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Abstract: - For the maintenance of repairable system with a repairman having multiple vacations using two
monotone processes. If the system fails and the repairman is on vacation, it will wait for repair until the
repairman is available. Assume the damaged system cannot be repaired “as good as new” and the repairman
can be repaired immediately with a probability of p, we optimize replacement policy using increasing alpha
series and decreasing partial sum processes. The explicit expression for the expected profit under replacement
policy N is derived analytically. And we also a numerical example is given to illustrate the theoretical results
of the model mentioned in this paper.
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1. Introduction

During recent years, with the growing complexity of the modern embedded applications in many real
time systems viz. computer, communication, electrical power, distributed computing, production, transportation,
defence systems, etc,. maintaining the system has become a large challenge for the system developers and
engineers. A repairable system is a system which after failing to perform one or more of its functions
satisfactorily, can be restored to fully satisfactory performance by any method,rather than the replacement of the
entire system(Ascher&Feingold,1984).Repair models developed upon successive inter-failure times have been
employed in many applications such as optimization of maintenance policies, decision making and whole life
cycle cost analysis. With different repair levels, repair can be broken down into three catagories(Yanez,Joglar &
modarres,2002): perfect repair, normal repair,and minimal repair.

Most of the repairable systems are deteriorative since the age of the system components can neither remain
uniform for long nor the operating time of the system can be continuous. Due to techno economic constraints,
the successive working times of the system after repair become shorter and the consecutive repair times after
failures become longer; then in this situation the replacement is better option instead of providing repair to the
system. It is realized by the decision makers to choose the optimal number of replacements after providing the N
times repair to the failed system; such type of problem is known as optimal replacement policy.In 1988, Lam
first introduced the geometric process to describe the optimal replacement problem. The geometric process has
been applied to reliability analysis and maintenance policy optimization for various systems by authors: for
example, Wu and Clements-Croome(2005), Castro and Peirez-Ocoin(2006),Zhang and Wang (2007), Braun
Li,and Zhao(2008).

The existing research mainly concentrates on the reliability analysis or maintenance optimization with a
consideration of the behaviours of repairable systems themselves. Little work has been conducted to consider
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reliability analysis for a system where the repairman might take a sequence of vacations of random durations
and a repair on a failure is a normal repair. Here we emphasize that the durations of vacations can be different.
Such a vacation policy is called a multiple vacation policy, which has attracted attention in queuing theory(for
example, Lee, 1988; Krisshna,Nadarajan,&Arumuganathan, 1998; Chang &Choi, 2005).

The applications of such situations where a repairman can take multiple vacations can be found in practice.
In some situations, a repairman can have two roles: one for caring a system and one for other duties, which can
happen in a small/median firm that wants to use the repairman effectively. If the repairman is assigned to look
after only one system, he might have plenty of idle time. In this paper, vacation can mean period when the
repairman is on other duties. The repairman can periodically check the status of the system; if the system fails,
he repairs it; if the system is working, he goes back to the other duties.

This paper presents the formulations of the expected long-run profit per unit time for a repairable system
with a repairman. We assume that the repairman takes multiple vacations. When the system fails, the repairman
will be called in to bring the system back to a certain state. The time to repair is composed of two different
periods: waiting and real repair periods. The waiting time starts from the component’s failure to the start to
repair, and the real repair time is the time between the start to repair, and the completion of the repair. Both the
working and real repair times are assumed to be a type of stochastic processes: operating time follows partial
sum process and repair times follow Alpha series process and the waiting times are subject to a renewal process.
The probability that a failed system can be immediately repaired is assumed to be p. The expected long- run
profit per unit time is derived analytical and a numerical example is given to illustrate the theoretical results of
the model. Jishen Jia & Shaomin Wu (2013)) introduced and studied a replacement policy for a repairable
system with its repairman having multiple vacations using geometric processes. In this paper, we shall study a
maintenance model for a repairable system with its repairman having multiple vacation the successive operating
times follow a decreasing partial sum process (Babu et al. 2020) and consecutive repair times follow a
increasing Alpha series process(Braun et al. (2005).

DEFINITION 1.1 For a given two random variables X and Y, X is said to be stochastically larger than Y (or Y
is stochastically lessthan X)

if P(X>a)=P(Y >a)forall reala.Thisiswrittenas X >, YorY <, X

DEFINITION 1.2 A stochastic process{X, ,n = 1,2,3 .....} is said to be stochasticlly increasing (decreasing)
if X, <o (Z0)Xp4q forall n=1,2,3,.........

DEFINITION 1.3 Let {X,,,n = 1,2,3 ..... }be a sequence of independent non-negative random variables and
let F(x) be the distribution function of X;.Then {X,,,n =1,2,3.....} is called a partial sum process, if the
distribution function of X, is F(B8,x),n = 1,2,3 ..where S, > 0 are constants with 8, = B, + B, + B, +

“Pn-rand By =p>0

According to Definition 1.3.We have the following result.

1. Forreal B,(n=1,23,......), 0, = 2" 1B.

2. The distribution function of X, is F(2""!B) forn =1,2,3,.....
3.The density function of X,,,; iS fre1(x) = Bnf (Bnx).

4.LetE(Xy) = ythenforn = 1,2,3, ... .. then E(Xp4q) = —=

2n-1g

5.The partial sum process {X,,,n =1,2,3,...... } with parameter B(> 0)is stochastically decreasing and
hence it is a monotone process. (See e.g. Babu[2020])

DEFINITION 1.4 Let{Y,,n=1,2,3...} be asequence of independent, non negative random variables. If
the distribution function of Y;, is given by G(n®y) forn = 1,2,3 ... where « is a real number .Then {Y,,n =
1,2,3....} is called an Alpha series process. (See e.g., Braun (2005))

According to Definition 1.4, we have

(i) Given a Alpha series process{Y,,n = 1,2,3 .... }
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(@) If @ > 0 then {Y,,,n = 1,2,3 ...} is a stochastically decreasing sequence.
(b) If @ < 0 then {Y,,n = 1,2,3....} is a stochastically increasing sequence.
(c) If @« = 0 then {Y,,,n = 1,2,3 ...} is a Renewal process.

(i) LetE(Y) = p, Var(Y) = o? thenE(Y,) = nia See e.g. Braun (2005)

2. Model assumptions

We provide the following assumptions for the replacement policy for a repairable system with its repairman
having multiple vacations.

ASSUMPTION 2.1 Attimet = 0, the system is new.

ASSUMPTION 2.2 The system starts to work at time t = 0, and it is maintained by a repairman. The
repairman takes his first vacation after the system has started. After his vacation ends, there will be two
situations.

a. If the system has failed and is waiting for repair, the repairman will repair it. He will then take his
second vacation after the repair is completed.

b. If the system is still working, the repairman will take his second vacation. This operating policy
continues until a replacement takes place.

ASSUMPTION 2.3 After the repairman finishes his vacation, the probability that he can immediately repair
the failed system is P. Denote W, as the working time after the n — th failure occurs, where {W,,n =
1,2,3........} are i.i.d. with distribution S(t) (¢t = 0)and t = EW,, < +oo.

ASSUMPTION 2.4 The time interval from the completion of the (n — 1) — th repair to that of the n — th
repair of the system is called the n — th cycle of the system, wheren = 1,2,3 ... ...

Denote the working time and the repair time of the system in the n —thcycle (n = 1,23 .......) as X, and ¥,
respectively.

Denote the length of the i — th vacation during the n — th cycle as {Z,",n = 1,2, .....}

Denote the cumulative distribution functions of X,,, Y,,,Z,," and E,(x) as G,(y) and H,,(z), respectively,where
E,(x) = F($,2" x),G,(y) = G(n*y) and H,(z) = H(B,2" 'z). Denote E(X;)=A4E{)=u and
E(z,")=y.

ASSUMPTION 25 X,, Y, Z,"and W, (i = 1,2,3 ...and n = 1,2,3 ... ... ) are statistically independent.

ASSUMPTION 2.6 When a replacement is required, a brand new but identical component will be used, and
the length of a replacement time is negligible.

ASSUMPTION 2.7 The following costs are considered.
C,: repair cost per unit time.
C,: reward per unit time when the system is working.
C5: Cost incurred for a replacement.

C,: reward per unit of the repairman when he is taking vacation or other duties, which can produce
profits for the firm.

Cs: cost per unit time when the system is waiting for repair and C,4: cost per unit time incurred in the
waiting time after the system has failed.

3. Expected profit under replacement policy N
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Denote 7, the times of vacations of the repairman during the n — th cycle of the system.

Let T; be the time before the first replacement, T,, be the time between the (n — 1)th and n — th replacement
withn = 2,3, ...... The process {T,,,n = 1,2,3 ....} forms a renewal process.

Denote P(N) as the expected long- run profit per unit time under replacement policy N. Then we have
_ Expected profit within [0, t]
P(N) = glm .

Since {T,,,n = 1,2,3 .....} is a renewal process. The time between two adjacent replacement is the length for a
replacement. Hence

Expected profit within a replacement cycle

P(N) =
) Expected length of a cycle

_ER 1
=Tw (€Y)

LEMMA 3.1 The probability ¢,, is given by
P(pn = k) = [[T[Siea(t) — SO dF (B1271), k=12, ....andn=12,...N
and Eq,, = f0+°°[2?=1 S, ()] dF (B;2™1t) where S (t) is the cumulative distribution function of ¥¥_, WL

Proof. According to the law of total probability , we have

k-1 k
P(po=k) =P ZZ,J < Xp <Zznl
i=1 i=1

+o0 k—1 k
=f P ZZ"i<t<ZZ"i’X"St
0 i=1 i=1

= [, [Se-1(t) — S (D] dF (B2 71t)

dF (82" 1t)

and  Eq@, = X1 kP(@n = k) = X1 k f0+00[5k—1(t) = Se®]dF(B2"7't)

= [ D kls1@ - su@lar @20
k=1

0
= [ IS, Sk (O] dF (82" 1t)

From the assumptions, the length of a replacement cycle is given by

w= i i Z," + Nz_l[YiI{Ai} + (¥ + W)I{B:}]

= Zggll Y, + Zgzl Zrﬁn:1znm + Zévz_ll W; I{Bi}

where I(A) = 1 if event A occurs, otherwise 0. Denote A; ={ the system can be repaired immediately after the
i-th failure}, and B; = { the system can not be repaired immediately after the i-th failure}. Hence
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Pn Pn
E ZznmleEzznm/(pn‘
= Yie=1[Xh=1 E(Z ™ P(pn = k)

= Zf=127’%=1# P(py = k)

= i Se1 k P(g = K)

= o Eon) = s [T ISR Sk (D] dF (827 70)

and  E[XN'W, I{B;}}] = SN E(W; I{B;})) = (N — 1)(1 — P)T

1, B; had happened
0, B; had not happened

where I{B;} = {
The expected time for a replacement is
N_

-y Y+Z Zz

NZ E[W,1{B}}]

N-1 N +oo (o)
u _
> £ Z f [Z S |dF (82710 + (V - 1)(1 - P)e @)
n=1 n:l 0 k=1
and the profit within a cycle is
N N ®n N-1 N N—1
R=CZZXn+C4ZZan—Clz CSZ sz—x _C.E ZE[WL-I{BL-}] -
n=1 n=1m=1 n= n=1 \m=1 i=1
N ®n .
(CZ+C5)ZX +(c4—c5)ZZz —QZY C.E ZE[WI{B} s
n=1m=1 |

The expected profit within a cycle is given by

N N +00 - oo N-1
A Y _ U
BR=(C+ 0|14 ) o + (G- 9| Y s | [Z SO |aF@ 20| -6 ) £
n=2'" n=1"? 0 Lk=1 n=1
—CG(IN-1D)A-P)t—Cs 3)
If we consider equations (1) to (3), we obtain the expected long-run profit per unit time as
A ® oo _
(Co+C9) |2+ Do ] + (€4 = 69 [ B s [y i SO dF (8,2770)|
—Cy 2n= 1na_Ce(N_1)(1_P)T_C3
P(N) = 4)

SN e I g Jo IR S (D1 AF (Bi27710) + (N = D(A - P)
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4. Special cases

We assume that the cumulative distribution functions of X,,, Y, Z,* and W, are

E,(t) = F(B;2" ') = 1 — exp(—f,2" 1 1¢) t=0,6>01>0 n=123....

G,(t) = G(n%t) = 1 — exp (—n*ut) t=20,a<0, u>0 n=123....

H,(t) = H(B,2"1t) = 1 — exp(—f,2" 1yt) t=0,6>0y>0 n=123....

and S(t) =1—exp (— 5) respectively wheret >0

T

We assume that Z,' (i = 1,2,3 ...... k) are mutually independent.

The probability density function of ¥¥_, Z,! is a hypo-exponential distribution. (Ross,1997)

LEMMA 4.1  Assume that random variable W;,W,, .......W, are independently and identically distributed
with an exponential distribution of parameter A,, then the probability density function of Y[~ W; is
Ao(Ao)™
t) = —————e Mt 5

Yn(0) == e )
Denote the cumulative distribution function of Y7, W; is ¥, (¢t), then

D () =20t ©

n=1

Proof.

From Ross(1997), we have

Ao(At)" Aot

P (t) = (n—1)! e ,

then S () =50 f, Ya(t)dt

t w (Aet)™ 1 _
= Jy o Znmi et

= [, A e*ofe~Motdt = Aot
THEOREM 4.1 The expected long- run profit per unit time is given by

A _
(€2 + €9 [Bhes ggima] + —G Bt e - cV - DA - P — G,
A

Z?{;ll#—a + Zg:lm + (N — 1)(1 — P)T

P(N) =

There exists an optimal N* that maximizes the value P(N).

Proof. Since Z,' (i = 1,2,3 ... .. k) are independent and identically distributed with an exponential distribution

Bzzn—l
y .

and shape parameter k, the probability density function of ¥¥_, Z, " is given by

of parameter . Then the probability distribution of ¥, Z,,* is a gamma distribution with scale parameter

—r
Bzzn—l

Ba2™™!

n—1\ k _
L® =g (=) e @20

Hence, the cumulative distribution function of Y¥ , Z,% is given by S, (t) = fot frr(wdu
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Hence,
had t ® 1 ‘32271—1 k i1 _Bzzn—lu
— - Y
kZISk(t) J;;[(k—l)!( ” ) u“le du
. 21’1 1 )k—l
had n-1 21
fz ﬁzz e——zy udu
= (k—l)' 14
t 2n—1 2n—1
_ ([ ] P i
Y Y
Then
+00 N +o
2n—1
dF(B,2" 1) = Zf 2 yn_lt dF (2™ 1t)
n:1 0 =i Yy B2
N +o
Zf tdF (B,2"10) —ZEX z - Q)
=) B2

Hence, the expected long-run profit per unit time is given by

PN) = (C,+C,) [Zﬁ:l#} -G Z,’;’;%#—a —C,(N-1)(1-P)r—C,

U A
Zg 11na+z 1W+(N_1)(1_P)T
Since §; > 0,a < 0, the expected long-run profit per unit time is monotonously increasing when the number N

is small, and the expected long-run profit per unit time is monotonously decreasing when the number N is large,

lim P(N) = —

N-o

Therefore, there exists a maximum value in P(N), or we can find the optimum replacement policy N*, which
maximizes the value of P(N*). This proves the theorem.

5. Numerical example
In this section, we will give example to illustrate the theoretical results of our model.
5.1 SENSITIVITY ANALYSIS FOR THE REPAIR TIMES INFLUENCING THE PROFIT.
If we set B, =0.12, @ =—0.98, 1 =100,u = 1.5,C, = 25,C, = 550, C; = 5000, C, = 250, C¢ = 100,
T =0.25 and P = 0.8 then the optimum number for a replacement will be N = 8 and the corresponding

expected long-run profit per unit time is 793.5185123. The change of value P(N) with repair times N is shown
in Fig.2

(550 + 250) [zn g 1] (25) 22 L — (100)(V — 1)(1 — 0.8)(0.25) — 5000
P(N) = . 15 100

Zn=1 n—0.98 + Z 1‘8 2n-1 + (N 1)(1 - 0. 8)(0 25)
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Tablel. The Expected long run profit per unit time P(N)against the values of B;,N

B N P(N) B N P(N) B N P(N)
0.01 17 798.9677234 018 |6 791.9890702 035 |5 786.2998633
0.02 15 798.1597016 019 |6 791.5637693 036 |5 785.9451144
0.03 13 797.5712148 0.2 6 791.1404507 037 |5 785.5922077
0.04 12 796.9822388 021 |6 790.7191003 038 |4 786.1979390
0.05 11 796.4996127 022 |6 790.2997046 039 |4 785.8798102
0.06 10 796.1197508 023 |6 789.8822496 0.4 4 785.5636999
0.07 10 795.4812676 024 |6 789.4667224 041 |4 785.2495892
0.08 9 795.2517513 025 |5 789.9519309 042 |4 784.9374588
0.09 9 794.6682409 026 |5 789.5779887 043 |4 784.6272905
0.1 8 794.5774170 027 |5 789.2059412 044 |4 784.3190654
0.11 8 794.0469205 028 |5 788.8359206 045 |4 784.0127656
0.12 8 793.5185123 029 |5 788.4678630 046 |4 783.7083729
0.13 7 793.5957192 0.3 5 788.1017516 047 |4 783.4058698
0.14 7 793.1196877 031 |5 787.7375722 048 |4 783.1052385
0.15 7 792.6416764 032 |5 787.3753082 049 |4 782.8664619
0.16 7 792.1676727 033 |5 787.0149457 0.5 4 782.5095226
0.17 7 791.6956640 034 |5 786.6564682

Figurel. The Expected long run profit per unit time P(N)against the values of B;.
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Figure2. The Expected long run profit per unit time P(N)against the values of N.
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The value P(N) increases rapidly when repair times changes from 1 to 8, and then decreases slowly, when

repair times increases. This indicates that the expected long-run profit per unit time is more sensitive to big

values of N™. In case it is not possible to undertake a replacement when repairman reaches N “=8 we can
replace the system after more repairs have been conducted, rather than loss.This is because larger

N"(3<N" <13,say) tends to have greater profit, whereas smaller N” might not have good profits(
(N"<4).

5.2 SENSITIVITY ANALYSIS FOR PERFORMANCE / and N.

If we keep the values of parameters in section 5.1 ,apart from the parameter /3, we obtain results shown in

Tablel. Tablelshows how the optimum repair times N " and the expected long run profit per unit time change
when parameter /3 changes from 0.01 to 0.5. From Tablel, we have the following result.

* We can see that the optimum N " is sensitive to a small change of parameter /3, is smaller than 0.12: the
optimum N change from 17 to 8.The optimum N " becomes stable when B, is larger than 0.12: it changes
from 7 to 4.

* The expected long run profit per unit time for smaller /3, for example changing from 0.01 to 0.12. changes

faster than that for larger ﬂlvs.
6. Conclusions

Searching an optimal replacement point for a system maintained by a repairman with multiple vacations is
of interest and importance. This paper derived the expected long-run profit per unit time for such a system. We
also considered a special scenario where the working times, and vacation times are partial sum process and real
repair times are Alpha series process. A numerical example is given to illustrate the theoretical results of the
model.
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