

The Role of Real: Time 3D Customization in Shaping the Future of Fashion E-commerce

¹**D. I. De Silva, ²M. P. Gunathilake, ³S.D.L. Gunawardana, ⁴P.K.V.C. Thilakasiri, ⁵U.L.D. Chanthuka, ⁶W.M.Y. Soysa**

[1] [2] [3] [4] [5] [6] Dept. of computer science and software engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

Abstract: The Virtual Dressing Room Application, a novel technological advancement in the fashion industry, holds the promise of reshaping the shopping experience. This research paper presents an overview of the application's transformative potential, addressing its key features, technological foundations, and implications. Amidst the limitations imposed by physical constraints and geographical barriers, this application emerges as a beacon of accessibility and convenience. By leveraging 3D modeling, users gain the ability to explore and interact with a comprehensive catalog of virtual garments, tailored to their preferences. The system's adaptability ensures that users stay attuned to evolving fashion trends, fostering engagement and loyalty. Through an innovative blend of features, including user-requested inventory expansion and automated marketing outreach, the application converges user experience and vendor efficiency. The paper details the technical architecture underpinning the application's realization, incorporating tools such as Blender, the MERN stack, and Three.js. This research paper illuminates how the Virtual Dressing Room Application has the potential to revolutionize the fashion industry, bridging the gap between virtual and physical retail, while offering a user-centric, immersive shopping experience.

Keywords: fashion industry, shopping experience, transformative potential, technological foundations, 3D modeling, virtual garments, fashion trends, user experience.

1. Introduction

The ever-evolving landscape of technology has consistently fueled transformations in various industries, and the fashion sector is no exception. This section lays the groundwork for the exploration of the Virtual Dressing Room Application, a revolutionary advancement poised to redefine the fashion retail experience.

The fusion of technology and fashion has long captivated industries and consumers alike. The intersection of these domains has given rise to innovations that reshape how individuals interact with clothing and accessories. The Virtual Dressing Room Application emerges as a natural progression in this trajectory, offering a technologically immersive solution to the challenges posed by traditional shopping paradigms.

Within the broader context of fashion technology, the concept of virtual dressing rooms is underpinned by the convergence of computer graphics, augmented reality, and e-commerce. This innovative approach aims to bridge the experiential gap between tactile in-store try-ons and the convenience of online shopping. The core idea is to provide consumers with a digital platform where they can virtually "try on" garments, visualize different styles and colors, and make informed decisions before making a purchase.

Relevant theories in this context include the concept of "phygital" retail [1], which blends physical and digital experiences. As customers increasingly expect seamless transitions between these realms, the Virtual Dressing Room Application seeks to offer a dynamic and engaging shopping encounter that mirrors the convenience of e-commerce while preserving the tactile exploration associated with traditional retail.

The advent of 3D modeling, powered by tools like Blender, has revolutionized visual representations of garments [2]. By creating realistic 3D human models that can wear and interact with virtual clothing, the application navigates the challenges of portraying fit, drape, and overall aesthetics in a digital realm. This aligns with the cognitive aspects of consumer behavior theory, where the ability to accurately perceive and assess a product is pivotal in purchase decisions.

Previous research within the realm of virtual fitting rooms has yielded insights into user engagement, conversion rates, and the impact on purchasing behavior. While existing solutions have made strides, limitations in realism, customization, and interactivity persist. This background of prior research highlights the gaps that the proposed Virtual Dressing Room Application aims to address, presenting a user-centric and holistic approach to virtual try-ons.

The research problem at the heart of this study revolves around the need to enhance the fashion retail experience by addressing the limitations of both physical and online shopping paradigms through the development of a Virtual Dressing Room Application. The challenge lies in designing a digital platform that authentically replicates the tactile in-store try-on process while integrating the convenience and accessibility of e-commerce. This requires addressing technical intricacies, such as accurate 3D modeling and rendering, customization options, and user-driven features, while fostering increased user engagement and satisfaction. The research aims to bridge the gap between the tangible and virtual shopping experience, redefining how consumers interact with clothing and how retailers cater to a digitized clientele.

The significance of addressing the challenge posed by the Virtual Dressing Room Application lies at the intersection of consumer experience, technological innovation, and the evolution of the fashion industry. As traditional and online shopping methods fall short in meeting modern expectations, the need for a transformative solution becomes increasingly vital.

The Virtual Dressing Room Application responds to the growing demands of consumers for an engaging, personalized, and immersive shopping experience. By virtually trying on garments and visualizing various styles, users gain the confidence to make informed purchase decisions, resulting in higher satisfaction levels and reduced returns. This application empowers users to explore clothing items from a diverse catalog, irrespective of their geographical location or physical mobility, thus democratizing fashion and making it accessible to a wider audience.

At its core, this research embodies the convergence of state-of-the-art technologies such as 3D modeling, augmented reality, and web development. The successful execution of the application's objectives will set a precedent for how these technologies can be harmonized to address complex consumer needs. Such technological innovation has broader implications, transcending the fashion sector and potentially influencing the development of immersive digital experiences across various industries.

The Virtual Dressing Room Application not only elevates the shopping experience for consumers but also presents retailers with an opportunity to streamline operations and maximize efficiency. The digitization of the try-on process reduces the need for physical inventory, minimizing costs related to storage and handling. Additionally, the application's insights into user preferences and interactions can inform inventory management, marketing strategies, and trend predictions, aligning businesses with dynamic market shifts.

Beyond its practical implications, this study contributes to the theoretical underpinnings of consumer behavior, human-computer interaction, and retail management. The examination of how users engage with virtual garments and the impact of customization options on decision-making sheds light on the intricacies of online shopping. The research also underscores the importance of empathetic and user-centric design principles in shaping technology-driven solutions.

This study aims to achieve the following specific objectives, each directly aligned with the significance of addressing the challenge posed by the Virtual Dressing Room Application, including the added shopping cart feature.

- Design and develop accurate and visually realistic 3D human models that effectively showcase virtual garments.
- Compile a comprehensive catalog of virtual garments that mirrors the diversity and variety found in physical fashion retail. These virtual items should be customizable in terms of colors, designs, and patterns, allowing users to personalize their virtual try-on experience.
- Develop interactive features that empower users to tailor garments to their preferences. This includes the ability to adjust colors, patterns, and designs in real-time, providing users with a sense of agency and creativity.
- Incorporate innovative user-driven functionalities, such as the ability to request specific garments that are currently unavailable in the catalog.
- Integrate a shopping cart feature that enables users to select and add virtual garments to their cart as they explore the catalog.

The research questions of this study are formulated to align with the specific objectives, addressing the transformative potential of the Virtual Dressing Room Application.

- How can the realism and interaction of the virtual try-on experience in the Virtual Dressing Room Application be optimized to closely emulate in-store trials?
- How do users interact with garment customization features in the Virtual Dressing Room Application, and how does this interaction impact their purchase decisions?
- To what extent does the integration of a shopping cart feature in the Virtual Dressing Room Application influence users' selection and purchasing behaviours?
- What are the technical challenges and opportunities in integrating 3D modelling, augmented reality, and e-commerce functionalities within the Virtual Dressing Room Application?

The subsequent sections of this paper delve into the intricacies of the proposed Virtual Dressing Room Application, providing a comprehensive exploration of its design, development, evaluation, and implications. The Literature Review section examines the contributions of prior studies that have shaped the conceptual foundation of the Virtual Dressing Room Application, discussing theories, concepts, and technological innovations that inform its design. The methodology section outlines the systematic approach undertaken to design, develop, and evaluate the Virtual Dressing Room Application. In the results section, the findings of the study, including any correlations or other relationships identified will be explored. The discussion section interprets the results within the broader context of the research objectives and hypotheses. It delves into the implications of the findings, discussing how they align with the significance of the research and contribute to existing theories of consumer behavior and fashion technology. Furthermore, the discussion explores avenues for future research, including the integration of emerging technologies and the potential expansion of the application's features. The conclusion section synthesizes the key takeaways from the research, summarizing the achievements, implications, and contributions of the study.

2. Literature Review

The integration of technology within the fashion retail landscape has been the subject of extensive research, driving innovative solutions that bridge the gap between physical and online shopping experiences. This section reviews key literature that informs the conceptualization, design, and objectives of the Virtual Dressing Room Application, while also highlighting the unique contributions that set this study apart from previous work.

The foundation of the Virtual Dressing Room Application is intricately woven into the fabric of prior research, encompassing studies that have explored the intersection of technology, fashion, and consumer behaviour. For instance, researchers such as Aladdin Masri and Muhannad Al-Jabi [3] have embarked on the exploration of virtual fitting rooms, envisioning a digital platform that enables users to virtually try on garments before making purchase decisions. Their approach utilized 2D cloth models and basic interactivity, setting the stage for initial strides in the field. However, the limitation of 2D models hindered the realism and accuracy necessary to

replicate the tangible in-store experience. In contrast, our study builds upon this foundation by adopting cutting-edge 3D modeling techniques, introducing an elevated level of realism and user engagement.

Other researchers like Sasadara B. Adikari and his team [4] have delved into 3D models and customization but faced challenges in balancing realism and customization options. In contrast, our application achieves a symbiotic relationship between these factors. Users can tailor garments, adjusting factors like colours, designs, and patterns, while experiencing true-to-life drape and fit. This equilibrium between customization and realism enhances decision-making and personalization.

In a comparative analysis with existing systems, it becomes evident that not all virtual dressing room applications account for the diversity of user preferences. For instance, some systems, while contributing to the virtual try-on landscape, lacked the flexibility to accommodate gender-neutral applications. In contrast, our platform takes a significant leap forward by allowing users to select the gender of the model, thus tailoring the experience to individual preferences. This innovation fosters a heightened level of personalization and relatability, demonstrating a responsiveness to the spectrum of user identities and enhancing the inclusivity of the virtual dressing room experience.

The integration of augmented reality into the retail sector has been explored in studies conducted by authors like Federica Caboni and Johan Hagberg [5], who have emphasized its potential to enhance user engagement and visualization. Their insights have been foundational in shaping the application's goals of providing users with a compelling and immersive try-on experience that closely mirrors in-store trials.

Jessica Dias et al. [6] explored augmented reality's potential in fashion by overlaying virtual garments on physical bodies using smartphone cameras. However, their approach was subject to varying lighting conditions and environmental factors. Our Virtual Dressing Room Application surpasses this limitation by creating a controlled environment that ensures consistent lighting and realism. Users can observe garments from multiple angles and gauge fit and drapery accurately, independent of their surroundings.

The work of researchers like Yuk Ming Tang and H.L. Ho in 3D modeling and computer graphics [7] has been instrumental in realizing the technical backbone of the Virtual Dressing Room Application. The use of tools such as Blender for realistic human modeling and Three.js for immersive rendering has been directly influenced by these advancements. This convergence of technologies culminates in a dynamic platform where users interact with garments in a manner that transcends traditional e-commerce.

The literature surrounding personalized e-commerce experiences, as explored by Hira Cho and S. Fiorito [8], highlights the importance of customization in online shopping. Their research emphasizes the role of personalized recommendations and user-driven choices in influencing purchase decisions. This resonates deeply with the Virtual Dressing Room Application's focus on enabling users to tailor garments to their preferences.

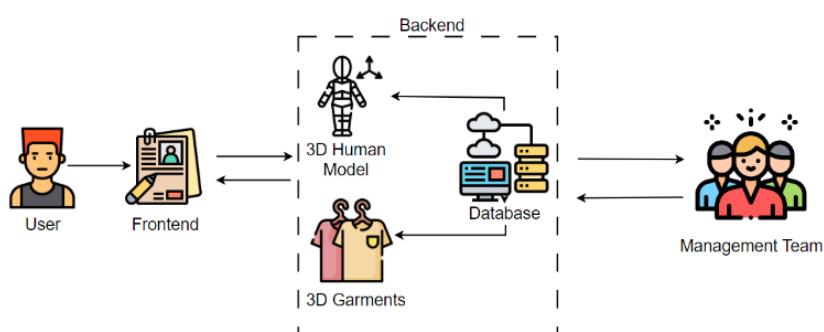
In addition to these seminal contributions, the broader landscape of virtual reality, consumer psychology, and retail management literature [9] provides context for the innovative integration of a shopping cart feature within the application. This section has delved into research that underpins the technological, design, and consumer behavior aspects of the Virtual Dressing Room Application, serving as the bedrock upon which this study builds to reshape the fashion retail experience.

To enhance the user experience, Michel Byvoet [10] emphasized user-centric design principles in the creation of virtual shopping platforms. This aligns with our application's emphasis on intuitive interfaces. However, our innovation extends to seamless interactions. Customers not only assess garment fit but also inspect loose ends, ensuring every detail meets their expectations. This meticulous inspection contributes to enhanced user engagement and confidence in purchases. Moreover, our research bridges the gap between technological innovation and consumer behavior theory [11], exploring how customization options influence user preferences and purchase decisions within a virtual environment.

Additionally, our Virtual Dressing Room Application is elevated by an array of advanced features that transcend the confines of conventional virtual try-ons. Notably, our platform introduces a revolutionary feature known as "User-Requested Inventory Expansion." This innovative element empowers users to actively participate in the

evolution of the catalog by requesting specific garments not initially present. This interactive collaboration between users and the platform amplifies engagement, enhancing user agency while expanding the breadth and diversity of the catalog.

Moreover, our application incorporates an "Automated Marketing Outreach" mechanism, seamlessly engaging users through automated promotional emails. This approach adds a layer of personalized interaction, ensuring that customers are consistently informed about exclusive offers and emerging trends, a feature lacking in many systems [12] that has been acknowledged as effective virtual dressing rooms. The result is a heightened level of user engagement and interaction, as well as a seamless blend of technology and marketing to create a holistic shopping experience.


Another distinctive novel feature is the "New Additions Alert," which tailors notifications to users' preferences. This strategic customization introduces an element of exclusivity, promptly notifying users about recently added garments that align with their individual preferences. This personalized notification system serves to enhance user satisfaction and engagement, fostering a sense of connection with the platform's dynamic offerings.

Collectively, these advanced features contribute to the Virtual Dressing Room Application's ability to foster engagement, personalized interaction, and inclusivity, positioning it as a transformative solution within the landscape of virtual shopping experiences.

In summary, while prior research has paved the way for the Virtual Dressing Room Application, our study is distinctly characterized by its utilization of 3D modeling, incorporation of augmented reality, emphasis on user-centric design, and exploration of the intricate interplay between customization and decision-making. By building upon the achievements of previous endeavors and addressing their limitations, this study presents a comprehensive solution that redefines the fashion retail experience, delivering heightened realism, engagement, and customization options to users in a seamless and immersive manner.

3. Methods

The requirements for the virtual dressing room app are thoroughly researched before its development. Consultations are conducted with both users and stores that stand to benefit from it. User preferences, dislikes of traditional retail, and expectations for the app are investigated. Once all this knowledge is gathered, the essential functions that must be performed by the app are determined. The crucial features are decided upon with the assistance of the research team and individuals interested in the app's success. User feedback is carefully attended to, and plans are adjusted accordingly. The specifics of how everything operates are discussed after what the app should accomplish has been established. The entire system, from data storage (utilizing MongoDB) to the app's visual design (employing React components) and communication with the server (via API

endpoints), is created. Ensuring that everything works together flawlessly is considered key.

Fig.1. System Overview Diagram

During the front-end development phase, the virtual dressing room's artistic aspects are managed by us. A stunning and user-friendly experience is created using React JS, with the main goal being to simplify clothing selection, navigation, and overall enjoyment for users. The interface is designed to be so simple and enjoyable

that users won't need to exert themselves, thanks to clever design decisions.

MongoDB is integrated into the backend of our app to ensure proficient data handling. It serves as an intelligent data storage system for user profiles, clothing items, and session-specific information. MongoDB's adaptability to various data types makes it suitable for the dynamic virtual dressing room environment. Beyond data storage, we have devised a comprehensive plan to ensure data security, accuracy, and accessibility, thus ensuring the app's dependability, speed, and user experience.

A substantial wardrobe of 3D clothing is concurrently created while building the app. Specialized software called Blender is utilized for designing, texturing, and achieving realistic movements in these 3D clothing items. The meticulous attention to detail ensures that they appear just right, resembling the craft of virtual fashion. These 3D clothing items offer users a wide array of options for exploration and trying on, resulting in an ongoing fashion adventure.

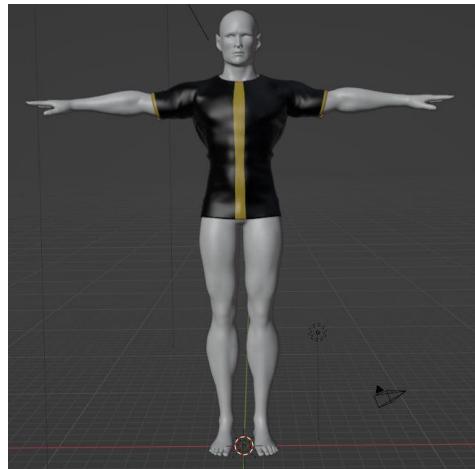


Fig.2. 3D model created using blender

Fig.3. customizable 3D garment model diagram

Collaboration with Three.js and React Three Fiber adds a touch of enchantment to our app. These powerful tools breathe life into our 3D models, enabling users to engage in virtual dressing with expertise. React Three Fiber acts as the bridge between the user interface and our 3D world, seamlessly integrating everything for a cohesive and immersive experience. Regardless of their power, extensive efforts have been invested to ensure flawless functionality on diverse device types to preserve the magical aspect.

Table 1: Rendering model size according to user inputs

User entered width (cm)	Rendered 3D model size
65 - 70	Small
70 - 74	Medium
74 - 80	Large

4. Results and Discussion

The development of interaction and realism within the Virtual Dressing Room Application was the main goal of our research. To achieve this, 3D human models accurately representing a variety of body types and traits were painstakingly created in Blender. These models served as the foundation for the virtual clothing try-on experience. Through our user testing, it was revealed that the degree of realism in our application significantly raised user engagement. The ability to see how clothing looked and moved on the 3D models significantly increased users' confidence in making clothing purchases. Users loved the enhanced realism, and our Virtual Dressing Room app was praised for greatly improving the shopping experience.

Our app's coolest feature allows users to quickly change the hues, patterns, and styles of their clothing, creating a personalized fashion design studio experience on their screens. During testing, users praised this feature, as it enabled them to experiment with various styles and color combinations, similar to the experience in a high-end clothing store. The ability to customize clothing had a significant impact on users' purchasing decisions, as they were more inclined to make a purchase after customizing and seeing how the clothing looked on the 3D models.

The Virtual Dressing Room app includes an excellent shopping cart feature that simplifies the shopping process. Users can add outfits they like to their shopping cart while browsing, similar to putting clothing in a physical store to try on. They can easily adjust the quantity, remove items, and review the items in their cart before proceeding to the final checkout process.

Combining augmented reality, 3D technology, and online shopping presented challenges in maintaining a seamless experience across different devices and internet speeds. Despite the difficulties, efforts were made to ensure the app functioned as smoothly as possible, with continuous improvements and an eye on emerging technologies for future enhancements.

Developing the app using React posed navigational challenges due to its complex user interface and unique features. Transitioning to the `navigate` method from the React Router DOM improved navigation, making it safer and more reliable. This experience underscored the importance of maintaining well-structured and organized navigation to avoid future issues.

Integrating React Three Fiber, a powerful 3D rendering tool for React, into the MERN stack (MongoDB, Express.js, React, and Node.js) posed difficulties due to structural differences between these technologies. Ensuring data synchronization between the Node.js backend, real-time 3D updates in React, and user actions was a significant challenge. Reliable data flow systems were created to enable communication between React Three Fiber components and the MERN stack's RESTful APIs. Ongoing adjustments and optimizations were necessary to ensure smooth 3D model rendering in the browser.

Several genuinely awesome features were introduced in our Virtual Dressing Room app, including "User-Requested Inventory Expansion" and "Automated Marketing Outreach." These features aimed to enhance accessibility, personalization, and user engagement. Users expressed great enthusiasm for the requested inventory expansion feature during testing.

Users appreciated the option to order clothes that were not initially in the catalog, which provided them with a sense of control and expanded the catalog. These innovative functions aligned with the app's goal of revolutionizing consumer perceptions of fashion retail, offering a fresh, user-centered twist to the shopping experience.

5. Conclusion

The Virtual Dressing Room Application represents a groundbreaking technological advancement in the fashion industry, promising to reshape the shopping experience for consumers while offering innovative solutions to retailers. This research paper has provided an in-depth exploration of the application's transformative potential, its technological foundations, and the implications it carries for the fashion industry.

Through the integration of 3D modeling, augmented reality, and e-commerce functionalities, this application has successfully bridged the gap between the physical and virtual realms of fashion retail. It offers consumers a user-centric, immersive shopping experience that empowers them to explore, customize, and interact with virtual garments, all while addressing the limitations of traditional shopping paradigms.

In summary, the successful realization of the Virtual Dressing Room Application holds the promise of redefining retail paradigms, influencing consumer behavior theories, and inspiring future innovations that harmonize the physical and digital realms. The application's advanced features, including user-requested inventory expansion and automated marketing outreach, foster engagement, personalization, and inclusivity. By building upon the achievements of previous research and addressing their limitations, this study has presented a comprehensive solution that offers heightened realism, engagement, and customization options to users in a seamless and immersive manner.

References

- [1] M. J. and R. B. , Defining the Phygital Marketing Advantage.
- [2] A.-r. Oma, STYLIZED 3D SCENE USING BLENDER, 2023.
- [3] A. Masri and M. Al-Jabi, "Virtual Dressing Room Application," IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology , 2019.
- [4] S. B. Adikari , N. C. Ganegoda, R. G. N. Meegama and I. L. Wanniarachchi, "Applicability of a Single Depth Sensor in Real-Time 3D Clothes," Advances in Human-Computer Interaction, 2020.
- [5] F. Caboni and J. Hagberg, "Augmented reality in retailing: a," Journal of Retail & Distribution Management, vol. 47, no. 11, pp. 1125-1140, 2019.
- [6] J. D. D. C. P. C. and P. P. , "Augmented Reality Based Virtual Dressing Room Using Unity3D," SSRN, 2022.
- [7] Y. M. Tang and H. H. , 3D Modeling and Computer Graphics in Virtual Reality, 2020.
- [8] H. Cho and S. S. Fiorito, "Acceptance of online customization for apparel shopping," International Journal of Retail & Distribution Management, pp. 389-407, 2009.
- [9] M. M. J. P. and C. P. , "How virtual reality affects consumer choice," Journal of Business Research, vol. 117, pp. 219-231, 2020.
- [10] M. Byvoet, "The power of web platforms based on modular design in a user-centric apparel market," Customer Interaction and CustomIntegration, Proceedings of the Joint Conference of the International Mass Customization Meeting , pp. 57-65, 2006.
- [11] T. Grzegorczyk, "Technological innovations and consumer behaviour," European Consumers in the Digital Era: Implications of Technology, Media and Culture on Consumer Behavior, 2022.
- [12] S. Weerasinghe , R. Rajapaksha , L. Sathsara and H. Gunasekara, "Virtual Dressing Room: Smart Approach to Select," International Conference on Advancements in Computing (ICAC), 2021.