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Abstract 

 To ensure the sustainable growth of coal production, it is necessary to analyse the growth, to ground 

the plans and management decisions on effective diagnostics and prediction of current and future situation at 

the coal production. This study presents a application of fuzzy time series forecasting methods, The new 

technique is applied to forecasting the coal production data using a fuzzy approach. For testing the methodology, 

statistical data on the coal production from 1980- to 2019. The Sturges rule is proposed to use as the universe 

of discourse. The intervals of variation of such indicators as growth rate are calculated when applying the 

approach to all defined fuzzy sets. The ARIMA model algorithm was applied by using the R - software to find 

the forecasted values. The forecasting results, obtained by the fuzzy time series method, are supposed to have 

more accuracy rate than time series model. 

Keywords: Coal production, prediction, fuzzy time series, forecasting, Sturges rule, ARIMA model, R-

Packages. 

 

Introduction: 

 The technique of decision-making processes in many areas of the economy under uncertainty is based 

on numerous forecasting approaches as well as models. However, the external environment's uncertainty and 

variability necessitate the use of scientifically sound approaches to management decisions at all stages of the 

production process management, which necessitates quality planning and forecasting of the most important 

production indicators, as well as systematic adjustment of current and future plans. 

 A forecast, as we know, is any statement about the future, and economic forecasting is a vast subject. 

Any operational theory of economic forecasting must account for the possibility that any attribute of the data 

moments (particularly measures of averages and spread) may vary due to changes in technology, legislation, 

politics, weather, and society. Numerous recent studies have sought to establish effective and trustworthy 

approaches for economic forecasting. However, the majority of extant forecasting models put significant 

constraints on the random sequences characterising the change of economic indicators (Markovian property, 

stationarity, monotonous, and so on). As a result, in the absence of any significant constraints on random sequences 

that represent changes in economic indicators, the main prerequisite for forecasting approaches that can be 

employed in decision-making processes. Time series projections are now employed in a variety of economic 

activities, including monetary and fiscal policy formulation, state and municipal budgeting, financial management, 
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and financial engineering. At the same time, these forecasting systems rely on historical trends in data to anticipate 

the future, with economic theory serving primarily as a guide to variable selection. Following the release of 

Zadeh's [15] key paper on the fundamentals of fuzzy set theory, this theory has become widely used in various 

fields of study, including economics. For indicators, fuzzy sets were devised and applied. In recent years, a wide 

range of methods for describing the uncertainty in time series data have been devised and implemented utilising 

fuzzy sets. Using fuzzy approaches enables for better description of real-world processes and accurate forecasting 

of future levels. 

Literature Review: 

Forecasting's importance in numerous sectors of human activity does not require additional 

substantiation and confirmation in modern times. Forecasting is crucial in managerial decision-making processes. 

Forecasting provides a concept of the future state of numerous objects and processes, allowing one to estimate the 

potential implications of specific decisions with some confidence. 

 Fuzzy set theory was created to deal with the ambiguity and uncertainty that characterise the majority of 

real-world problems. Zadeh [15] proposed the widely used fuzzy set theory in 1965 is used to obtain varied 

discoveries by mathematically modelling linguistic fuzzy information. It is still widely used in a variety of 

applications. Following that, other academics proposed various models, the first of which was FTS forecasting 

model. To address the limitations of classical time series, Song and Chissom [12] wrote books that explained the 

basics of fuzzy set theory. However, this model contains the max-min composition method, which significantly 

complicates the calculation procedure. 

 Chen presented a simpler calculation technique to address this problem, which has the advantage of 

shortening computation time and making the operation clear. This paradigm, however, lacks an adequate weight 

mechanism for fuzzy logical relationships (FLRs). Academics are currently aiming to improve the model's 

prediction accuracy by altering the weighting technique or increasing the duration of linguistic intervals. Hwang 

et al. proposed a FTS-based forecasting technique. Chen and Hwang devised a temperature forecasting system 

based on FTS. Chen enhanced predictions by employing a high order FTS model. Huarng employed the extended 

Chen's model. 

 Chen [3] suggested a new interval partitioning strategy that uses the natural partitioning rule (4-3-2) to 

University of Alabama enrollment data. Jilani et al [8] offered the next approach, in which a first order and time-

variant model was created using frequency density-based partitioning of the University of Alabama's historical 

enrollment data, and an enhanced fuzzy metric was used for forecasting. The universe of conversation was initially 

separated into equal periods for this purpose, and a weighted aggregate of historical enrolments was obtained in 

each interval. 

Autoregressive Integrated Moving Average Models were used in many studies. Pal, et. al., (2007) use 

double exponential smoothing method and ARIMA for forecasting milk production. Sankar and Prabakaran, 

(2012) forecasted milk production in Tamil Nadu using Autoregressive (AR), moving average (MA) and 

Autoregressive Integrated Moving Average (ARIMA) methods. Chaudhari and Tingre (2013) used ARIMA for 

forecasting milk production. Hossain and Hassan, (2013) forecasted milk, meat and egg production in Bangladesh 

using Cubic and Linear models.  

Finally, we can affirm that the primary purpose of all modifications to the original Song and Chissom's 

model was to reduce the average predicting error rate, yet some models produce the same or similar results as the 

original model. Simultaneously, a number of strategies that have considerably improved. The accuracy of fuzzy 

time series models has been increased. 

Forecasted Method I: 

 The fuzzy time series method is divided into four sections. The first section provides context for the 

investigation. The second section explores into the algorithm of the proposed fuzzy time series approach. The 

study's chronology and findings are described in the Third sections of this paper. The final section offers research 
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conclusions and a discussion of future research opportunities in the dominion of investigating fuzzy time series 

algorithms and adapting them to enterprise economic indicator prediction tasks. 

Methodology: 

Proposed method: Algorithm 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Sturges rule: The law to determine how many classes or ranges are required to plot a collection of statistical data, 

the Sturges condition is utilised. Herbert Sturges, a German mathematician, proposed this rule in 1926. 

             Sturges suggested a straightforward approach that would allow us to determine the number of classes and 

their range breadth based on the number of samples x. In statistics, particularly for creating frequency histograms, 

the Sturges rule is frequently utilised. 

It can be expressed as: 

1 3.3*log( )k N= +  

In this expression: 

k is the number of classes.  

N is the total number of observations in the sample. 

Log is the common logarithm of base 10. 

To model time series, the proposed method uses the following indicator as a chain growth rate: 

Universe of discourse 

Number of intervals 

Sub-intervals 

4-3-2 partitioning 

Fuzzification 

Defuzzification 

Forecasting 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055  
Vol. 44 No. 3 (2023)  
__________________________________________________________________________________ 
 

260 
 

1

( 1) 100%, 2,....i
i

i

y
T i n

y −

= −  =  

Table 2: Actual values and the Growth rates of coal production data 

 

The algorithm of proposed method contains the following steps: 

Step 1: Determine the universe of discourse 

 Determine the universe of discourse as the set  

2,... 2,...

[ ; ]maxmin i i
i n i n

U T T
= =

=  

The actual interval of variation of the growth rates from -1.2166% to 9.0428%, it is proposed to find the universe 

of discourse as U = [-1,2166,9.0428]. 

 

Year Coal 

production 

data  

Growth rate 

Ti 

Year Coal 

production 

data 

Growth rate 

Ti 

1980 113.9  2000 309.6 3.2 

1981 124.2 9.00428 2001 327.8 5.8785 

1982 130.5 5.0724 2002 341.3 4.1183 

1983 138.2 5.9003 2003 361.3 5.8599 

1984 147.4 6.6570 2004 382.6 5.8953 

1983 154.2 4.6132 2005 407.0 6.3774 

1986 165.8 7.5226 2006 430.8 5.8476 

1987 179.7 8.3835 2007 457.1 6.1049 

1988 194.6 8.2915 2008 492.8 7.8101 

1989 200.9 3.2374 2009 532.0 7.9545 

1990 211.1 5.3738 2010 532.7 0.1315 

1991 229.3 8.3136 2011 540.0 1.3703 

1992 238.3 3.9249 2012 556.4 3.0370 

1993 246.0 3.2312 2013 565.8 1.6894 

1994 253.8 3.1707 2014 609.2 7.6705 

1995 270.1 6.4223 2015 639.2 4.9244 

1996 285.7 5.7756 2016 657.8 2.9098 

1997 295.9 3.5701 2017 675.4 2.6755 

1998 292.3 -1.2166 2018 728.7 7.8916 

  1999        300.0       2.6342   2019         730.8        0.2881 
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Step 2: Find the number of intervals 

 Find the number of intervals using Sturges rule. 

𝑘 = 1 + 3.3log𝑛 

Here the number of intervals is 6. 

Step 3: Divide into Sub-interval 

 Divide into sub interval using mean based partitioning. The division returned the average base intervals 

according to their respective frequency, if there is no data that is distributed in the interval (frequency is zero) then 

the interval will be discarded. 

Table 3: Frequency of growth rate in each interval 

Interval number Lower bound Higher bound Frequency 

1 -1.2166 0.4933 3 

2 0.4933 2.2032 2 

3 2.2032 3.9131 9 

4 3.9131 5.623 6 

5 5.623 7.3329 10 

6 7.3329 9.0428 9 

 

Step 4: 4-3-2 partitioning 

 The values of the growth rates that fall within each interval of the partition should be distributed 

frequently. According to the natural partitioning rule (4-3-2), one should further divide each interval into smaller 

4, 3, and 2 sub-intervals for the three greatest values of frequencies that fall into it. Here, m the number of intervals 

recalculates and is given a new value. 

Table 4: New interval of growth rates 

Interval number lower bound Upper bound 

1 -1.2166 0.4933 

2 0.4933 2.2032 

3 2.2032 2.7731 

4 2.7731 3.343 

5 3.343 3.9131 

6 3.9131 4.76805 

7 4.76805 5.623 

8 5.623 6.0504 

9 6.0504 6.4779 

10 6.4779 6.9054 

11 6.9054 7.3329 
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12 7.3329 7.9028 

13 7.9028 8.4727 

14 8.4727 9.0428 

 

Step 5: Fuzzification 

 On each partition interval, define fuzzy sets , 1,...,jX j m=  as triangular fuzzy numbers whose carriers 

are specified by three values: the lower limit, the middle point, and the upper limit. Determine which fuzzy set 

will best characterise each value for the time series actual data, fuzzing the data from the original series. 

Table 5: Fuzzy set and their intervals 

Interval number Fuzzy set lower bound Middle point Upper bound 

1 𝑿𝟏 -1.2166 -0.3616 0.4933 

2 𝑿𝟐 0.4933 1.3482 2.2032 

3 𝑿𝟑 2.2032 2.48815 2.7731 

4 𝑿𝟒 2.7731 3.0580 3.343 

5 𝑿𝟓 3.343 3.6280 3.9131 

6 𝑿𝟔 3.9131 4.3405 4.76805 

7 𝑿𝟕 4.76805 5.1955 5.623 

8 𝑿𝟖 5.623 5.8367 6.0504 

9 𝑿𝟗 6.0504 6.2642 6.4779 

10 𝑿𝟏𝟎 6.4779 6.6916 6.9054 

11 𝑿𝟏𝟏 6.9054 7.1191 7.3329 

12 𝑿𝟏𝟐 7.3329 7.6178 7.9028 

13 𝑿𝟏𝟑 7.9028 8.1877 8.4727 

14 𝑿𝟏𝟒 8.4727 8.7577 9.0428 

 

Step 6: Defuzzification 

 Utilising the formula, do the defuzzification of fuzzy data. 

 

𝑡𝑗  =   

{
 
 
 
 

 
 
 
 

1.5

1
𝑎1
+
0.5
𝑎2

 , 𝑖𝑓, 𝑗 = 1

2

0.5
𝑎𝑗−1

+
1
𝑎𝑗
+
0.5
𝑎𝑗+1

, 𝑖𝑓, 2 ≤ 𝑗 ≤ 𝑛 − 1

1.5

0.5
𝑎𝑛−1

+
1
𝑎𝑛

 , 𝑖𝑓, 𝑗 = 𝑛

 

 where 𝑎𝑗−1, 𝑎𝑗 , 𝑎𝑗+1  are the midpoints of the fuzzy intervals 𝑋𝑗−1, 𝑋𝑗, 𝑋𝑗+1 respectively. 𝑡𝑗 yields defuzzified value. 
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Table 6: Defuzzified values of the fuzzy sets 

 

Year  Actual 

values 

Growth 

rates 

(Ti)  

Fuzzy 

set 

𝒕𝒋 Year Actual 

values 

Growth 

rates(Ti) 

Fuzzy 

set 

𝒕𝒋 

1980 113.9 - - - 2000 309.6 3.2 𝑋4 3.0043 

1981 124.2 9.00428 𝑋14 8.5665 2001 327.8 5.8785 𝑋8 5.7857 

1982 130.5 5.0724 𝑋7 5.0877 2002 341.3 4.1183 𝑋6 4.3075 

1983 138.2 5.9003 𝑋8 5.7857 2003 361.3 5.8599 𝑋8 5.7857 

1984 147.4 6.6570 𝑋10 6.6800 2004 382.6 5.8953 𝑋8 5.7857 

1983 154.2 4.6132 𝑋6 4.3075 2005 407.0 6.3774 𝑋9 6.2519 

1986 165.8 7.5226 𝑋12 7.6219 2006 430.8 5.8476 𝑋8 5.7857 

1987 179.7 8.3835 𝑋13 8.1732 2007 457.1 6.1049 𝑋9 6.2519 

1988 194.6 8.2915 𝑋13 8.1732 2008 492.8 7.8101 𝑋12 7.6219 

1989 200.9 3.2374 𝑋4 3.0043 2009 532.0 7.9545 𝑋13 8.1732 

1990 211.1 5.3738 𝑋7 5.0877 2010 532.7 0.1315 𝑋1 -0.6265 

1991 229.3 8.3136 𝑋13 8.1732 2011 540.0 1.3703 𝑋2 -4.5464 

1992 238.3 3.9249 𝑋6 4.3075 2012 556.4 3.0370 𝑋4 3.0043 

1993 246.0 3.2312 𝑋4 3.0043 2013 565.8 1.6894 𝑋2 -4.5464 

1994 253.8 3.1707 𝑋4 3.0043 2014 609.2 7.6705 𝑋12 7.6219 

1995 270.1 6.4223 𝑋9 6.2519 2015 639.2 4.9244 𝑋7 5.0877 

1996 285.7 5.7756 𝑋8 5.7857 2016 657.8 2.9098 𝑋4 3.0043 

1997 295.9 3.5701 𝑋5 3.6088 2017 675.4 2.6755 𝑋3 8.1732 

1998 292.3 -1.2166 𝑋1 -0.6265 2018 728.7 7.8916 𝑋12 7.6219 

1999  300.0  2.6342 𝑋3 2.1361 2019  730.8  0.2881 𝑋1 -0.6265 

 

The description of the carriers of the fuzzy sets, along with the corresponding triangular membership 

functions and the defuzzified values, is provided in Table 6 along with the final division of the universe of 

discourse. 

Step 7: Forecasting  

 Using the obtained  𝑡𝑗 results and consistently applying them to earlier levels using the following formula, 

determine the predicted values of each level of the series: 

1(1 ), 2,...,
100

i
i i

t
y y i n−= + =  

The forecasting results, obtained by this approach, are supposed to have more accuracy rate than other 

fuzzy time series models. 
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Table 7: Forecasting results of the coal production data 

 

Year  Actual 

values iy  

𝒕𝒋 𝒚𝒊̂ Year Actual 

values 

𝒕𝒋 𝒚𝒊̂ 

1980 113.9   2000 309.6 3.0043 309 

1981 124.2 8.5665 123.6572 2001 327.8 5.7857 327.51 

1982 130.5 5.0877 130.5 2002 341.3 4.3075 341.9 

1983 138.2 5.7857 138.05 2003 361.3 5.7857 361 

1984 147.4 6.6800 147.4317 2004 382.6 5.7857 382.21 

1983 154.2 4.3075 153.74 2005 407.0 6.2519 406 

1986 165.8 7.6219 165.95 2006 430.8 5.7857 430 

1987 179.7 8.1732 179.3511 2007 457.1 6.2519 457.7 

1988 194.6 8.1732 194.3872 2008 492.8 7.6219 491.9 

1989 200.9 3.0043 200.4 2009 532.0 8.1732 533 

1990 211.1 5.0877 211.121 2010 532.7 -0.6265 528.6 

1991 229.3 8.1732 229 2011 540.0 -4.5464 508.48 

1992 238.3 4.3075 239.17 2012 556.4 3.0043 556.22 

1993 246.0 3.0043 245.459 2013 565.8 -4.5464 531.103 

1994 253.8 3.0043 253.39 2014 609.2 7.6219 608.92 

1995 270.1 6.2519 269.66 2015 639.2 5.0877 640.19 

1996 285.7 5.7857 285.72 2016 657.8 3.0043 658.4 

1997 295.9 3.6088 296 2017 675.4 8.1732 671.8512 

1998 292.3 -0.6265 294 2018 728.7 7.6219 726.87 

1999  300.0 2.1361 299  2019  730.8 -0.6265 724.13 

 

 The outcomes of the predicted level computations for the time series under consideration are given in 

table 7. 

 

 
 

Fig 1: Comparison of the forecasted results with the actual data 
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Mean Absolute Error: 

The mean absolute error is the average of all absolute errors of the data collected. It is abbreviated as 

MAE (Mean Absolute Error). It is obtained by dividing the sum of all the absolute errors with the number of 

errors. The formula for MAE is: 

MSE = 
1

𝑛
∑ | iY − ˆ

iY  |𝑛
𝑖=1  

n - number of data points 

iY - observed values 

ˆ
iY  - predicted values 

The mean absolute error for this model is MAE = 5.0096 

Forecasted Method II: 

The time series method is divided into four sections. 

(i) Model identification 

(ii) Estimation 

(iii) Diagnostic checking 

(iv) Forecasting 

Auto Regressive Integrated Moving Average Models (ARIMA) 

It is popularly known as Box – Jenkins (BJ) Methodology. Time series when differentiated follows both 

AR and MA models and thus is known as autoregressive integrated moving average. 

 In ARIMA (p, d, q) time series, p denotes the number of autoregressive terms (AR), d the number of 

times the series has to be differenced before it becomes stationary (I), and q the number of moving average terms 

(MA).  

 

Auto Regressive Process of order (p) is, 

 

  𝑌𝑡  =  µ + ɸ1𝑌𝑡−1 +  ɸ2𝑌𝑡−2 + ……..ɸ𝑝𝑌𝑡−𝑝 +  ɛ𝑡: 

 

Moving Average Process of order (q) is, 

𝑌𝑡  =  µ - ɵ1ɛ𝑡−1 -  ɵ2ɛ𝑡−2 - …  -  ɵ𝑝ɛ𝑡−𝑝 +  ɛ𝑡: 

 

And the general form of ARIMA model of order (p, d, q) is 

  

𝑌𝑡  =    ɸ1𝑌𝑡−1 +  ɸ2𝑌𝑡−2 + ……..ɸ𝑝𝑌𝑡−𝑝 + µ - ɵ1ɛ𝑡−1 -  ɵ2ɛ𝑡−2 - …  -  ɵ𝑝ɛ𝑡−𝑝 +  ɛ𝑡: 

 
Figure 2: Actual data for Coal production 
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ARIMA model includes following steps- 

(i) Model identification:  

At first, the data is checked for stationarity with the help of the autocorrelation function  (ACF) and 

partial autocorrelation function (PACF). The next step in the identification process is to find the initial values for 

the orders of non-seasonal parameters p and q, which are obtained by looking for significant correlations in the 

ACF and PACF plots. 

 
Figure 3: Sample Autocorrelation Function for the Coal Production 

 

 
 

Figure 4: Sample ACF of First order Difference of Logged Coal production 
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Figure 5: Sample PACF for the Coal Production 

 
Figure 6: Sample PACF of Difference of Logged Coal production 

 

(ii) Estimation:  

                    Generally, this calculation is done by simple least squares but sometimes we have to resort to 

nonlinear (in parameter) estimation methods. Since software packages are available for easy and convenient usage, 

R - software package were used for the study. 

arima(x = c22, order = c(1, 1, 1)) 

 

Coefficients: 

                   ar1            ma1 

                 0.9919       -0.8057 

      s.e.     0.0131        0.1160 

sigma^2 estimated as 325:  log likelihood = -182.04, aic = 370.07 

 

accuracy(m1.c22) 
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                            ACF1 

Training set     -0.05636841 

  (iii) Diagnostic checking:  

                    For the adequacy of the model, the residuals are examined from the fitted model and alternative 

models are considered, if necessary. If the first identified model appears to be inadequate then other ARIMA 

models are tried until a satisfactory model fit to the data.  

Different models are obtained for various combinations of AR and MA individually and collectively 

(Makridakis el al. 1998), the best model is obtained based on minimum value of Akaike Information Criterion 

(AIC) is a model selection tool. AIC is given by the formula:  

 

 

𝐴𝐼𝐶 = 2𝑘 −  2𝐼𝑛(𝐿̂) 

  k – number of estimated parameters in the model. 

 𝐿̂ – maximum value of the likelihood function for the model. 

 

(iv) Forecasting:  

                 Ten-years forecast, from 2020 to 2029 is done because forecasting errors increase rapidly if we go too 

far out in the future. 

 

  

 

 

 

 

 

 

 

Figure 7: Actual and Forecasted value of  Coal production 

 

> fcast <- forecast(m1.c22) 

> plot(fcast,col="red") 

> fcast 

   Point     Forecast         Lo 80        Hi 80        Lo 95          Hi 95 

44          932.1669     909.0629    955.271    896.8323    967.5015 

45          970.9355     935.0913   1006.780   916.1164  1025.7546 

46        1009.3884    961.5573   1057.219   936.2370   1082.5397 

47        1047.5280    987.7225   1107.334   956.0634   1138.9926 

48        1085.3571  1013.3536   1157.361   975.2373   1195.4768 

49        1122.8780  1038.3593  1207.397   993.6178    1252.1382 

50       1160.0934   1062.7035  1257.483  1011.1484   1309.0384 

51       1197.0056  1086.3747   1307.637  1027.8102   1366.2011 

52       1233.6173  1109.3739   1357.861   1043.6034  1423.6311 

53      1269.9307   1131.7085  1408.153   1058.5380   1481.3234 
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std.resid 

          1                     2                   3                      4                  5                    6  

 1.59008004  1.44235142  1.20598787  1.00265485  0.83418122  0.61331582  

          7             8            9                  10               11                    12  

 0.50033694  0.43896695  0.40006194  0.17153056    0.04305353    0.06462385  

         13                          14                    15                         16                   17                  18  

-0.10277628      -0.29824020    -0.49107211    -0.49749873   -0.51930075    -0.65917065  

         19                         20                   21                     22                         23                 24  

-1.10041486      -1.29467970     -1.44754707    -1.41286455     -1.48100312   -1.40746170  

         25                        26                      27               28                              29               30  

-1.30569569    -1.13628495    -0.97996325    -0.76882737    -0.35144640    0.14357191  

         31                       32                   33                   34                    35                      36  

-0.20586419    -0.41112338    -0.41656871   -0.57663044    0.01467034    0.31138039  

         37                       38                      39                   40                41                      42  

 0.35617825     0.37897729    1.19925673    0.87754928       1.08413084    1.20253993  

         43  

 3.42845161 

 

 ARIMA Model using Coal production Data in R- software 

 

c1 <- c(1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994, 

1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010, 

2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022); 

c22 <- c(113.9,124.2,130.5,138.2,147.4,154.2,165.8,179.7,194.6,200.9,211.7,229.3, 

238.3,246,253.8,270.1,285.7,295.9,292.3,300,309.6,327.8,341.3,361.3,382.6, 

407,430.8,457.1,492.8,532,532.7,540,556.4,565.8,609.2,639.2,657.8,675.4,728.7,730.8,756.494,778.21,893.08)

; 

data.frame(year=c1,production=c22); 

data(c22); 

win.graph(width=4.875,height=3,pointsize=8) 

plot(c22,xlab='Year',ylab='production',type="l",col="red") 

m1.c22=arima(c22,order=c(1,1,1)) 

m1.c22 

m1.c22 <- ets(usnetelec) 

m1.c22 

acf(as.vector (c22),lag.max=43,col="red") 

acf(as.vector (diff(c22)),lag.max=43,col="red") 

Pacf(as.vector (c22),lag.max=43,col="red") 

Pacf(as.vector (diff(c22)),lag.max=43,col="red") 

m1.c22=arima(c22,order=c(1,1,1)) 

m1.c22 

accuracy(m1.c22) 

fcast <- forecast(m1.c22) 

plot(fcast,col="red") 

fcast 

std.resid<-rstandard(fcast) 

std.resid 
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Conclusion:  

             The study suggested a fresh approach for highly accurate forecasting of fuzzy time series. In this study, a 

fuzzy time series approach is used to forecast India's coal production. The presented in the article method of fuzzy 

time series modelling allows obtaining the forecasting estimates by analysing the growth rates of the actual time 

series levels using fuzzy estimation based on the fuzzy sets. Through the experiments of forecasting the coal 

production data, briefly cover the fundamental definitions of fuzzy time series models and a new approach for 

handling forecasting issues using Sturges rule. Mean Absolute Error of the proposed method is 5.0096 and Mean 

Absolute Error of the ARIMA model is 9.647285. From this we can see that the proposed method has a better 

forecasting accuracy. 
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