efficient adsorbent for the removal of a cationic dye (MB) dye from an aqueous environment. 

 

Table 6. Adsorption capabilities of various adsorbents. 

 

Adsorbents qmax(mg/g) References 

Alginate–organobentonite beads (1/1 w/w) 972.29 [1] 

Dragon fruit skin 640 [2] 

Brazilian montmorillonite 300.3 [3] 

Fe3O4-CTMAC/SEIA-Mt 246 [4] 

Adsorption isotherm Parameter Value 

Langmuir qmax (mg/g) 114.94 

 Ka (L/mg) 1.3385 

 R2 0.99 

Freundlich KF (mg/g) (L/mg)1/n 52.01 

 n 3.73 

 R2 0.82 

Temkin KT (L/mg) 27.82 

 bT (J/mol) 149.75 

 R2 0.782 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 5 (2023)  
__________________________________________________________________________________________ 
 

824 
 

Iraqi red kaolin  240.4 [5] 

Magnetic chitosan/clay beads 82 [6] 

Egyptian ferruginous kaolinite 59.3 [7] 

Algerian kaolin 52.76 [8] 

Cellulose/clay composite-I 37.8 [9] 

HCl activated Nteje Clay 24.04 [10] 

Moroccan Illitic 13.6 [11] 

IKaol 114.94  This study 

 

3.7. Adsorption thermodynamics 

Adsorption thermodynamic parameters are executed to study the adsorption process of MB dye onto the IKaol 

surface in terms of feasibility and spontaneity, in addition to estimating the degree of randomness at the interface 

of MB dye with the IKaol surface. Adsorption thermodynamic parameters, including Gibbs free energy change 

ΔG◦(kJ/mol), entropy change (ΔS˚) (kJ/molK), and enthalpy change ΔH˚ (kJ/mol) were obtained using Eqs. (11) 

- (13) [32, 38]: 

    ∆G° =  −𝑅𝑇𝐿𝑛 𝐾𝑑                                                                                                                               (11)                                                           

        𝐾𝑑 =
𝑞𝑒

𝐶𝑒
                                                                                                                                              (12)                                                                         

  𝐿𝑛𝐾𝑑 =
𝛥𝑆

 𝑅
−

 ΔH°

𝑅𝑇 °
                                                                                                                                 (13)                                                   

 

The values of thermodynamic parameters (ΔH˚ and ΔS˚) were calculated by plotting lnKd against 1/T (Figure 8), 

where slope and intercept represent ΔH˚ and ΔS˚, respectively. 

0,00300 0,00305 0,00310 0,00315 0,00320 0,00325 0,00330

-0,5

0,0

0,5

1,0

1,5

2,0

2,5

3,0

1/T (K-1)

ln
 K

d

 
Figure 8. Van’t Hoff plot for MB adsorption onto IKaol (dosage 0.06 g, pH 7, temperature 45 °C, agitation 

speed = 150 strokes/min, and volume of solution = 100 mL). 

According to the obtained results in Table 7, the ΔG˚ with negative values demonstrate that the adsorption process 

of MB dye onto the IKaol was a spontaneous and favorable reaction [55]. Moreover, the enthalpy values for MB 

were estimated with negative signs, indicating that the adsorption process of MB by IKaol is exothermic. This 

observation aligns with the BBD parametric optimization results presented in Figure 8. The entropy values were 

also estimated with positive signs, suggesting the increased randomness at the solid–solution interface during the 

adsorption of MB onto IKaol [56], and this could be caused by the interaction between the dye and the spots on 

the material where it can stick. 
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Table 7. Thermodynamic characteristics for the MB adsorption on the IKaol composite material. 

 

T (K) lnkd ΔGo (kJ/mol) ΔHo (kJ/mol) ΔSo (kJ/molK) 

303.15 6.259 -15.78 

-4.69 0.051 
313.15 6.584 -22.20 

323.15 8.529 -17.68 

333.15 8.629 -23.89 

 

3.8. Adsorption mechanism 

The surface of IKaol contains adsorption sites like silanol (≡SiOH), aluminol (≡AlOH) groups, and mineral edge 

hydroxyl (-OH) groups [57, 58]. Concerning IKaol's pHpzc, the surface gains a negative charge in alkaline 

conditions due to hydroxyl group deprotonation [59]. Taking into account this, the adsorption mechanism of MB 

dye onto the IKaol surface involves multiple interactions, as illustrated in Figure 9. Significant is the electrostatic 

attraction that significantly binds MB dye to IKaol. This underscores the crucial role of electrostatic forces, 

specifically between positively charged MB dye cations and negatively charged sites on IKaol's surface. 

Additionally, the adsorption mechanism also encompasses H-bonding interactions between hydrogen atoms 

present on the IKaol surface and N atoms within the structure of the MB dye. Finally, the n-π interaction arises 

from the dispersion of lone pair electrons of O atoms into the π orbitals of the aromatic rings in the dye's structure. 

In light of the details above, it can be inferred that these interactions had a crucial contribution in improving the 

adsorption phenomenon of the IKaol adsorbent to the MB dye. 

 

  

 

 

  

 

 

  

  

 

 

 

 

 

 

 

Figure 9. MB dye adsorption mechanism on the IKaol surface. 

4. Conclusion 

In this work, a unique IKaol was successfully applied to remove MB dye from an aqueous environment, and the 

study optimized key factors influencing the process. These factors included loading CTAB into the IKaol matrix, 

adsorbent dose, solution pH, contact time, and temperature. The Box-Behnken design method was employed to 

determine the optimal adsorption parameters by examining the impacts of five independent components. The best 

MB removal rate (98.76%) was achieved with optimal working conditions: loading CTAB: 0%, adsorbent dose: 

0.06 g, pH seven, temperature 45°C, time 17.5 min. At these optimized conditions, the adsorption capacity of MB 
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onto IKaol was found to be 114.94 mg/g. The adsorption process was pseudo-second-order, according to the kinetic 

experimental data. The adsorption mechanism included electrostatic attraction, H-bonding interaction, and n-π 

interaction. The adsorption results revealed that IKaol is an effective and low-cost natural adsorbent for removing 

cationic dyes from various types of wastewaters. 
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