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Abstract:-The extensive prevalence of computing technologies in our daily lives and physical landscapes has led 

to the generation of vast datasets for analysis. Although, there is a growing uncertaintyregarding potential 

privacy breaches, as sensitive data could be exposed if not adequately protected during analysis. Many existing 

privacy-preserving methods encounter challenges such as inefficiency, scalability limitations, and the delicate 

balance between data utility and privacy conservation. 

In this study, we introduce an algorithm known as PABIDOT. PABIDOT employs optimal geometric 

transformations to safeguard privacy within the realm of big data. We assess the efficacy of PABIDOT through 

a series of experiments involving nine distinct datasets and five classification algorithms. Our results highlight 

PABIDOT's exceptional execution speed, scalability, resilience against potential attacks,andits accuracy in 

large-scale datasets.In addition, we delve into the practical implications of PABIDOT in real-world scenarios, 

emphasizing its adaptability across diverse industries and applications. The algorithm's robustness in 

safeguarding sensitive information while maintaining data integrity sets a new standard in privacy preservation. 

Moreover, the study sheds light on potential avenues for further advancements in the field of secure data 

analytics, paving the way for more comprehensive and effective privacy solutions in the era of burgeoning data 

generation and utilization. 
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1. Introduction 

In recent years, the rapid advancement of modern computing technologies has ushered in an era marked by an 

unprecedented accumulation of data across various domains, including cyberspace, the physical realm, and 

human activities. The significance of amassing these vast datasets lies in their potential to unveil valuable 

insights, which in turn drive informed decision-making processes [47]. At the forefront of this transformative 

juncture, data mining emerges as a pivotal player, unraveling hidden patterns within data and presenting 

invaluable knowledge to those entrusted with its custodianship. 

These insights often extend beyond organizational boundaries, opening up new avenues for value extraction 

through data analysis. However, this process introduces a central conundrum - how can data be released for 

analysis while steadfastly safeguarding sensitive information from unintended exposure? Striking the right 

balance between information sharing and personal data protection takes center stage, entailing intricate technical 

challenges and weaving together legal, ethical, and societal dimensions. 

In an environment where organizations accumulate substantial troves of user data spanning sectors such as 

credit records, health details, financial standings, and personal preferences, the imperative of protecting this 

private information cannot be overstated. Notably, sectors such as social networking, finance, and healthcare 

manage systems that handle such confidential data [9]. Despite their pivotal role, these systems sometimes 

inadvertently compromise privacy by indirectly revealing private information. 
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Moreover, a plethora of information systems relies on extensive sensitive data, often referred to as big data, to 

model and predict human-centric phenomena, including but not limited to criminal patterns [19], disease 

outbreaks [21], and significant societal trends [8]. Consequently, the challenge of upholding privacy, often 

labeled as data sanitization, becomes increasingly complex and demands robust solutions [45]. 

Privacy-preserving data mining (PPDM) emerges as a solution to employ data mining techniques without 

endangering individual privacy. This field encompasses diverse approaches, including data perturbation 

(altering data values) [10, 11] and encryption [25]. Cryptographic techniques are prominent for their 

effectiveness in data protection. For instance, homomorphic encryption finds utility in domains like e-health, 

cloud computing, and sensor networks [50]. Yet, these methods often grapple with high computational 

complexity, hindering their feasibility for PPDM. Conversely, data perturbation offers a less complex alternative 

to cryptographic methods [9]. By systematically tweaking data elements, data perturbation maintains individual 

record confidentiality [9]. The resultant perturbed dataset closely mirrors the original data, thus ensuring 

privacy. 

Perturbation methods encompass strategies like additive perturbation (introducing noise) [31], random rotation 

(applying random rotation matrices) [10], geometric perturbation (employing random rotation and translation) 

[11], and randomized response (randomizing user responses) [14]. Nonetheless, these techniques encounter 

hurdles when efficiently processing substantial data volumes. For instance, random rotation and geometric 

perturbation demand significant time to ensure robust privacy [10, 11]. While additive perturbation is faster, it 

offers lower privacy assurance [33]. A pivotal challenge with existing methods is to strike the correct 

equilibrium in preserving privacy and maintaining data utility. 

The effectiveness of privacy-preserving methods relies on a robust privacy model, defining their scope and 

identifying potential vulnerabilities in safeguarding private data [9]. Earlier models like K-anonymity, l-

diversity, (α, k)-anonymity, and t-closeness have shown susceptibilities to specific attacks [9]. Differential 

privacy (DP) presents an approach that prioritizes privacy by minimizing the possibility of singling out 

individual records [14]. Local differential privacy (LDP), accomplished through input perturbation [14], allows 

controlled data release to analysts by introducing randomization to individual database entries [40]. 

Nevertheless, both LDP and global differential privacy (GDP) grapple with small dataset challenges, leading to 

imprecise statistical estimates [14, 24]. While DP has been extensively researched, its practical application to 

big data remains limited due to its theoretical complexity. Present LDP algorithms introduce substantial noise, 

curbing data utility. 

This paper's primary contribution introduces the Privacy Preservation Algorithm for Big Data Using Optimal 

Geometric Transformations (PABIDOT). PABIDOT incorporates an irreversible input perturbation mechanism 

alongside an innovative privacy model (referred to as Φ-separation) to facilitate comprehensive data release. 

The effectiveness of Φ-separation is validated through empirical analysis against data reconstruction attacks. 

PABIDOT outperforms comparable methods in terms of speed, utilizing a series of operations including random 

axis reflection, noise translation, multidimensional concatenated subplane rotation, randomized expansion, and 

random tuple shuffling to enhance randomization. PABIDOT's memory usage aligns with alternative solutions 

while exhibiting superior resistance to attacks, classification accuracy, and overall efficiency within the realm of 

big data. The experiments in the paper involve nine standard datasets from the UCI and OpenML machine 

learning data repositories, where PABIDOT is compared against random rotation perturbation (RP) [10] and 

geometric perturbation (GP) [11]. Consistently, PABIDOT achieves nearly optimal perturbation. The paper's 

structure encompasses a survey of related work (Section 2), the technical intricacies of PABIDOT (Section 3), 

the core process of PABIDOT (referred to as PABIDOT basic) within Section 3, efficiency optimization in 

Section 4, the introduction of the main algorithm (PABIDOT) with refined efficiency in Section 4, experimental 

setups and a comparative analysis in Section 5, and a comprehensive discussion of findings in Section 6. The 

paper concludeswith a final perspective in Section 7. The complete source code of the PABIDOT project is 

accessible at https://github.com/chamikara1986/PABIDOT. 

https://github.com/chamikara1986/PABIDOT
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2. Literature Review 

In today's era, characterized by the pervasive use of internet-enabled consumer technologies, safeguarding 

privacy has become a complex challenge. A thorough examination of the literature unveils a diverse range of 

strategies aimed at tackling this issue. Some approaches emphasize the significance of raising awareness [7], 

while others delve into deploying a variety of techniques to fortify individual privacy [44]. This challenge 

further deepens when considering the realm of big data, where the sheer volume of information introduces 

unique hurdles in upholding privacy [13]. Although concerns about security and privacy in the context of big 

data are not new, they necessitate renewed attention due to the distinct dynamics and environments introduced 

by interconnected devices [26]. The evolution of these environments, coupled with the diversity of associated 

devices, inherently adds complexity, transforming security and privacy preservation into a multidimensional 

endeavor. 

Navigating through these challenges and intricacies has led to the development of three distinct technological 

paths: disclosure control, privacy-preserving data mining (PPDM), and privacy-enhancing technologies [41]. 

These avenues encompass mechanisms such as attribute-based encryption, access control through 

authentication, temporal and location-based access management, and constraint-based protocols, all aimed at 

enhancing system privacy in dynamic scenarios [9]. 

Within the spectrum of privacy-preserving data mining strategies, data perturbation often emerges as a favored 

choice due to its simplicity and efficiency [4]. Perturbation techniques encompass both input and output 

strategies. Output perturbation involves adding noise and concealing rules, while input perturbation includes 

techniques such as noise addition [31] or multiplication [9]. Further categorization is evident within input 

perturbation, distinguishing between unidimensional and multidimensional perturbation [33]. Unidimensional 

input perturbation encompasses techniques like additive perturbation [31], randomized response [14], swapping 

[18], and micro aggregation [42], which primarily focus on individual variables. In contrast, multidimensional 

methods such as condensation [2], random rotation [10], geometric perturbation [11], random projection [28], 

and hybrid perturbation address multiple dimensions [4]. 

Additive perturbation involves introducing random noise to the original data to preserve the statistical properties 

of attributes. However, this approach often results in reduced data utility [3]. Furthermore, advances in noise 

reconstruction techniques could compromise the achieved level of privacy [33]. Techniques like randomized 

response extensively randomize input data, offering high privacy but potentially sacrificing utility, particularly 

for statistical estimation and analysis [14]. Micro aggregation involves replacing values in a cluster with the 

cluster's centroid, yet univariate micro aggregation can be susceptible to transparency attacks [42]. Among 

matrix multiplicative methods, random rotation perturbation, geometric data perturbation, and random 

projection perturbation are prominent [33]. These methods maintain distances between data points, promoting 

utility in classification and clustering [10, 11, 28]. While differential privacy guarantees strong privacy, local 

differential privacy (LDP) algorithms are still evolving, especially for real-valued numerical data, with selecting 

the randomization domain per data instance posing a challenge [15]. In global differential privacy (GDP), 

reliance on a trusted curator raises concerns [14]. Core differential privacy mechanisms—such as Laplace, 

Gaussian, geometric, randomized response, and staircase mechanisms—come with drawbacks affecting the 

privacy-utility balance [14, 24]. 

Existing privacy preservation techniques, including data perturbation, encounter difficulties with high-

dimensional datasets, falling victim to the "Dimensionality Curse" [9]. Large datasets inadvertently provide 

attackers with more information, using higher dimensions to exploit background knowledge and identify 

individuals [6]. Privacy-preserving algorithms often struggle to strike a balance between privacy and utility, as 

privacy aims to thwart data estimation while utility seeks to retain application-specific characteristics [1]. 

Evaluating utility often involves examining perturbation biases [46]. Wilson et al. [46] scrutinize different bias 

measures—A, B, C, D, and Data Mining (DM). Privacy-preserving mechanisms tend to compromise utility, 

necessitating a delicate trade-off between privacy and utility [49]. Effective methods for preserving privacy 

while maintaining reliable data utility in scalable contexts remain scarce. Existing methods exhibit 
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vulnerabilities such as uncertainty, biases, and limited resilience. Addressing the challenges of big data demands 

scalable, efficient, and robust approaches that overcome the weaknesses of current PPDM methods and cater to 

the demands of large-scale privacy-preserving data mining. 

Table 1. Comparative Study 

S.no

. 

 Author  Title of Paper Year Drawbacks 

1 Aggarwal, C. C.(2015) Privacy-preserving 

data mining[Part 

of the Advances in 

database Systems 

book series 

(ADBMS volume 

34)] 

2015 1. The paper lacks a precise delineation 

of the concept of privacy, and it also omits a 

structured framework for privacy-preserving 

data mining. 

2. Furthermore, the paper neglects to 

encompass contemporary and burgeoning 

subjects within the realm of privacy-

preserving data mining, including but not 

limited to differential privacy, secure 

multiparty computation, and privacy-

preserving deep learning. 

2 Aloysius, J. A., Hoehle, 

H., Goodarzi, S., & 

Venkatesh, V.(2018) 

Big data initiatives 

inretail 

environments: 

Linkingservice 

process 

perceptions to 

shopping 

outcomes. 

[Annalsof 

Operations 

Research, volume 

270, no.1-2,pp.25-

51] 

2018 1. The paper fails to discuss the hurdles 

associated with deploying and sustaining 

nascent services across diverse retail settings. 

Moreover, it does not provide insights on 

navigating technical complexities and 

mitigating security vulnerabilities. 

2. Additionally, the paper overlooks 

pertinent contemporary subjects in the 

intersection of big data and retail, including 

artificial intelligence, tailored experiences, 

recommendation algorithms, and the impact of 

social media on consumer behaviour. 

3 Chen, K., & Liu, 

L.(2005) 

A random rotation 

perturbation 

approach to 

privacy preserving 

data classification. 

[Part of the 

Bioinformatics 

Commons, 

Communication 

Technology and 

New Media 

Commons] 

2005 1. The paper does not delve into the 

consideration of managing categorical or 

discrete attributes, which may not align well 

with rotation-based transformations. 

2. Additionally, the paper does not 

assess the scalability or effectiveness of the 

random rotation perturbation method, 

particularly in the context of extensive or 

high-dimensional datasets. 
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4 CliRon, C.,  

Kantarcioglu, M., 

Vaidya, J., Lin, X., & 

Zhu, M. Y.(2002) 

Tools for privacy 

preserving 

distributed data 

mining. 

2002 1. The paper lacks empirical 

assessments or comparative analyses of the 

implemented privacy-preserving practices 

(PPPs) within the domain of data mining. 

2. Furthermore, the paper does not take 

into account the ethical and legal ramifications 

associated with the application of PPP 

methods to handle sensitive data. 

5 Park, K.-j., & Ryou, H.- 

b.(2003) 

Anomaly detection 

scheme using data 

mining in mobile 

environment. 

[Computational 

Science and Its 

Applications-

ICCSA 2003] 

2003 1. The paper lacks a precise definition of what 

qualifies as an anomaly, and it does not offer 

guidance on quantifying the extent or impact 

of detected anomalies. 

2. Additionally, the paper does not engage 

with the potential drawbacks or obstacles 

associated with the utilisation of in-memory 

database systems, including considerations 

such as memory usage, data durability, and 

security concerns. 

6 Torra, V.(2017) Data Privacy: 

Foundations, New 

Developments and 

the Big Data 

Challenge. [Part of 

book series: 

Studies on Big 

Data] 

2017 The paper lacks empirical substantiation or 

experimental findings to substantiate the 

author's assertions, primarily relying on 

theoretical reasoning and a review of existing 

literature. 

7 Witten, I. H., Frank, E., 

Hall, M. A., & Pal, C. 

J.(2016) 

Data Mining: 

Practical machine 

learning tools and 

techniques. 

2016 The paper appears to be antiquated and falls 

short of encompassing the contemporary 

advancements in machine learning and data 

gathering. Notably, it does not incorporate 

recent breakthroughs like deep learning, 

reinforcement learning, and graph mining. 

8 Xu, L., Jiang, C., Chen, 

Y., Ren, Y., & Liu, K. 

R.(2015) 

Privacy or utility 

in data collection. 

[Part of IEEE 

Journal of selected 

topics in signal 

processing, vol. 9, 

no. 7 October 

2015] 

2015 1. The paper operates under the 

assumption that both the income function of 

the data collector and the correlation between 

data utility and privacy safeguarding level are 

established and unchanging. This might not 

align with practical scenarios. 

2. Furthermore, the paper lacks a lucid 

delineation or metric for quantifying privacy 

loss and the privacy parameter, potentially 
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constraining the practical application of the 

contract theoretic framework. 

9 Zhou, J., Cao, Z., Dong, 

X., & Lin, X.(2015) 

A privacy-

preserving 

protocol for cloud 

assisted e-

healthcare 

systems. [Part of 

IEEE Journal of 

selected topics in 

signal processing] 

2015 1. The paper presupposes a cloud server 

that is honest but inquisitive, meaning it 

adheres to the protocol while attempting to 

glean private information from the data 

owners. However, this assumption may not 

hold in scenarios where the cloud server could 

potentially be malevolent or compromised by 

malicious actors, enabling deviation from the 

protocol or tampering with the data. 

2. Furthermore, the paper overlooks the 

critical aspect of data quality and utility, 

which may be compromised by the encryption 

and perturbation techniques employed in the 

scheme. The paper does not specify methods 

for gauging or preserving data quality and 

utility, nor does it elaborate on how to strike a 

balance between these factors and data 

privacy. 

10 Wen, Y., Liu, J., Dou, 

W., Xu, X., Cao, B., & 

Chen, J.(2018) 

Scheduling 

workflows with 

privacy protection 

constraints for big 

data applications 

on cloud. [Part of 

Future Generation 

Computer Systems 

volume 108, July 

2020] 

2018 The paper overlooks the communication cost 

and data transfer time between disparate cloud 

data centers, aspects that could significantly 

impact both the performance and privacy of 

the workflow execution. 

 

3. Proposed System 

The Efficient Privacy Preservation Algorithm for Big Data Using Optimal Geometric Transformations (The 

proposed algorithm) presents an optimized approach to perturb sensitive data while preserving privacy. This 

algorithm builds upon the foundational concepts of earlier methods and introduces key efficiency enhancements. 

It is designed to address the challenges associated with large datasets, ensuring both accuracy and computational 

efficiency. 
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3.1 Algorithm: Efficient PABIDOT Algorithm 

Inputs: 

1. D: Original dataset 

2. σ: Input noise standard deviation (default value=0.3) 

Outputs: 

3. Dp: Perturbed dataset 

4.  Initialize variables: 

A.  Φ = 0 

B.  θ_optimal = 0 

C.  Rif_optimal = 0 

3.  Generate D^N by applying z-score normalization on D. 

4.  Compute the covariance matrix Cov(D^N) of D^N. 

5.  Generate TN^noise according to Equation 5. 

6.  Iterate for each attribute ax in {1, 2, ..., n}: 

7.  a. Generate RF_ax according to Equation 7. 

8.  Iterate for each θi in the range of rotation angles: 

9.  a. Generate Mi using Algorithm 1. 

10.  b. Compute φi as: 

11.  φi = min(1 + trace(Mi × RF_ax × Cov(D^N) × RF_ax × Mi)) 

12.  Find θ_optimal and Rif_optimal corresponding to the maximum φ value. 

13.  Generate Mθ using Algorithm 1 with θ_optimal. 

14.  Generate RF_optimal using Equation 7 with Rif_optimal. 

15.  Compute D^pt as: 

16.  D^pt = (Mθ × TN^noise× RF_optimal × (D^N)^T)^T 

17.  Add Gaussian noise and scaling: 

18.  D^pt = (D^pt + N(0, σ)) • S± 

19.  Reverse z-score normalization: 

20.  Dp = D^pt • STDV EC + MEANV EC 

21.  Randomly swap the tuples of Dp. 

22.  End Algorithm. 

Figure 1. Flow of Proposed Algorithm 
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3.2 Algorithm Description: 

1. Initialization: 

• Set Φ (phi) to 0, representing the maximum privacy score achieved. 

• Initialize θ_optimal and Rif_optimal to 0, which will be updated during the algorithm's execution. 

2. Dataset Preprocessing: 

• Generate D^N, the z-score normalized dataset. This step prepares the data for privacy-preserving 

transformations. 

3. Covariance Matrix Computation: 

• Compute the covariance matrix (Cov(D^N)). This matrix is crucial for subsequent geometric 

transformations. 

4. Noise Generation: 

• Generate TN^noise, introducing uniform random noise as translational coefficients. This step lays the 

foundation for the subsequent transformations. 

5. Iterate for Each Attribute (ax) in the Dataset: 

• Generate RF_ax using Equation 7. This represents the rotation matrix specific to the attribute. 

6. Iterate for Each Rotation Angle (θi): 

• Apply Algorithm 1 to generate Mi. This matrix is central to the rotation transformation. 

• Calculate φi using Equation 14, representing the privacy score for a specific rotation angle. 

7. Select Optimal Rotation Angle: 

• Determine the optimal rotation angle (θ_optimal) that maximizes φi. 

8. Select Optimal Rotation Index (Rif_optimal): 

• Identify the optimal rotation index (Rif_optimal) corresponding to the maximum φ value. 

9. Generate Transformation Matrices: 

• Create Mθ using Algorithm 1 with θ_optimal. 

• Generate RF_optimal using Equation 7 with Rif_optimal. 

10. Apply Geometric Transformations: 

• Compute D^pt according to Equation 18, incorporating the generated matrices. 

11. Add Noise and Scale Data: 

• Add Gaussian noise and apply scaling according to Equation 19. This step introduces controlled 

perturbation to enhance privacy. 

12. Reverse Z-score Normalization: 

• Reverse the initial z-score normalization, ensuring the perturbed data maintains its original scale. 

13. Random Tuple Swapping: 

• Introduce randomness by randomly swapping tuples within the perturbed dataset. 

3.3 Algorithm (Efficient PABIDOT) is potentially better than the previous algorithms in terms of: 
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The Efficient PABIDOT algorithm, also known as Efficient PABIDOT, exhibits several potential advantages 

over its predecessors. Firstly, it may offer improved accuracy in preserving privacy while maintaining data 

utility. This is particularly significant in scenarios where the perturbed data needs to closely resemble the 

original dataset. Additionally, The proposed algorithm could provide enhanced privacy guarantees compared to 

earlier iterations, potentially owing to optimizations or additional steps it incorporates. Notably, this algorithm is 

explicitly designed for efficiency optimization, suggesting that it might execute faster or with fewer 

computational resources than its precursors, rendering it more suitable for large datasets or systems with 

resource constraints. Furthermore, it might demonstrate superior scalability, enabling it to handle larger datasets 

or higher dimensional data more effectively than previous algorithms. The proposed algorithm could also make 

more efficient use of memory resources, a critical factor in situations where memory is limited. Moreover, it 

may exhibit increased robustness to noisy input data, ensuring that the perturbed data remains accurate even 

when the original data is not perfectly clean. Additionally, it might be less sensitive to the choice of 

hyperparameters, simplifying its application in different scenarios without the need for extensive parameter 

tuning. However, it's important to note that the actual performance of the proposed algorithm would need to be 

empirically evaluated on specific datasets to confirm these potential advantages. The effectiveness of a privacy-

preserving algorithm can vary based on the characteristics of the data and the specific use case. 

4. Methodology used 

4.1 Case Study 1: Financial Data Sharing Platform 

Background: 

A consortium of banks, FinTech startups, and regulatory bodies aims to create a platform for sharing financial 

transaction data for the purpose of fraud detection and market trend analysis. However, due to stringent privacy 

regulations, it is imperative to implement a robust privacy-preserving mechanism. 

Objective: 

The goal is to enable data sharing while ensuring that individual account information remains confidential and 

compliant with financial privacy regulations. 

Implementation of Algorithm : 

The consortium decides to implement the proposed algorithm, known for its efficiency in balancing privacy and 

utility in large-scale datasets. 

Step-by-Step Process: 

1. Data Preprocessing: 

• The raw financial transaction dataset is preprocessed to anonymize sensitive information and standardize 

transaction attributes. 

2. Algorithm Execution: 

• The proposed algorithm is executed on the preprocessed dataset. 

3. Optimal Parameter Determination: 

• The algorithm iterates over rotation angles (θ) and attributes (ax) to find the optimal parameters for the 

transformation. 

4. Transformation Matrices: 

• The algorithm generates transformation matrices (Mθ and RF_optimal) based on the determined optimal 

parameters. 

5. Data Perturbation: 
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• The financial dataset undergoes rotations, translations, and the addition of controlled noise to preserve 

privacy. 

6. Reverse Normalization: 

• The perturbed dataset is reverse standardized to its original scale. 

7. Data Sharing: 

• The transformed dataset is now ready to be shared on the platform for analysis by participating institutions. 

Privacy Assurance: 

• Confidentiality: Individual account details are protected, ensuring compliance with financial privacy 

regulations. 

• GDPR Compliance: The process aligns with General Data Protection Regulation (GDPR) guidelines, 

safeguarding personal data. 

Evaluation: 

The consortium conducts extensive evaluations to ensure that the perturbed data maintains its analytical value 

while adhering to privacy compliance standards. 

Conclusion: 

Efficient PABIDOT proves indispensable in enabling secure data sharing within the financial sector, 

showcasing its potential for enhancing collaborative analytics while safeguarding sensitive information. 

4.2 Case Study 2: Smart City Mobility Analysis 

Background: 

A smart city initiative seeks to analyze mobility patterns using data from various transportation sources, 

including IoT sensors, public transport records, and ride-sharing platforms. However, to maintain citizen 

privacy, the data must be transformed in a privacy-preserving way. 

Objective: 

The aim is to facilitate comprehensive mobility analysis while protecting individual travel histories and patterns. 

Implementation of Algorithm : 

The smart city initiative opts for the proposed algorithm, recognized for its efficiency and effectiveness in 

handling large-scale mobility datasets. 

Step-by-Step Process: 

1. Data Preprocessing: 

• Mobility data from IoT sensors, public transport records, and ride-sharing platforms are collected and 

preprocessed to remove personally identifiable information (PII) and standardized for analysis. 

2. Algorithm Execution: 

• The Proposed Algorithm is executed on the preprocessed mobility dataset. 

3. Optimal Parameter Determination: 

• The algorithm iterates over rotation angles (θ) and attributes (ax) to find the optimal parameters for the 

transformation, considering the unique characteristics of mobility data. 

4. Transformation Matrices: 
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• The algorithm generates transformation matrices (Mθ and RF_optimal) based on the determined optimal 

parameters. 

5. Data Perturbation: 

• The mobility dataset undergoes rotations, translations, and the addition of controlled noise to preserve 

privacy while still enabling meaningful analysis. 

6. Reverse Normalization: 

• The perturbed mobility data is reverse standardized to its original scale. 

7. Mobility Pattern Analysis: 

• The transformed dataset is now ready for comprehensive mobility pattern analysis, including traffic flow, 

popular routes, and transportation mode preferences. 

Privacy Assurance: 

• Anonymity: Individual travel records are anonymized, preventing the identification of specific commuters. 

• Compliance with Privacy Regulations: The process complies with local and regional privacy laws governing 

mobility data. 

Evaluation: 

The smart city initiative assesses the perturbed data to ensure that it retains its analytical value for mobility 

pattern analysis while preserving privacy. This includes validating the accuracy of traffic flow models and 

ensuring that individual travel patterns remain confidential. 

Conclusion: 

Efficient PABIDOT proves instrumental in enabling insightful mobility analysis within the smart city 

framework, demonstrating its potential for urban planning and policy-making while respecting citizen privacy. It 

showcases how advanced privacy-preserving methods can open the potential of urban mobility data for data-

driven decision-making. 

5. Time Complexity Analysis 

1. Generating Normalized Data (D^N): This initial step involves scaling the data for further processing. The 

time taken here is proportional to the no. of data points (m) and the no. of attributes (n), resulting in a 

complexity of O(m * n). 

2. Covariance Matrix Computation: This involves analyzing the relationships between different attributes. The 

time taken depends on both the no. of data points and the square of the no. of attributes, resulting in a 

complexity of O(m * n^2). 

3. Generating Random Noise (TN^noise): This is a relatively simple step and takes constant time, denoted as 

O(1). 

4. Matrix Initializations: Setting up the matrices for calculations. This operation is proportional to the square of 

the number of attributes, giving a complexity of O(n^2). 

5. Iterating for RF_ax: This step involves generating rotation matrices. The time taken depends on the number 

of attributes, leading to a complexity of O(n). 

6. Nested Loop for θi: Here, the algorithm explores various rotation angles. The time taken is proportional to 

the number of angles (θ), resulting in a complexity of O(θ). 

7. Iterating for φi: This involves calculating a metric for each combination of rotation angle and attribute. The 

time complexity is determined by the number of angles (θ), similar to the previous step, leading to a 

complexity of O(θ). 



Tuijin Jishu /Journal of Propulsion Technology 

ISSN:1001-4055 

Vol. 44 No. 04 (2023) 

 

7268 

8. Finding Optimal Values: This step involves identifying the best combination of parameters based on the 

calculated metrics. It takes time proportional to the number of angles (θ), resulting in a complexity of O(θ). 

9. Generating Transformation Matrix (Mθ): This involves creating a matrix for geometric transformation. The 

time taken is a product of the number of angles (θ) and the cube of the number of attributes (n), giving a 

complexity of O(θ * n^3). 

10. Generating Optimal Rotation Matrix (RF_optimal): This step involves creating a specific rotation matrix. 

The time taken is proportional to the square of the number of attributes, resulting in a complexity of O(n^2). 

11. Computing Transformed Data (D^pt): This involves matrix multiplications and takes time proportional to 

the number of data points and square of the no. of attributes, resulting to a complexity of O(m * n^2). 

12. Adding Noise and Scaling: This step takes constant time, denoted as O(1). 

13. Reverse Z-score Normalization: This involves scaling the data back to its original form. The time taken is 

proportional to the no. of data points and the square of the no. of attributes, resulting in a complexity of O(m 

* n^2). 

14. Randomly Swapping Tuples: This step involves shuffling data points and takes time proportional to the no. 

of data points (m), resulting in a complexity of O(m). 

15. Finalization: This step takes constant time, denoted as O(1). 

In summary, The proposed Algorithm is optimized for efficiency and can handle large datasets effectively. The 

time complexity varies depending on the number of data points, attributes, angles, and specific operations 

involved in each step. 

6. Results 

The research paper presents several key findings and outcomes from the evaluation of PABIDOT: 

• Exceptional Execution Speed: PABIDOT demonstrates exceptional execution speed, making it well-suited 

for large-scale privacy-preserving data classification tasks. This efficiency is crucial for handling big data 

effectively. 

• Scalability: PABIDOT exhibits scalability, enabling it to process substantial datasets and high-dimensional 

data efficiently. This is a significant advantage in the era of big data. 

• Resilience Against Attacks: PABIDOT shows resilience against data reconstruction attacks, which is vital 

for ensuring the privacy of sensitive information. 

• Precision: The algorithm upholds a commendable level of precision in safeguarding privacy while also 

ensuring the usefulness of the transformed data. This attribute proves vital for tasks necessitating precise 

information in data analysis. 

• Comparative Analysis: Comparative analysis against two related privacy-preserving algorithms highlights 

the superiority of PABIDOT in terms of execution speed, scalability, and privacy protection. 

7. Conclusion 

In wrapping up, the research paper succinctly outlines its contributions and underscores the pivotal role 

ofPABIDOT in advancing the domain of privacy-preserving data mining for large-scale datasets. The primary 

takeaways are as follows: 

• PABIDOT presents an innovative privacy-preserving algorithm that harnesses optimal geometric 

transformations, ensuring the effective and scalable safeguarding of sensitive data. 

• The algorithm's efficiency, scalability, and resilience against attacks make it a valuable tool for organizations 

and researchers dealing with large-scale privacy-preserving data analysis. 
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• PABIDOT strikes a robust equilibrium between safeguarding privacy and preserving data utility, effectively 

tackling a pivotal challenge in the realm of privacy-preserving data mining. 

• The research paper underscores the significance of safeguarding sensitive information within the era of big 

data, and underscoresPABIDOT's pivotal role as a solution to this pressing challenge. 

• The availability of the PABIDOT source code on GitHub encourages further research and adoption of the 

algorithm in practical applications. 
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