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Abstract: - For the maintenance of repairable system with a repairman having multiple vacations using two 

monotone processes. If the system fails and the repairman is on vacation, it will wait for repair until the 

repairman is available. Assume the damaged system cannot be repaired “as good as new” and the repairman 

can be repaired immediately with a probability of p, we optimize replacement policy using increasing alpha 

series and decreasing partial sum processes. The explicit expression for the expected profit under replacement 

policy 𝑁 is derived analytically. And we also a numerical example is given to illustrate the theoretical results 

of the model mentioned in this paper. 
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1. Introduction 

             During recent years, with the growing complexity of the modern embedded applications in many real 

time systems viz. computer, communication, electrical power, distributed computing, production, transportation, 

defence systems, etc,. maintaining the system has become a large challenge for the system developers and 

engineers. A repairable system is a system which after failing to perform one or more of its functions 

satisfactorily, can be restored to fully satisfactory performance by any method,rather than the replacement of the 

entire system(Ascher&Feingold,1984).Repair models developed upon successive inter-failure times have been 

employed in many applications such as optimization of maintenance policies, decision making and whole life 

cycle cost analysis. With different repair levels, repair can be broken down into three catagories(Yanez,Joglar & 

modarres,2002): perfect repair, normal repair,and minimal repair. 

         Most of the repairable systems are deteriorative since the age of the system components can neither remain 

uniform for long nor the operating time of the system can be continuous. Due to techno economic constraints, 

the successive working times of the system after repair become shorter and the consecutive repair times after 

failures become longer; then in this situation the replacement is better option instead of providing repair to the 

system. It is realized by the decision makers to choose the optimal number of replacements after providing the 𝑁 

times repair to the failed system; such type of problem is known as optimal replacement policy.In 1988, Lam 

first introduced the geometric process to describe the optimal replacement problem. The geometric process has 

been applied to reliability analysis and maintenance policy optimization for various systems by authors: for 

example, Wu and Clements-Croome(2005), Castro and Peirez-Ocoin(2006),Zhang and Wang (2007), Braun 

Li,and Zhao(2008). 

          The existing research mainly concentrates on the reliability analysis or maintenance optimization with a 

consideration of the behaviours of repairable systems themselves. Little work  has been conducted to consider 



Tuijin Jishu /Journal of Propulsion Technology  
ISSN:1001-4055  
Vol. 44 No. 04 (2023) 
___________________________________________________________________________ 

7109 
 

reliability analysis for a system where the repairman might take a sequence of vacations of random durations 

and a repair on a failure is a normal repair. Here we emphasize that the durations of vacations can be different. 

Such a vacation policy is called a multiple vacation policy, which has attracted attention in queuing theory(for 

example, Lee, 1988; Krisshna,Nadarajan,&Arumuganathan, 1998; Chang &Choi, 2005). 

       The applications of such situations where a repairman can take multiple vacations can be found in practice. 

In some situations, a repairman can have two roles: one for caring a system and one for other duties, which can 

happen in a small/median firm that wants to use the repairman effectively. If the repairman is assigned to look 

after only one system, he might have plenty of idle time. In this paper, vacation can mean period when the 

repairman is on other duties. The repairman can periodically check the status of the system; if the system fails, 

he repairs it; if the system is working, he goes back to the other duties. 

        This paper presents the formulations of the expected long-run profit per unit time for a repairable system 

with a repairman. We assume that the repairman takes multiple vacations. When the system fails, the repairman 

will be called in to bring the system back to a certain state. The time to repair is composed of two different 

periods: waiting and real repair periods. The waiting time starts from the component’s failure to the start to 

repair, and the real repair time is  the time between the start to repair, and the completion of the repair. Both the 

working and real repair times are assumed to be a type of stochastic processes: operating time follows partial 

sum process and repair times follow Alpha series process and the waiting times are subject to a renewal process. 

The probability that a failed system can be immediately repaired is assumed to be p. The expected long- run 

profit per unit time is derived  analytical and a numerical example is given to illustrate the theoretical results of 

the model. Jishen Jia & Shaomin Wu (2013)) introduced and studied a replacement policy for a repairable 

system with its repairman having multiple vacations using geometric processes. In this paper, we shall study a 

maintenance model for a repairable system with its repairman having multiple vacation the successive operating 

times follow a decreasing partial sum process (Babu et al. 2020) and consecutive repair times follow a 

increasing Alpha series  process(Braun et al. (2005). 

DEFINITION 1.1  For a given two random variables 𝑋 and 𝑌, 𝑋 is said to be stochastically larger than 𝑌 (or 𝑌 

is stochastically lessthan 𝑋)  

if  𝑃(𝑋 > 𝑎) ≥ 𝑃(𝑌 > 𝑎) for all real a .This is written as 𝑋 ≥𝑠𝑡 𝑌 or 𝑌 ≤𝑠𝑡 𝑋 

 DEFINITION 1.2 A stochastic process{𝑋𝑛 , 𝑛 = 1,2,3… . . } is said to be stochasticlly increasing (decreasing) 

if 𝑋𝑛 ≤𝑠𝑡 (≥𝑠𝑡)𝑋𝑛+1 for all =1,2,3,.........n  

 DEFINITION 1.3 Let {𝑋𝑛 , 𝑛 = 1,2,3… . . }be a sequence of independent non-negative random variables and 

let 𝐹(𝑥) be the distribution function of 𝑋1.Then {𝑋𝑛 , 𝑛 = 1,2,3… . . } is called a partial sum process, if the 

distribution function of 𝑋𝑛+1 is 𝐹(𝛽𝑛𝑥) , 𝑛 = 1,2,3…where 𝛽𝑛 > 0 are constants with 𝛽𝑛 = 𝛽0 + 𝛽1 + 𝛽2 +
⋯𝛽𝑛−1 and 𝛽0 = 𝛽 > 0 

According to Definition 1.3.We have the following result. 

1. For real  𝛽𝑛(𝑛 = 1,2,3, … … . ) , 𝛽𝑛 = 2𝑛−1𝛽.  

2. The distribution function of 𝑋𝑛+1 is 𝐹(2𝑛−1𝛽)  𝑓𝑜𝑟 𝑛 = 1,2,3, … .. 

3.The density function of  𝑋𝑛+1  is 𝑓𝑛+1(𝑥) =  𝛽𝑛𝑓(𝛽𝑛𝑥). 

4. Let 𝐸(𝑋1) = 𝛾 then for 𝑛 = 1,2,3, … ….     then 𝐸(𝑋𝑛+1 ) =
𝛾

2𝑛−1𝛽
 

5.The partial sum process {𝑋𝑛 , 𝑛 = 1,2,3, … … } with parameter 𝛽(> 0)is stochastically decreasing and 

hence it is a monotone process.  (See e.g. Babu[2020]) 

DEFINITION  1.4   Let {𝑌𝑛 , 𝑛 = 1,2,3… . }  be a sequence of independent, non negative random variables. If 

the distribution function of 𝑌𝑛 is given by 𝐺(𝑛𝛼𝑦) for 𝑛 = 1,2,3… where 𝛼 is a real number .Then {𝑌𝑛 , 𝑛 =
1,2,3… . }  is called an Alpha series process. (See e.g., Braun (2005)) 

According to Definition 1.4, we have  

(i) Given a Alpha series process{𝑌𝑛 , 𝑛 = 1,2,3… . }  
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(a) If 𝛼 > 0 then {𝑌𝑛 , 𝑛 = 1,2,3… . } is a stochastically decreasing sequence. 

(b) If 𝛼 < 0  then {𝑌𝑛 , 𝑛 = 1,2,3… . } is a stochastically increasing sequence. 

(c) If 𝛼 = 0 then {𝑌𝑛 , 𝑛 = 1,2,3… . } is a Renewal process. 

(ii) Let𝐸(𝑌) = 𝜇, 𝑉𝑎𝑟(𝑌) = 𝜎2 then𝐸(𝑌𝑛) =
𝜇

𝑛𝛼.  See e.g. Braun (2005) 

2. Model assumptions  

     We provide the following assumptions for the replacement policy for a repairable system with its repairman 

having multiple vacations. 

ASSUMPTION 2.1   At time 𝑡 = 0, the system is new. 

ASSUMPTION 2.2  The system starts to work at time  𝑡 = 0, and it is maintained by a repairman. The 

repairman takes his first vacation after the system has started. After his vacation ends, there will be two 

situations. 

a. If the system has failed and is waiting for repair, the repairman will repair it. He will then take his 

second vacation after the repair is completed. 

b. If the system is still working, the repairman will take his second vacation. This operating  policy  

continues until a replacement takes place. 

ASSUMPTION 2.3  After the repairman finishes his vacation, the probability that he can immediately repair 

the failed system is 𝑃. Denote 𝑊𝑛 as the working time after the 𝑛 − 𝑡ℎ failure occurs, where {𝑊𝑛 , 𝑛 =
1,2,3… … . . } are i.i.d. with distribution 𝑆(𝑡)   (𝑡 ≥ 0) and 𝜏 = 𝐸𝑊𝑛 < +∞. 

ASSUMPTION 2.4   The time interval from the completion of the (𝑛 − 1) − 𝑡ℎ repair to that of the 𝑛 − 𝑡ℎ 

repair of the system is called the 𝑛 − 𝑡ℎ cycle of the system, where 𝑛 = 1,2,3…….  

Denote the working time and the repair time of the system in the 𝑛 − 𝑡ℎ cycle (𝑛 = 1,2,3… … . ) as 𝑋𝑛 and 𝑌𝑛 

respectively. 

Denote the length of the 𝑖 − 𝑡ℎ vacation during the 𝑛 − 𝑡ℎ cycle as {𝑍𝑛
𝑖 , 𝑛 = 1,2, … . . } 

Denote the cumulative distribution functions of  𝑋𝑛, 𝑌𝑛 , 𝑍𝑛
𝑖 and 𝐹𝑛(𝑥) as 𝐺𝑛(𝑦) and 𝐻𝑛(𝑧), respectively,where 

𝐹𝑛(𝑥) = 𝐹(𝛽12
𝑛−1𝑥), 𝐺𝑛(𝑦) = 𝐺(𝑛𝛼𝑦) and 𝐻𝑛(𝑧) = 𝐻(𝛽22

𝑛−1𝑧). Denote 𝐸(𝑋1) = 𝜆, 𝐸(𝑌1) = 𝜇 and 

𝐸(𝑍1
1) = 𝛾. 

ASSUMPTION 2.5   𝑋𝑛, 𝑌𝑛 , 𝑍𝑛
𝑖 and 𝑊𝑛 (𝑖 = 1,2,3… . 𝑎𝑛𝑑 𝑛 = 1,2,3… … ) are statistically independent. 

ASSUMPTION  2.6   When a replacement is required, a brand new but identical component will be used, and 

the length of a replacement time is negligible. 

ASSUMPTION 2.7  The following costs are considered. 

𝐶1: repair cost per unit time. 

𝐶2: reward per unit time when the system is working. 

𝐶3: Cost incurred for a replacement. 

𝐶4: reward per unit of the repairman when he is taking vacation or other duties, which can produce 

profits for the firm. 

𝐶5: cost per unit time when the system is waiting for repair and 𝐶6: cost per unit time incurred in the 

waiting time after the system has failed. 

3. Expected profit under replacement policy 𝑵 
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Denote  𝜂𝑛 the times of vacations of the repairman during the 𝑛 − 𝑡ℎ cycle of the system. 

Let 𝑇1 be the time before the first replacement, 𝑇𝑛 be the time between the (𝑛 − 1)𝑡ℎ and 𝑛 − 𝑡ℎ replacement 

with 𝑛 = 2,3, … …The process {𝑇𝑛 , 𝑛 = 1,2,3… . }  forms a renewal process. 

Denote 𝑃(𝑁) as the expected long- run profit per unit time under replacement policy 𝑁.  Then we have 

𝑃(𝑁) = lim
𝑡→∞

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 [0, 𝑡]

𝑡
 

Since {𝑇𝑛 , 𝑛 = 1,2,3… . . } is a renewal process. The time between two adjacent replacement is the length for a 

replacement. Hence  

𝑃(𝑁) =
𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑝𝑟𝑜𝑓𝑖𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝑎 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑦𝑐𝑙𝑒 

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑎 𝑐𝑦𝑐𝑙𝑒
 

 

         =
𝐸𝑅

𝐸𝑊
                                                                             (1) 

                                  

LEMMA 3.1  The probability 𝜑𝑛 is given by 

 𝑃(𝜑𝑛 = 𝑘) = ∫ [𝑆𝑘−1(𝑡) − 𝑆𝑘(𝑡)]
+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡),       𝑘 = 1,2, … …𝑎𝑛𝑑 𝑛 = 1,2, … . 𝑁 

and 𝐸𝜑𝑛 = ∫ [∑ 𝑆𝑘(𝑡)
∞
𝑘=1 ]

+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡) where 𝑆𝑘(𝑡) is the cumulative distribution function of ∑ 𝑍𝑛
𝑖  .𝑘

𝑖=1  

Proof.  According to the law of total probability , we have  

𝑃(𝜑𝑛 = 𝑘) = 𝑃 [∑ 𝑍𝑛
𝑖 < 𝑋𝑛

𝑘−1

𝑖=1

< ∑ 𝑍𝑛
𝑖  

𝑘

𝑖=1

] 

= ∫ 𝑃 [∑ 𝑍𝑛
𝑖 < t

𝑘−1

𝑖=1

< ∑𝑍𝑛
𝑖  

𝑘

𝑖=1

, 𝑋𝑛 ≤ 𝑡] 𝑑𝐹(𝛽12
𝑛−1𝑡)

+∞

0

 

                           = ∫ [𝑆𝑘−1(𝑡) − 𝑆𝑘(𝑡)]
+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡) 

and     𝐸𝜑𝑛 = ∑ 𝑘𝑃(𝜑𝑛 = 𝑘)∞
𝑘=1 = ∑ 𝑘 ∫ [𝑆𝑘−1(𝑡) − 𝑆𝑘(𝑡)]

+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡)∞
𝑘=1  

= ∫ ∑ 𝑘[𝑆𝑘−1(𝑡) − 𝑆𝑘(𝑡)]𝑑𝐹(𝛽12
𝑛−1𝑡)

∞

𝑘=1

+∞

0

 

                                          = ∫ [∑ 𝑆𝑘(𝑡)
∞
𝑘=1 ]

+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡) 

From the assumptions, the length of a replacement cycle is given by  

𝑊 = ∑ ∑ 𝑍𝑛
𝑚 + ∑[𝑌𝑖𝐼{𝐴𝑖} + (𝑌𝑖 + 𝑊𝑖)𝐼{𝐵𝑖}]

𝑁−1

𝑖=1

𝜑𝑛

𝑚=1

𝑁

𝑛=1

 

                                       = ∑ 𝑌𝑛
𝑁−1
𝑛=1 + ∑ ∑ 𝑍𝑛

𝑚𝜑𝑛
𝑚=1 + ∑ 𝑊𝑖

𝑁−1
𝑖=1

𝑁
𝑛=1 𝐼{𝐵𝑖} 

where 𝐼(𝐴) = 1 if event  𝐴 occurs, otherwise 0. Denote 𝐴𝑖 ={ the system can be repaired immediately after the 

i-th failure}, and 𝐵𝑖 = { the system can not  be repaired immediately after the i-th failure}. Hence  



Tuijin Jishu /Journal of Propulsion Technology  
ISSN:1001-4055  
Vol. 44 No. 04 (2023) 
___________________________________________________________________________ 

7112 
 

𝐸 [∑ 𝑍𝑛
𝑚

𝜑𝑛

𝑚=1

] = 𝐸 [𝐸 ∑ 𝑍𝑛
𝑚 ∕ 𝜑𝑛

𝜑𝑛

𝑚=1

] 

                                                                   = ∑ [∑ 𝐸(𝑍𝑛
𝑚)𝑘

𝑚=1 ]∞
𝑘=1 𝑃(𝜑𝑛 = 𝑘) 

                                                                   = ∑ ∑
𝛾

𝛽22𝑛−1
𝑘
𝑚=1

∞
𝑘=1  𝑃(𝜑𝑛 = 𝑘) 

                                                                   =
𝛾

𝛽22𝑛−1
∑ 𝑘∞

𝑘=1 𝑃(𝜑𝑛 = 𝑘) 

                          =
𝛾

𝛽22𝑛−1 𝐸(𝜑𝑛) =
𝛾

𝛽22𝑛−1 ∫ [∑ 𝑆𝑘(𝑡)
∞
𝑘=1 ]

+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡) 

and      𝐸[∑ 𝑊𝑖
𝑁−1
𝑖=1 𝐼{𝐵𝑖}] = ∑ 𝐸( 𝑊𝑖

𝑁−1
𝑖=1 𝐼{𝐵𝑖}) = (𝑁 − 1)(1 − 𝑃)𝜏 

where    𝐼{𝐵𝑖} = {
1,               𝐵𝑖  ℎ𝑎𝑑 ℎ𝑎𝑝𝑝𝑒𝑛𝑒𝑑
0,        𝐵𝑖  ℎ𝑎𝑑 𝑛𝑜𝑡 ℎ𝑎𝑝𝑝𝑒𝑛𝑒𝑑

 

The expected time for a replacement is  

𝐸𝑊 = ∑ 𝐸𝑌𝑛

𝑁−1

𝑛=1

+ ∑ 𝐸 [∑ 𝑍𝑛
𝑚

𝜑𝑛

𝑚=1

]

𝑁

𝑛=1

+ ∑ 𝐸[𝑊𝑖𝐼{𝐵𝑖}]

𝑁−1

𝑖=1

 

= ∑
𝜇

𝑛𝛼

𝑁−1

𝑛=1

+ ∑
𝛾

𝛽22
𝑛−1

∫ [∑ 𝑆𝑘(𝑡)

∞

𝑘=1

]

+∞

0

𝑑𝐹(𝛽12
𝑛−1𝑡)

𝑁

𝑛=1

+ (𝑁 − 1)(1 − 𝑃)𝜏                       (2) 

                  

and the profit within a cycle is 

𝑅 = 𝐶2 ∑ 𝑋𝑛

𝑁

𝑛=1

+ 𝐶4 ∑ ∑ 𝑍𝑛
𝑚

𝜑𝑛

𝑚=1

𝑁

𝑛=1

− 𝐶1 ∑ 𝑌𝑛

𝑁−1

𝑛=1

− 𝐶5 ∑ (∑ 𝑍𝑛
𝑚

𝜑𝑛

𝑚=1

− 𝑋𝑛)

𝑁

𝑛=1

− 𝐶6𝐸 [∑ 𝐸[𝑊𝑖𝐼{𝐵𝑖}]

𝑁−1

𝑖=1

] − 𝐶3 

= (𝐶2 + 𝐶5) ∑ 𝑋𝑛

𝑁

𝑛=1

+ (𝐶4 − 𝐶5) ∑ ∑ 𝑍𝑛
𝑚

𝜑𝑛

𝑚=1

𝑁

𝑛=1

− 𝐶1 ∑ 𝑌𝑛

𝑁−1

𝑛=1

− 𝐶6𝐸 [∑ 𝐸[𝑊𝑖𝐼{𝐵𝑖}]

𝑁−1

𝑖=1

] − 𝐶3 

The expected profit within a cycle is given by  

𝐸𝑅 = (𝐶2 + 𝐶5) [𝜆 + ∑
𝜆

𝛽12
𝑛−1

𝑁

𝑛=2

] + (𝐶4 − 𝐶5) [∑
𝛾

𝛽22
𝑛−1

∫ [∑ 𝑆𝑘(𝑡)

∞

𝑘=1

]

+∞

0

𝑑𝐹(𝛽12
𝑛−1𝑡)

𝑁

𝑛=1

] − 𝐶1 ∑
𝜇

𝑛𝛼

𝑁−1

𝑛=1

− 𝐶6(𝑁 − 1)(1 − 𝑃)𝜏 − 𝐶3                                                               (3) 

If we consider equations (1) to (3), we obtain the expected long-run profit per unit time as 

𝑃(𝑁) =

(
(𝐶2 + 𝐶5) [𝜆 + ∑

𝜆
𝛽12

𝑛−1
𝑁
𝑛=2 ] + (𝐶4 − 𝐶5) [∑

𝛾
𝛽22

𝑛−1 ∫ [∑ 𝑆𝑘(𝑡)
∞
𝑘=1 ]

+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡)𝑁
𝑛=1 ]

−𝐶1 ∑
𝜇
𝑛𝛼

𝑁−1
𝑛=1 − 𝐶6(𝑁 − 1)(1 − 𝑃)𝜏 − 𝐶3 

)  

∑
𝜇
𝑛𝛼

𝑁−1
𝑛=1 + ∑

𝛾
𝛽22

𝑛−1 ∫ [∑ 𝑆𝑘(𝑡)
∞
𝑘=1 ]

+∞

0
𝑑𝐹(𝛽12

𝑛−1𝑡)𝑁
𝑛=1 + (𝑁 − 1)(1 − 𝑃)𝜏

      (4) 
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4. Special cases 

We assume that the cumulative distribution functions of 𝑋𝑛, 𝑌𝑛, 𝑍𝑛
𝑖 and 𝑊𝑛 are  

𝐹𝑛(𝑡) = 𝐹(𝛽12
𝑛−1𝑡) = 1 − exp(−𝛽12

𝑛−1𝜆𝑡)         𝑡 ≥ 0,  𝛽1 > 0, 𝜆 > 0,   𝑛 = 1,2,3……   

𝐺𝑛(𝑡) = 𝐺(𝑛𝛼𝑡) = 1 − exp (−𝑛𝛼𝜇𝑡)                         𝑡 ≥ 0,  𝛼 < 0, 𝜇 > 0,   𝑛 = 1,2,3… …   

𝐻𝑛(𝑡) = 𝐻(𝛽22
𝑛−1𝑡) = 1 − exp(−𝛽22

𝑛−1𝛾𝑡)         𝑡 ≥ 0,  𝛽2 > 0, 𝛾 > 0,   𝑛 = 1,2,3……   

and  𝑆(𝑡) = 1 − exp (−
𝑡

𝜏
)     respectively    where 𝑡 ≥ 0 

We assume that 𝑍𝑛
𝑖  (𝑖 = 1,2,3…… 𝑘) are mutually independent.  

The probability density function of ∑ 𝑍𝑛
𝑖𝑘

𝑖=1  is a hypo-exponential distribution. (Ross,1997) 

LEMMA 4.1    Assume that random variable 𝑊1,𝑊2, … … .𝑊𝑛 are independently and identically distributed 

with an exponential distribution of parameter 𝜆0, then the probability density function of    ∑ 𝑊𝑖
𝑛
𝑖=1  is  

𝜓𝑛(𝑡) =
𝜆0(𝜆0𝑡)

𝑛−1

(𝑛 − 1)!
𝑒−𝜆0𝑡                                 (5) 

Denote the cumulative distribution function of ∑ 𝑊𝑖
𝑛
𝑖=1  is 𝜓𝑛(𝑡), then 

∑ 𝜓𝑛(𝑡) =

∞

𝑛=1

𝜆0𝑡                                                    (6) 

Proof.  

       From Ross(1997), we have   

𝜓𝑛(𝑡) =
𝜆0(𝜆0𝑡)

𝑛−1

(𝑛 − 1)!
𝑒−𝜆0𝑡 , 

 then                ∑ 𝜓𝑛(𝑡) =∞
𝑛=1 ∑ ∫ 𝜓𝑛(𝑡)𝑑𝑡

𝑡

0
∞
𝑛=1  

                                           = ∫ 𝜆0 ∑
(𝜆0𝑡)𝑛−1

(𝑛−1)!
𝑒−𝜆0𝑡𝑑𝑡∞

𝑛=1
𝑡

0
     

                                       = ∫ 𝜆0
𝑡

0
𝑒𝜆0𝑡𝑒−𝜆0𝑡𝑑𝑡 = 𝜆0𝑡 

THEOREM 4.1   The expected long- run profit per unit time is given by 

𝑃(𝑁) =

(𝐶2 + 𝐶4) [∑
𝜆

𝛽12
𝑛−1

𝑁
𝑛=1 ] + −𝐶1 ∑

𝜇
𝑛𝛼

𝑁−1
𝑛=1 − 𝐶6(𝑁 − 1)(1 − 𝑃)𝜏 − 𝐶3          

∑
𝜇
𝑛𝛼

𝑁−1
𝑛=1 + ∑

𝜆
𝛽12

𝑛−1
𝑁
𝑛=1 + (𝑁 − 1)(1 − 𝑃)𝜏 

 

There exists an optimal 𝑁∗  that maximizes the value 𝑃(𝑁). 

Proof.  Since 𝑍𝑛
𝑖  (𝑖 = 1,2,3…… 𝑘) are independent and identically distributed with an exponential distribution 

of parameter  
𝛽22𝑛−1

𝛾
. Then the probability distribution of ∑ 𝑍𝑛

𝑖𝑘
𝑖=1  is a gamma distribution with scale parameter  

𝛾

𝛽22𝑛−1 and shape parameter k, the  probability density function  of ∑ 𝑍𝑛
𝑖𝑘

𝑖=1  is given by 

 𝑓𝑘(𝑡) =
1

(𝑘−1)!
( 

𝛽22𝑛−1

𝛾
)

𝑘

𝑡𝑘−1𝑒
− 

𝛽22𝑛−1

𝛾
𝑡
              (𝑡 ≥ 0) 

Hence, the cumulative distribution  function of  ∑ 𝑍𝑛
𝑖𝑘

𝑖=1  is given by 𝑆𝑘(𝑡) = ∫ 𝑓𝑘(𝑢)𝑑𝑢
𝑡

0
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Hence, 

∑ 𝑆𝑘(𝑡) 

∞

𝑘=1

= ∫ ∑ [
1

(𝑘 − 1)!
( 

𝛽22
𝑛−1

𝛾
)

𝑘

𝑢𝑘−1𝑒
− 

𝛽22𝑛−1

𝛾
𝑢
]

∞

𝑘=1

𝑡

0

𝑑𝑢 

= ∫

[
 
 
 
 

∑
( 

𝛽22
𝑛−1

𝛾
𝑢)

𝑘−1

(𝑘 − 1)!

∞

𝑘=1
]
 
 
 
 𝑡

0

𝛽22
𝑛−1

𝛾
𝑒

− 
𝛽22𝑛−1

𝛾
𝑢
𝑑𝑢 

= ∫[
𝛽22

𝑛−1

𝛾
] 𝑑𝑢 =

𝛽22
𝑛−1

𝛾
𝑡

𝑡

0

 

Then  

∑
𝛾

𝛽22
𝑛−1

𝑁

𝑛=1

 ∫ [∑ 𝑆𝑘(𝑡) 

∞

𝑘=1

]

+∞

0

𝑑𝐹(𝛽12
𝑛−1𝑡) = ∑ ∫

𝛽22
𝑛−1

𝛾
 

𝛾

𝛽22
𝑛−1

𝑡 𝑑𝐹(𝛽12
𝑛−1𝑡)

+∞

0

𝑁

𝑛=1

 

= ∑ ∫ 𝑡𝑑𝐹(𝛽12
𝑛−1𝑡)

+∞

0

𝑁

𝑛=1

= ∑ 𝐸𝑋𝑛 

𝑁

𝑛=1

= ∑
 𝜆

𝛽12
𝑛−1

𝑁

𝑛=1

                                               (7) 

      

 Hence, the expected long-run profit per unit time is given by 

𝑃(𝑁) =

(𝐶2 + 𝐶4) [∑
𝜆

𝛽12
𝑛−1

𝑁
𝑛=1 ] − 𝐶1 ∑

𝜇
𝑛𝛼

𝑁−1
𝑛=1 − 𝐶6(𝑁 − 1)(1 − 𝑃)𝜏 − 𝐶3          

∑
𝜇
𝑛𝛼

𝑁−1
𝑛=1 + ∑

𝜆
𝛽12

𝑛−1
𝑁
𝑛=1 + (𝑁 − 1)(1 − 𝑃)𝜏 

 

Since 𝛽1 > 0, 𝛼 < 0, the expected long-run profit per unit time is monotonously increasing when the number 𝑁 

is small, and the expected long-run profit  per unit time is monotonously decreasing when the number 𝑁 is large,     

                                              lim
𝑁→∞

𝑃(𝑁) = −𝐶1  

Therefore, there exists a maximum value in 𝑃(𝑁), or we can find the optimum replacement policy 𝑁∗,  which 

maximizes the value of 𝑃(𝑁∗). This proves the theorem. 

5. Numerical example 

   In this section, we will give example to illustrate the theoretical  results of our model. 

5.1 SENSITIVITY ANALYSIS FOR THE REPAIR TIMES INFLUENCING THE PROFIT. 

If we set 𝛽1 = 0.12,   𝛼 = −0.98,   𝜆 = 100, 𝜇 = 1.5, 𝐶1 = 25, 𝐶2 = 550,   𝐶3 = 5000,   𝐶4 = 250, 𝐶6 = 100,
𝜏 = 0.25  𝑎𝑛𝑑 𝑃 = 0.8  then the optimum number for a replacement will be 𝑁 = 8 and the corresponding 

expected long-run profit per unit time is 793.5185123. The change of value 𝑃(𝑁) with repair times 𝑁 is shown 

in Fig.2 

 

𝑃(𝑁) =

(550 + 250) [∑
100

𝛽12
𝑛−1

𝑁
𝑛=1 ] − (25) ∑

1.5
𝑛−0.98

𝑁−1
𝑛=1 − (100)(𝑁 − 1)(1 − 0.8)(0.25) − 5000          

∑
1.5

𝑛−0.98
𝑁−1
𝑛=1 + ∑

100
𝛽12

𝑛−1
𝑁
𝑛=1 + (𝑁 − 1)(1 − 0.8)(0.25) 
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Table1.  The Expected long run profit per unit time 𝑃(𝑁)against the values  of  𝛽1,𝑁                 

𝛽1 𝑁 𝑃(𝑁) 𝛽1 𝑁 𝑃(𝑁) 𝛽1 𝑁 𝑃(𝑁) 

0.01 17 798.9677234 0.18 6 791.9890702 0.35 5 786.2998633 

0.02 15 798.1597016 0.19 6 791.5637693 0.36 5 785.9451144 

0.03 13 797.5712148 0.2 6 791.1404507 0.37 5 785.5922077 

0.04 12 796.9822388 0.21 6 790.7191003 0.38 4 786.1979390 

0.05 11 796.4996127 0.22 6 790.2997046 0.39 4 785.8798102 

0.06 10 796.1197508 0.23 6 789.8822496 0.4 4 785.5636999 

0.07 10 795.4812676 0.24 6 789.4667224 0.41 4 785.2495892 

0.08 9 795.2517513 0.25 5 789.9519309 0.42 4 784.9374588 

0.09 9 794.6682409 0.26 5 789.5779887 0.43 4 784.6272905 

0.1 8 794.5774170 0.27 5 789.2059412 0.44 4 784.3190654 

0.11 8 794.0469205 0.28 5 788.8359206 0.45 4 784.0127656 

0.12 8 793.5185123 0.29 5 788.4678630 0.46 4 783.7083729 

0.13 7 793.5957192 0.3 5 788.1017516 0.47 4 783.4058698 

0.14 7 793.1196877 0.31 5 787.7375722 0.48 4 783.1052385 

0.15 7 792.6416764 0.32 5 787.3753082 0.49 4 782.8664619 

0.16 7 792.1676727 0.33 5 787.0149457 0.5 4 782.5095226 

0.17 7 791.6956640 0.34 5 786.6564682    

 

Figure1. The Expected long run profit per unit time 𝑃(𝑁)against the values  of  𝛽1. 

 

                                                                                        Figure 1  

     Figure2. The Expected long run profit per unit time 𝑃(𝑁)against the values  of  𝑁. 

 

 

                                                                                         Figure 2  
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The value ( )P N  increases rapidly when repair times changes from 1 to 8, and then decreases slowly, when 

repair times increases. This indicates that the expected long-run profit per unit time is more sensitive to big 

values of 
*.N   In case it is not possible to undertake a replacement when repairman reaches 

*  8=N  we can 

replace the system after more repairs have been conducted, rather than loss.This is because larger 
* *(3 13,say) N N   tends to have greater profit, whereas smaller 

*N  might not have good profits(

*( 4 ).N  

5.2 SENSITIVITY ANALYSIS FOR PERFORMANCE 1     . and N  

If we keep the values of parameters in section 5.1 ,apart from the parameter 1,  we obtain results shown in 

Table1. Table1shows how the optimum repair times 
*N and the expected long run profit per unit time change 

when parameter 1  changes from 0.01 to 0.5. From Table1, we have the following result. 

* We can see that the optimum 
*N is sensitive to a small change of parameter 1  is smaller than 0.12: the 

optimum 
*N  change from 17 to 8.The optimum 

*N becomes stable when 1  is larger than 0.12: it changes  

from 7 to 4. 

*   The expected long run profit per unit time for smaller 1,  for example changing from 0.01 to 0.12. changes 

faster than that for larger 
'

1 . s  

6. Conclusions 

         Searching an optimal replacement point for a system maintained by a repairman with multiple vacations is 

of interest and importance. This paper derived the expected long-run profit per unit time for such a system. We 

also considered a special scenario where the working times, and vacation times are partial sum process and real 

repair times are Alpha series process. A numerical example is given to illustrate the theoretical results of the 

model. 
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