ℓ-HILBERT MEAN LABELING OF SOME PATH RELATED GRAPHS

(Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli – 627012, Tamilnadu, India)

Email: [1]pappathiram2017@gmail.com, [2]syedalinskaya@mdthinducollege.org

Abstract:

Let G be a graph with p vertices and q edges. The qth Hilbert number is denoted by H\textsubscript{q} and is defined by H\textsubscript{q} = 4(q − 1) + 1 where q ≥ 1. A ℓ- hilbert mean labeling is an injective function f: V(G) → \{0, 1, 2, ..., H\textsubscript{ℓ}(q−1)\}, where ℓ ≥ 1 that induces a bijection f*: E(G) → \{H\textsubscript{ℓ}, H\textsubscript{ℓ}+1, H\textsubscript{ℓ}+2, ..., H\textsubscript{ℓ}(q−1)\} defined by

\[f^*(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \end{cases} \]

for all uv ∈ E(G). A graph which admits such labeling is called a ℓ- hilbert mean graph. In this paper, a new type of labeling called ℓ- hilbert mean labeling is introduced and the path related graphs is studied.

AMS Subject Classification – 05C78

Keywords: Hilbert numbers, Hilbert mean labeling, Hilbert mean graph.

1. **Introduction**

Let G = (V, E) be a graph with p vertices and q edges. The graph considered in this paper are simple, finite, undirected and without loops or multiple edges. Terms not defined here are used in the sense of Harary [4]. For number theoretic terminology [1] is followed. A graph labeling is an assignment of integers to the vertices or the edges or both subject to certain conditions. If the domain of the mapping is a set of vertices (edges/both) then the labeling is called a vertex (edge/total) labeling. A dynamic survey of graph labeling is regularly updated by Gallian [2] and it is published by Electronic Journal of Combinatorics. The concept of mean labeling was introduced by S.Somasundaram and R.Ponraj [6]. For Triangular mean labeling and k- Mean labeling refer [5] and [3] and Hilbert mean labeling was introduced in [7].

2. **Preliminaries**

Definition 2.1: A path \(P_n \) is obtained by joining \(u_i \) to the consecutive vertices \(u_{i+1} \) for \(1 \leq i \leq n - 1 \).

Definition 2.2: The graph obtained by joining a single pendant edge to each vertex of a path \(P_n \) is called a comb. It is denoted by \(P_n \square K_1 \) (or) \(P_n^* \).

Definition 2.3: Bistar is the graph obtained by joining the apex vertices of two copies of star \(K_{1,n} \).

Definition 2.4: The H-graph of path \(P_n (n \geq 3) \) is the graph obtained from two copies of \(P_n \) with the vertices \(u_1, u_2, \ldots, u_n \) and \(v_1, v_2, \ldots, v_n \) by joining the vertices \(\left(\frac{u_{n+1}}{2}, \frac{v_n+1}{2} \right) \) if \(n \) is odd and \(\left(\frac{u_n}{2}, \frac{v_n}{2} \right) \) if \(n \) is even. It is denoted by \(H(P_n) \).
Definition 2.5: A F-tree $F(P_n)$ is a graph obtained from path on $n \geq 3$ vertices by appending two pendant edges one to an end vertex and other to vertex adjacent to an end vertex.

Definition 2.6: The ladder graph L_n is a planar, undirected graph with $2n$ vertices and $3n - 2$ edges. The ladder graph L_n is a graph obtained as the Cartesian product of P_2 and P_n.

Definition 2.7: The slanting ladder SL_n is a graph that consists of two copies of P_n having vertex set $\{u_i; 1 \leq i \leq n\}$ or $\{v_i; 1 \leq i \leq n\}$ and the edge set is formed by adjoining u_i+1 and v_i for all $1 \leq i \leq n - 1$.

Definition 2.8: The graph obtained from a path by attaching exactly two pendant edges to each internal vertex of the path is called a Twig graph and it is denoted by $T(n)$.

Definition 2.9: A graph G with p vertices and q edges is called a mean graph if there is an injective function f from the vertices of G to $\{0, 1, 2, ..., q\}$ in such a way that when each edge $e = uv$ is labeled by $(f(u) + f(v)) / 2$ if $f(u) + f(v)$ is even and $(f(u) + f(v) + 1) / 2$ if $f(u) + f(v)$ is odd, then the resulting edge labels are distinct. Here f is called a mean labeling of G. If G is a mean graph, then the edges get labels $1, 2, ..., q$.

Definition 2.10 [3]: A (p, q) graph G is set to have k-mean labeling, if there is an injective function f from the vertices of G to $\{0, 1, 2, ..., k + q - 1\}$ such that the induced map f^* defined on E by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

is a bijection from E to $\{k, k + 1, k + 2, ..., k + q - 1\}$. A graph that admits a k-mean labeling is called a k-mean graph.

Definition 2.11: The n^{th} hilbert number H_n is given by the formula $4(n -1) + 1$ for $n \geq 1$. The first few hilbert numbers are $1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57$, etc.

Definition 2.12: Let G be a graph with p vertices and q edges. The n^{th} hilbert number is denoted H_n and is defined by $H_n = 4(n -1) + 1$ where $n \geq 1$. A hilbert mean labeling is an injective function $f: V(G) \rightarrow \{0, 1, 2, ..., H_q\}$, where H_q is the q^{th} hilbert number that induces a bijection $f^*: E(G) \rightarrow \{H_1, H_2, ..., H_q\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

for all $uv \in E(G)$. A graph which admits such labeling is called a hilbert mean graph.

3. Main Results

Definition 3.1: Let G be a graph with p vertices and q edges. The q^{th} hilbert number is denoted by H_q and is defined by $H_q = 4(q -1) + 1$ where $q \geq 1$. A ℓ^{th} hilbert mean labeling is an injective function $f: V(G) \rightarrow \{0, 1, 2, ..., H_{\ell+q-1}\}$ where $\ell \geq 1$, that induces a bijection $f^*: E(G) \rightarrow \{H_\ell, H_{\ell+1}, H_{\ell+2}, ..., H_{\ell+q-1}\}$ defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v) + 1}{2} & \text{if } f(u) + f(v) \text{ is odd} \\ \frac{f(u) + f(v)}{2} & \text{if } f(u) + f(v) \text{ is even} \end{cases}$$

for all $uv \in E(G)$. A graph which admits such labeling is called a ℓ^{th} hilbert mean graph.

Theorem 3.2: P_m is a ℓ^{th} hilbert mean graph, where $m \geq 2$.

Proof: Let $G = P_m$. Let $V(G) = \{x_i; 1 \leq i \leq m\}$ and $E(G) = \{x_i, x_{i+1}; 1 \leq i \leq m-1\}$. We observe that G has m vertices and $m - 1$ edges.

Define $f: V(G) \rightarrow \{0, 1, 2, ..., H_{\ell+2m-2}\}$ as follows.

Case 1: m is odd and $\ell \geq 2$, $f(x_{\ell}) = 4\ell - 7$.

For $2 \leq i \leq m$,

$$f(x_i) = \begin{cases} 4(\ell + i - 3) + 1, & \text{i is odd} \\ 4(\ell + i - 2), & \text{i is even} \end{cases}$$

Case 2: m is even and $\ell \geq 1$,
For $1 \leq i \leq m$,
\[
f(x_i) = \begin{cases}
4(\ell + i - 2), & \text{i is odd} \\
4(\ell + i - 3) + 1, & \text{i is even}
\end{cases}
\]
Clearly f is injective and the induced edge labeling $f^*: E(G) \to \{H, H_{\ell+1}, ..., H_{\ell+m-2}\}$ is defined as follows.
f*(x_i x_{i+1}) = H_{\ell+2(i-1)}, where $1 \leq i \leq m - 1$
Thus, we get the induced edge labels as $H, H_{\ell+1}, ..., H_{\ell+m-2}$.
Hence P_m^ℓ is a ℓ- hilbert mean graph, where $m \geq 2$.

Example 3.3: The ℓ- hilbert mean labeling of P_3 is shown in figure 1.

Theorem 3.4: P_m^ℓ is a ℓ- hilbert mean graph, where $m \geq 3$.

Proof: Let $G = P_m^\ell$. Let $V(G) = \{x_i, y_i: 1 \leq i \leq m\}$ and $E(G) = \{y_i y_{i+1}: 1 \leq i \leq m - 1\} \cup \{x_i y_i: 1 \leq i \leq m\}$.
We observe that G has $2m$ vertices and $2m - 1$ edges.
Define $f: V(G) \to \{0, 1, 2, ..., H_{\ell+2m-2}\}$ as follows.
f(x_i) = 4(\ell + 2i - 3), \quad 1 \leq i \leq m

\[
f(y_i) = 4(\ell + 2i - 3) + 1, \quad 1 \leq i \leq m
\]
Clearly f is injective and the induced edge labeling $f*: E(G) \to \{H, H_{\ell+1}, ..., H_{\ell+2m-2}\}$ is defined as follows.
f*(x_i x_{i+1}) = H_{\ell+2(i-1)}, where $1 \leq i \leq m - 1$

\[
f*(y_i y_{i+1}) = H_{\ell+2(i-1)}, where $1 \leq i \leq m
\]
Thus, we get the induced edge labels as $H, H_{\ell+1}, ..., H_{\ell+2m-2}$.
Hence P_m^ℓ is a ℓ- hilbert mean graph, where $m \geq 3$.

Example 3.5: The ℓ- hilbert mean labeling of P_m^ℓ is shown in figure 2.

Theorem 3.6: $B_{n,n}$ is a ℓ- hilbert mean graph, where $n \geq 2$.

Proof: Let $G = B_{n,n}$, where $n \geq 2$.
Let $V(G) = \{x, y, x_i, y_i: 1 \leq i \leq n\}$ and $E(G) = \{xy, xx_i, yy_i: 1 \leq i \leq n\}$.
We observe that G has $2n + 2$ vertices and $2n + 1$ edges.
Define $f: V(G) \to \{0, 1, 2, ..., H_{\ell+2n}\}$ as follows.
f(x) = 4(\ell - 1), f(x_i) = 4(\ell + 2i - 3) + 1, \quad 1 \leq i \leq n

\[
f(y) = 4(\ell + 2i - 1), \quad 1 \leq i \leq n, f(y_i) = 4(\ell + 2n - 1) + 1.
\]
Clearly f is injective and the induced edge labeling f^* is defined as follows.
f^*(xx_i) = H_{\ell+2(i-1)} where $1 \leq i \leq n$. f^*(xy) = H_{\ell+n}.
f^*(yy_i) = H_{\ell+2(n+1)} where $1 \leq i \leq n
Thus, we get the induced edge labels as $H, H_{\ell+1}, ..., H_{\ell+2n}$.
Hence $B_{n,n}$ is a ℓ- hilbert mean graph, where $n \geq 3$.

Example 3.7: ℓ- hilbert mean labeling of $B_{4,4}$ is shown in figure 3.
Theorem 3.8: $H(P_n)$ is a ℓ-hilbert mean graph, where $n \geq 3$.

Proof: Let $G = H(P_n)$. Let $V(G) = \{x_i, y_i: 1 \leq i \leq n\}$ and $E(G) = \{x_iy_i: 1 \leq i \leq n\} \cup \{x_iy_{i+1}, y_iy_{i+1}: 1 \leq i \leq n - 1\}$

Let G has $2n$ vertices and $2n - 1$ edges.

We define a labeling $f : V(G) \rightarrow \{0, 1, 2, ..., H_{f+2n-2}\}$ as follows.

Case 1: n is odd. For $1 \leq i \leq n$,

$$f(x_i) = \begin{cases} 4(\ell + i - 2), & \text{i is odd} \\ 4(\ell + i - 3) + 1, & \text{i is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + n + i - 3) + 1, & \text{i is odd} \\ 4(\ell + n + i - 2), & \text{i is even} \end{cases}$$

Case 2: n is even. For $1 \leq i \leq n$,

$$f(x_i) = \begin{cases} 4(\ell + i - 2), & \text{i is odd} \\ 4(\ell + i - 3) + 1, & \text{i is even} \end{cases}$$

$$f(y_i) = \begin{cases} 4(\ell + n + i - 2), & \text{i is odd} \\ 4(\ell + n + i - 3) + 1, & \text{i is even} \end{cases}$$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$$f^*(\frac{x_{n+1}}{2}, \frac{y_{n+1}}{2}) = H_{f+2(n-1)}$$, where n is odd

$$f^*(\frac{x_{n+2}}{2}, \frac{y_n}{2}) = H_{f+2(n-1)}$$, where n is even

$$f^*(x_iy_{i+1}) = H_{f(1-\ell)}$$, where $1 \leq i \leq n - 1$

$$f^*(y_iy_{i+1}) = H_{f(n+1-\ell)}$$, where $1 \leq i \leq n - 1$

Thus, we get the induced edge labels as $H_p, H_{f+1} \ldots, H_{f+2n-2}$.

Hence $H(P_n)$ is a ℓ-hilbert mean graph, where $n \geq 3$.

Example 3.9: ℓ-hilbert mean labeling of $H(P_3)$ is shown in figure 4.

Theorem 3.10: $F(P_n)$ is a ℓ-hilbert mean graph, where n is even and $n \geq 4$.

Proof: Let $G = F(P_n)$. Let $V(G) = \{x_i: i = 1, 2\} \cup \{y_i: 1 \leq i \leq n\}$ and $E(G) = \{x_iy_i: i = 1, 2\} \cup \{y_iy_{i+1}: 1 \leq i \leq n - 1\}$

We observe that G has $n + 2$ vertices and $n + 1$ edges.

We define a labeling $f : V(G) \rightarrow \{0, 1, 2, ..., H_{f+n}\}$ as follows.
Example 3.1

Hence

Clearly

For

Case 2:

Let

Proof

Theorem 3.1

Thus, we get the induced edge labels as $H_r, H_{t+1} \ldots, H_{t+n}$.

Example 3.11: ℓ- hilbert mean labeling of $F(P_n)$ is shown in figure 5.

Figure - 5

Theorem 3.12: L_n is a ℓ- hilbert mean graph, where $n \geq 3$.

Proof: Let $G = L_n$. Let $V(G) = \{x_i, y_i : 1 \leq i \leq n\}$ and $E(G) = \{x_i, y_i : 1 \leq i \leq n\} \cup \{x_{i+1}, y_{i+1} : 1 \leq i \leq n - 1\}$

Let G has $2n$ vertices $3n - 2$ edges. Define $f : V(G) \rightarrow \{0, 1, 2, \ldots, H_{t+3n-3}\}$ as follows.

Case 1: n is odd and $\ell \geq 1$,

For $1 \leq i \leq n$,

\[f(x_i) = \begin{cases} 4(\ell + i - 2), & \text{if } i \text{ is odd} \\ 4(\ell + i - 3), & \text{if } i \text{ is even} \end{cases} \]

\[f(y_i) = \begin{cases} 4(\ell + 2n + i - 4) + 1, & \text{if } i \text{ is odd} \\ 4(\ell + 2n + i - 3), & \text{if } i \text{ is even} \end{cases} \]

Case 2: n is even and $\ell \geq 2$, $f(x_1) = 4\ell - 7$,

For $2 \leq i \leq n$,

\[f(x_i) = \begin{cases} 4(\ell + i - 3) + 1, & \text{if } i \text{ is odd} \\ 4(\ell + i - 2), & \text{if } i \text{ is even} \end{cases} \]

\[f(y_i) = \begin{cases} 4(\ell + 2n + i - 3), & \text{if } i \text{ is odd} \\ 4(\ell + 2n + i - 4) + 1, & \text{if } i \text{ is even} \end{cases} \]

Clearly f is injective and the induced edge labeling f^* is defined as follows.

\[f^*(x_i x_{i+1}) = H_{t+i-1}, \text{ where } 1 \leq i \leq n - 1, \]

\[f^*(y_i y_{i+1}) = H_{t+2n+i-2}, \text{ where } 1 \leq i \leq n - 1, \]

\[f^*(x_i y_i) = H_{t+3n-3}, \text{ where } 1 \leq i \leq n \]

Thus, we get the induced edge labels as $H_r, H_{t+1} \ldots, H_{t+3n-3}$.

Hence L_n is a ℓ- hilbert mean graph, where $n \geq 3$.

Example 3.13: ℓ- hilbert mean labeling of L_3 is shown in figure 6.
Theorem 3.14: SL_n is a ℓ-hilbert mean graph, where n is even and $n \geq 3$.

Proof: Let $G = SL_n$. Let $V(G) = \{x_i, y_i: 1 \leq i \leq n\}$ and $E(G) = \{x_ix_{i+1}, y_iy_{i+1}, x_{i+1}y_i: 1 \leq i \leq n - 1\}$.

Let G has $2n$ vertices $3n - 3$ edges. Define $f: V(G) \rightarrow \{0, 1, 2, ..., H_{\ell+3n-4}\}$ as follows.

Case 1: n is odd and $\ell \geq 2$.

For $2 \leq i \leq n$,

$f(x_i) = \begin{cases} 4(\ell + i - 3) + 1, & \text{if } i \text{ is odd} \\ 4(\ell + i - 2), & \text{if } i \text{ is even} \end{cases}$

$f(y_i) = \begin{cases} 4(\ell + 2n + i - 5), & \text{if } i \text{ is odd} \\ 4(\ell + 2n + i - 4) + 1, & \text{if } i \text{ is even} \end{cases}$

Case 2: n is even and $\ell \geq 2$.

For $1 \leq i \leq n$,

$f(x_i) = \begin{cases} 4(\ell + i - 2), & \text{if } i \text{ is odd} \\ 4(\ell + i - 3) + 1, & \text{if } i \text{ is even} \end{cases}$

$f(y_i) = \begin{cases} 4(\ell + 2n + i - 4), & \text{if } i \text{ is odd} \\ 4(\ell + 2n + i - 5) + 1, & \text{if } i \text{ is even} \end{cases}$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$f^*(x_ix_{i+1}) = H_{\ell+(i-1)}$, where $1 \leq i \leq n - 1$

$f^*(y_iy_{i+1}) = H_{\ell+(2n+i-3)}$, where $1 \leq i \leq n - 1$

Thus, we get the induced edge labels as $H_{\ell}, H_{\ell+1}, ..., H_{\ell+3n-4}$.

Hence SL_n is a ℓ-hilbert mean graph, where n is even and $n \geq 3$.

Example 3.15: ℓ-hilbert mean labeling of SL_4 is shown in figure 7.
Theorem 3.16: $T(n)$ is a ℓ-hilbert mean graph, where n is even and $n \geq 4$.

Proof: Let $G = T(n)$. Let $V(G) = \{x_i : 1 \leq i \leq n\} \cup \{y_i, z_i: 1 \leq i \leq n - 2\}$

$E(G) = \{x_i x_{i+1} : 1 \leq i \leq n - 1\} \cup \{y_i z_i: 1 \leq i \leq n - 2\} \cup \{x_i z_i: 1 \leq i \leq n - 2\}$

Let G has $3n - 4$ vertices and $3n - 5$ edges.

Define a function $f : V(G) \rightarrow \{0, 1, 2, ..., H_{\ell + 2n - 2}\}$ as follows.

For $1 \leq i \leq n$,

$f(x_i) = \begin{cases} 4(\ell + 3i - 4), & \text{if } i \text{ is odd} \\ 4(\ell + 3i - 7) + 1, & \text{if } i \text{ is even} \end{cases}$

$f(y_i) = \begin{cases} 4(\ell + 3i - 2), & \text{if } i \text{ is odd} \\ 4(\ell + 3i - 5) + 1, & \text{if } i \text{ is even} \end{cases}$

$f(z_i) = \begin{cases} 4(\ell + 3i), & \text{if } i \text{ is odd} \\ 4(\ell + 3i - 3) + 1, & \text{if } i \text{ is even} \end{cases}$

Clearly f is injective and the induced edge labeling f^* is defined as follows.

$f^*(x_i x_{i+1}) = H_{\ell + (i - 1)}$, where $1 \leq i \leq n - 1$

$f^*(x_i y_i) = H_{\ell + (3i - 2)}$, where $1 \leq i \leq n - 2$

$f^*(x_i z_i) = H_{\ell + (3i - 1)}$, where $1 \leq i \leq n - 2$

Thus, we get the induced edge labels as $H_{\ell}, H_{\ell + 1}, ..., H_{\ell + 2n - 2}$.

Hence $T(n)$ is a ℓ-hilbert mean graph, where n is even and $n \geq 4$.

Example 3.17: ℓ-hilbert mean labeling of $T(4)$ is shown in figure 8.

![Figure 8](image)

4. Conclusion

In this paper, we have introduced ℓ-hilbert mean labeling and studied ℓ-hilbert mean labeling of some path related graphs. This work contributes several new results to the theory of graph labeling.

References

