
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

677

Conservative Learning Method for Diabetic

Issues Using Reinforcement Learning &

Brain Strom Optimization

S.anusuya1, Dr. K. Anandapadmanabhan2

RESEARCH SCHOLAR1, ASSOCIATE PROFESSOR2

anuciaa@gmail.com1, kapn0305@gmail.com2

SRI VASAVI COLLEGE, SELF FINANCE WING, ERODE.

Abstract: Promising outcomes are shown when attention-based sequential recommendation techniques

effectively capture the dynamic interests of users in previous interactions. Recent work has started incorporating

reinforcement learning (RL) into these models in addition to improving user representations. We offer a

recommender system (RS) that combines direct user feedback into the compensating format and takes into

account significant features to deliver a more personalized experience, enabling development, by building up

consecutive suggestions for RL problems with compensating signals. Recent RS reinforcement learning systems

integrate Supervised Negative Q Learning (SNQN) and Supervised Superior Actor Critic (SA2C), yet these

issues still exist. For instance, because there aren't many positive compensation signals, Q-value estimates are

typically biased toward negative values.Additionally, the precise timestamp of the sequence has a significant

influence on the Q value. We suggest using contrast-based objectives using Brain Strom optimization in

conjunction with extensions to solve datasets with larger ranges in order to resolve the aforementioned

problems. Furthermore, we are aware that using negative sampling could lead to possible instability problems.

As a result, we present an enhanced strategy to address these issues with greater effectiveness.

Keywords: Reinforcement Learning (RL), recommender systems (RS), Supervised Negative Q-Learning

(SNQN), Supervised Advantage Actor-Critic (SA2C), Brain Strom Optimization.

1. Introduction

Recommendation systems (RS) are now a crucial tool in e-commerce, social networking, and journalism for

introducing products and offering customers personalized content. User interactions with projects usually

happen in a step-by-step fashion. These interactions' order and timing are crucial [1]. Recurrent neural network

(RNN) based models outperform first-generation sequential recommendation systems by a large margin. But in

some cases, such as when dealing with language or time series data, these left-to-right processing models are not

the greatest at capturing the nuances of user activity sequences that do not follow a strict order.In order to

increase suggestion accuracy, recent models like as Transformer take into account bidirectional dependencies

and better grasp the user's preferred operation order. It was discovered that large-scale language models that are

physically comparable to RS transformers, such GPT-4, work well in zero-shot item recommendation processes

[2].

Proposed for reinforcement learning in RS, self-guided reinforcement learning [3] demonstrated encouraging

outcomes on offline evaluation criteria. Self-supervised Actor-Critic (SAC) and Self-supervised Q-learning

(SQN) are the two learning frameworks that have been presented. Using reinforcement learning components as

a kind of normalization to improve recommendation models for specified compensations is the fundamental idea

behind self-supervised reinforcement learning. E-commerce domains, for instance, offer recommendations that

increase sales rather than decrease them. Press [4]. Despite their high performance, SQN and SAC still have

certain drawbacks. SAC weighs the participant (supervised portion) using the output Q-value 2 as a critic. The

Q-value is heavily reliant on the sequence's unique timestamp, which adds more bias to the learning process [5].

mailto:anuciaa@gmail.com1
mailto:kapn0305@gmail.com2

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

678

 Map Speech Q-Learning (SNQN) is the name we give it. Imitation learning in a scenario of scarcity

compensation provides an additional rationale for negative sampling in reinforcement learning [6]. In this

configuration, the RL component of SNQN functions as a strong ranking model that may be utilized to produce

recommendations in addition to being a standardization tool.The "benefits" of positive activities in comparison

to other behaviors can be computed using the sampled negative behaviors and Q-value estimates [7]. Here, the

supervised output layer's weights are added using Supervised Advantage Actor-Critic (SA2C) using this

advantage in place of the initial Q-value. When estimating Q-values, the benefit value can be considered a

normalized Q-value that helps minimize sequence timestamp bias. This contributes in the following ways:

• We investigate the use of sequential reinforcement schemes and contrastive learning objectives, and we

present empirical results on a range of challenging real-world datasets demonstrating their efficacy.

• In line with earlier research, we identified the fundamental problems brought about by the use of negative

work sampling and created Brain to lessen these instabilities when RL training happened. We advise more

cautious objectives and Strom optimization.

In order to identify instabilities that could impair model performance in online deployments, our analysis

emphasizes the necessity of keeping an eye on the training process of reinforcement learning-based models.

When using reinforcement learning, we recommend documenting training progress and tabulating outcomes.

2. Literature Survey

Itinerant Suggestions The goal of sequential suggestions is to ascertain users' preferences from historical

behavior. Markov chain models and latent representation techniques have received the majority of attention in

the past. Convolutional neural networks, recurrent neural networks, and graph neural networks have gained

popularity and become strong foundational models for recommendation systems with the advent of deep

learning. Transformer models have been coupled with RL in sequence recommendation tasks because of their

performance in sequence modeling challenges across multiple domains. SASRec modifies the converter based

on the next forecast made by the recommendation system.By applying weights to various items in a user's past,

the transformer architecture employed in this assignment is able to determine which elements are most pertinent

to the user's current state of affairs. [8] Make better, more personalized recommendations by utilizing BERT.

Bidirectional encoder representations of sensors are incorporated into BERT4Rec [9], which consider that

sequential suggestions could not strictly follow the ordering requirements of the language model.

Comparative Education for Suggestion By bringing comparable occurrences closer to the representation space

and dissimilar instances farther away, contrastive learning seeks to learn data representations. Although

contrastive learning has been extensively researched and demonstrated outstanding performance in computer

vision [11] and natural language processing [12], it has not been thoroughly investigated in recommender

systems. Contrastive learning objectives are included into the SASRec framework by CL4SRec [13]. While

recommendation datasets are used for evaluation, reward-based datasets are not taken into account, and

reinforcement learning is not integrated into our methodology.The graph contrastive learning paradigm [14]

trains embeddings self-guidedly, thereby reducing the randomness of message loss. The model contrasted with

GNN-based recommendation models and multiple matrix factorization is shown in the image.

Additionally, research on slate-based recommendations was done in [15]. This work is regarded as a slate. If

you enable this setting, your workspace will increase significantly. Lastly, from the standpoint of long-term

optimization, the Bandit algorithm is likewise compensation-centric. But the Bandit algorithm believes that

actions have no effect on the state, whereas recommendations have an impact on the user's behavior. RL is a

wise option for RS operation as a result. Imitation learning, which teaches policies via expert demonstrations, is

another similar field.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

679

3. Methods

Recommendation in RL Problem

 Considering the recommendation problem from the standpoint of reinforcement learning offers distinct

insights for user preference modeling and optimization of suggestion strategies. According to this concept, a

recommender system gains knowledge about how to communicate with people and objects by carrying out a

task (making recommendations), watching for rewards that follow (getting feedback from users), and gradually

enhancing its policy. It, based on user profile, context, and interaction history, which products or content to

suggest in response to incoming user queries. The recommendation issue is stated as a Markov decision process,

with a state space S and an action space A, represented by the tuple ▨S, A, P, R.Objects that are recommended

are represented by task aÎA, and interactive objects, or status sÎS, indicate the user's interest. The distribution of

possible transitions that capture st+1 to P(.|st,at) is denoted by P. Lastly, the immediate compensation received

by carrying out action a on state s is represented by reward r(s,a). Map learning and reinforcement learning can

share knowledge thanks to this pattern of base model sharing. The first stage's TD (time difference) error is used

to define the loss of the reinforcement learning component.

𝐿𝑄 = 𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾 max
𝛼𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1 − 𝑄(𝑠𝑡, 𝑎𝑡))
2

]

For each subsequent state-behavior combination, the discounted projected Q value is subtracted from the actual

observed compensated total to determine the TD error. In this approach, learning losses from both teaching and

reinforcement occur simultaneously throughout training.

Supervised Negative Q-learning (SNQN)

 The cross-entropy across the classification distribution can be used to define the supervised training

loss given an input user-item interaction sequence 𝑥1:𝑡 and an existing recommendation model (·).

𝐿𝑠 = − ∑ 𝑦𝑖 log(𝑝𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖
𝑛
𝑖=1 =

𝑒𝑦𝑖

∑ 𝑒
𝑦

𝑖′𝑛
𝑖′=1

(4)

 As soon as the user interacts with the j-th item at the following timestamp, the display function 𝑌 is

declared as 𝑌= 1. If not, 𝑌 = 0. It is clear that the positive logit climbs to greater levels as a result of the cross-

entropy loss. Conversely, cross-entropy loss may result in a negative learning signal by lowering the output

value of objects that have not yet been touched by the user. This is especially helpful in RS situations, where the

primary objective is to rank items according on how probable it is that users would interact with them in the

parent place. We may utilize the latent state s𝑡 for RL training directly as (·) has already encoded the input

sequence. We create an additional output layer that converts the shared base model (·) states into Q-values.

𝑄(𝑠𝑡, 𝑎𝑡) = 𝛿(𝑠𝑡ℎ𝑡
𝑇 + 𝑏) = 𝛿(𝐺(𝑥𝑖:𝑡ℎ𝑡

𝑇 + 𝑏) (5)

where h𝑡 and 𝑏 are the trainable parameters of the Q-learning output layer, and 𝛿 is the activation function.

Negative reward signals are frequently absent when learning from logged implicit feedback data (Hu et al. 2008,

Rendle et al. 2009). As a result, suggestions based just on observed (positive) behaviors cannot be produced

using such output Q values. In Figure 4.4, the supervised negative Q-learning architecture is shown.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

680

Figure 4.4 Learning Framework Architecture of SNQN

To this end, define the one-step time difference (TD) Q-loss of SNQN as:

Lq = Lp (positive TD error)+ Ln (negative TD error) (6)

Consequently, at timestamp 𝑡, the positive action is represented by 𝑎 + 𝑡 and the negative action by 𝑎 − 𝑡. For

negative activities, a constant reward value, 𝑗𝑛, is assigned. Next, using the replay buffer created by the logged

implicit feedback data, train both the supervised loss and the RL loss simultaneously:

𝐿𝑠𝑛𝑞𝑛 = 𝐿𝑠 + 𝐿𝑞 (7)

 For improved learning stability, double Q-learning is applied (Hasselt, 2010), where two copies of the

model parameters are alternatively trained. Thus, recommendations can be produced by the supervised head as

well as the RL head. Research indicates that teaching both heads simultaneously using a common base model

leads to superior performance compared to individual learning.

 Overestimation is another issue with Q-learning techniques, however SQN can help with it. This

approach has been effectively used recently in conjunction with function approximation in the form of SQNs.

The technique, known as SNQN, is a modification of the conventional SQN algorithm to the idea of supervised

Q-Learning. For Q-learning algorithms, the generic weight update rule can be expressed as

𝜃𝑡+1 = 𝜃𝑡 + 𝛼(𝑌𝑡 − 𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡))∇𝜃𝑡
𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡)

The target used in the weight update at step t is denoted by Y_t^Q in this instance. Every algorithm that is given

has a distinct version of this. The objective Y_t^Q for the conventional Q-learning method with a single network

is represented by the following expression:

𝑌𝑡
𝑄 = 𝑅𝑡+1 + 𝛾 max

𝑎
𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡)

The target for SQN can be written as

𝑌𝑡
𝑆𝑄𝑁 = 𝑅𝑡+1 + 𝛾 max

𝑎
𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡

−)

where θ_t^- denotes the target network's parameters, which are copies of the primary network's parameters that

are changed every N^-steps. The aforementioned goal is represented in conventional Supervised Q-learning by

𝑌𝑡
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝑄

= 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, argmax
𝑎

𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡
′)

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

681

 Having two distinct sets of network parameters represented by δ_t and δ_t^'. Both networks alternately

take on different roles during training; that is, one is utilized as the target network and the other to update its

weights at random, resulting in a training that is balanced for both. The objective suggested for the SNQN

strategy, which combines the two predecessors that were previously presented—Y_t^SupervisedQ and

Y_t^SNQN—is the last one that can be utilized. The following can be written for it:

𝑌𝑡
𝑆𝑁𝑄𝑁

= 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, argmax
𝑎

𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡−)

 The technique combines the two approaches to embrace the advantages of Supervised Q-Learning while

maintaining the idea of periodically copying parameters from the main network. While keeping the idea of

replicating the parameters of the main network per N^-steps, it also adopts the important idea from Supervised

Q-Learning, which is to separate the actual value retrieval for S_(t+1) and the selected argmax┬a from the

maximization step.

Supervised Advantage Actor-Critic (SA2C)

RL and supervised learning are combined with the shared base model by SNQN, which also integrates

negative sampling within the RL training process. The sampled actions, which can be viewed as normalized Q-

values, are used by SA2C to determine the benefit of activities in the beginning. On the basis of this advantage

estimate critique, the performer is then reweighted. In RL research, actor-critic (AC) methods have been

successfully used. The actor, the supervised element of the suggested SNQN technique, aims to mimic the

behavior of the logged user. It is simple to respond to the critic's objection by using the output Q-values from

the RL head because they measure the overall benefits the system receives for the state-action pair. These Q-

values are influenced by the exact date of the series. Since Q-values are based on the total gains of all the

following actions in this series, a negative action at the beginning of a long series, for example, may also have a

high Q-value. This benefit can assist us in reducing the bias that the sequence timestamp introduced. Figure 4.5

shows the SA2C architecture.

Figure 4.5 Learning framework architecture of SA2C.

On the other hand, computing the average Q-values over the entire action space would incur extra

computing costs, particularly if the candidate item set is big. Because of this, negative samples are included in

the suggested SNQN techniques. Therefore, a simple method is to approximate the average of the sampled acts

(good and negative instances included). This motivation allows us to define the average Q-values as follows:

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

682

𝑄̅(𝑠𝑡, 𝑎) =
∑ ∈𝑎𝑡

+∩𝑁𝑡𝑄(𝑠𝑡,𝑎′)𝑎′

|𝑁𝑡|+ 1
 (8)

An observed (positive) action's benefit is expressed as follows:

𝐴(𝑠𝑡, 𝑎𝑡
+) = 𝑄(𝑠𝑡 , 𝑎𝑡

+) − 𝑄̅(𝑠𝑡 , 𝑎) (9)

 Next, reweight the actor (i.e., the supervised head) by utilizing this advantage. In the supervised

training process, give more weight to good actions if they outperform the average, and vice versa. When

determining the average and advantage, halt the gradient flow and adjust the Q values to improve stability. Next,

train the reviewer and the actor together. The SA2C training loss is expressed as follows:

𝐿𝑠𝑎2𝑐 = 𝐿𝑎 + 𝐿𝑞 , 𝑤ℎ𝑒𝑟𝑒 𝐿𝑎 = 𝐿𝑠 . 𝐴(𝑠𝑡 , 𝑎𝑡
+) (10)

Q-value learning can be unstable during the training process, especially in the early stages (Parisotto et al.,

2019). With the exception of reweighting Ls and computing advantage, the training process of SA2C is identical

to that of Algorithm 4.2 and involves double Q-learning. Benefit values can be thought of as normalized Q-

values that help reduce the bias that results from overestimating the negative effects on Q-value estimates. The

off-policy learning outlined in the recommendation phase is then implemented by combining this with a

propensity score.

Let M = {S, A, T, R, γ} represent a Markov Decision Process (MDP), where S stands for the state space, A for

the action space, T for the transition dynamics, R for the reward, and γ for the discount factor. The trained

model's output represents the state space of the MDP in the specified active learning context, and the action

consists of subsampling informative cases with generated labels. If the state space is above the positive

threshold, designating the region of interest as a genuine nodule, or below the negative threshold, designating

the sample as normal, then it is deemed informative. The sampling strategy that yields the most expected reward

is the best course of action, or π ∗.

 While there shouldn't be any limitations on the trained model's architecture that would prevent us from

using a SA2C technique, U-Net [2] segmentation network—which offers cutting-edge performance in the field

of medical imaging—was employed. A reward function approximation based on expert demonstration was

created using maximum margin IRL [16] since the U-Net's final performance is unmanageable during the

training rounds. This was utilized to update the A2C network along with validation accuracy.

 We will formalize the agent's interactions with the environment to take advantage of unlabeled data

based on input from the environment, using the provided MDP definition. Like other semi-supervised

algorithms, the proposed model comprises two phases to its training.

Phase 1 (Supervised Learning): 25%, 50%, 75%, and 100% of the available labeled data are used in each of four

training settings to create a U-Net-like model. Following phase 2, the SSRAL training phase, these will be

compared to see how reliable the approach is with fewer labeled data.

In phase 2, the environment that interacts with the agent is the trained model. For the purpose of avoiding

needless information loss due to the final sigmoid activation layer, the state space will be defined as the logit

output of the model.

By the end of the first phase, the state space of the labeled training data and its original labels are used to create

a set of expert demonstrations from the environment. Using the greatest margin IRL, the reward function R∗ is

estimated from the expert's behavior.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

683

In phase 2, the policy is assessed by the critic using the approximation of the reward function. The reward

function itself is not updated iteratively.

Phase 2 (SA2L): Based on the current strategy, which begins with random initialization, a subset of the

unlabeled data is formed and utilized to fine-tune the segmentation network. The long-term payoff at this point

is the validation accuracy r that results. The A2C network's policy and value function are trained to optimize the

long-term reward (r) and the short-term reward (R∗ (s) supplied by the IRL trained in phase 1. R∗ (s) is used to

stabilize learning, which was unstable when it was solely based on r. Using both R∗ (s) and r, the value function

is computed via temporal difference (TD) methods [17].

The policy gradient serves as the basis for the actor's iterative update.

where an objective assessment of the advantage function is represented by the real TD error. It should be

noted that this approach describes a clear relationship between the ultimate performance and the iterative

updates, in contrast to many of the earlier active learning algorithms.

Methodology

Brain Strom Optimization

 Driven by the process of human creative idea generation, or brainstorming, Shi first put forth a

promising swarm-based metaheuristic called BSO. The original BSO has an easy-to-implement design and is

simple to use. In recent years, a variety of challenging issues, such as distributed flow shops, knowledge

spillover concerns, and real-parameter numerical optimization, have been successfully tackled by BSO and its

derivatives. Extensive testing has confirmed that BSO has strong performance to offer an exceptional balance

between exploration and exploitation capabilities.

BSO starts with a population made up of several candidate people, each of whom represents a potential solution

to the optimization issue. After that, it searches for solutions through three stages: clustering, creating, and

selecting. Using a clustering strategy, the population is divided into multiple different clusters during the

clustering phase. The center individual for each cluster is the best individual within it; the other individuals are

considered to be the regular ones. During the generating phase, one or two people from clusters are used to

create new individuals. Every freshly generated person is matched with an already-existing person. A selection

approach is used in the selecting phase to store the superior person from the paired individuals and save it for

the following population. Ultimately, the three stages are repeated until the ideal solution is obtained and a

termination requirement is met.

Recommendation Phase

 In observational studies, propensity scoring is a statistical method that is frequently used to quantify the

efficacy of an intervention by taking into account the factors that predict getting the therapy. The likelihood that

an action will be selected by the behavior policy is frequently equal to the propensity score of that action in the

context of reinforcement learning (Chen et al., 2019a). Propensity score-based off-policy correction in

reinforcement learning and importance sampling (IS) are similar techniques. Both approaches aim to

compensate for the difference between the behavior-generating (data-generating) policy and the target policy.

The expected value under a distribution can be estimated using samples from that distribution and the IS

method.The suggested system's flow is depicted in figure 4.6.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

684

Figure 4.6 Flow of Proposed System

 Inaccurate computation of propensity scores and advantage function estimates can lead to bias.

Furthermore, the previously cited data shows that instability and possible divergence can result from large

volatility in the propensity scores or estimated advantage function. Overly optimistic Q-value estimates could be

the cause of this instability, which is a particular kind of learning process instability. The aforementioned

elements add two families of enhancements to this learning algorithm framework: To address challenges

associated with off-policy training, (1) apply conservative Q-Learning Kumar et al. (2020); (2) add a contrastive

learning target to enhance the quality of learnt representations even more.

Conservative Q-Learning

 Issues may arise when off-policy modifications are made using IS or propensity ratings. A problem

arises when there is a large difference between the target policy and the behavior policy, specifically the high

variation of IS. This happens as a result of the IS ratio become unnecessarily high or low. The propensity score

method may face comparable difficulties. As a result, as seen in Figures 3 and 4, the high variance may cause

instability in the learning process, which in turn may cause the Q-function to diverge. We propose that if the

benefit function and propensity scores are not computed appropriately, then estimating them both may cause

bias. Errors in modeling, estimate, or function approximation can all lead to this bias. Furthermore, the

previously cited data shows that instability and possible divergence can result from large volatility in the

propensity scores or estimated advantage function. Overly optimistic Q-value estimates could be the cause of

this instability, which is a particular kind of learning process instability. Q-values that are overestimated may

result in inaccurate learning and poor policy performance.

Constructed by Kumar et al. (2020), Conservative Q-Learning (CQL) aims to resolve the overestimation issue

that arises often while using Q-learning. With probable out-of-distribution and in-distribution actions (activities

that are included in the dataset) taken into account, the main objective of CQL is to minimize an upper bound on

the policy's expected value. By decreasing the subsequent goal, this is accomplished.

𝐿𝐶𝑄𝐿(𝜃) = 𝐸(𝑠,𝑎,𝑟,𝑠′)~𝐷 [(𝑄𝜃(𝑠, 𝑎) − 𝑟 − 𝛾𝐸𝑎′~𝜋
∅(𝑎′

|𝑠′
)

[𝑄𝜃′(𝑠′, 𝑎′)]) 𝑥2]

+ 𝛼𝐸𝑠~𝐷[log ∑ exp 𝑄𝜃
𝑎

(𝑠, 𝑎) − 𝐸𝑎~𝜋𝛽(𝑎|𝑠)[𝑄(𝑠, 𝑎)]]

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

685

The variables D, θ, ΃′, ϕ, γ, and α represent the fixed dataset, ϕ, the policy parameters, γ, the discount factor,

and α, the temperature parameter that controls the trade-off between the Q-function reduction and the

conservative regularization. Figure 4.7 shows the model architecture for the training process as well as the

connection between Q-learning and the transformer model with recommended objectives.

Figure 4.7 Proposed architectural framework

This method is based on the idea that these missed interactions indicate a collection of things the user is not

interested in. The quality of learned representations is then enhanced through the application of contrastive

learning.

Contrastive Learning with Temporal Augmentations:

Figure 4.8 Contrastive Learning Method.

Learning effective representations is aided by the widely used loss function in contrastive learning, InfoNCE.

Figure 4.8 illustrates the contrastive learning method's strategy. Q stands for question phrases. Context is

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

686

indicated by C, other sentences in the context are indicated by ci, the sentences containing the answer are

indicated by A, and deceptive sentences are shown by V. A pair of positive samples produced via dropout are

represented by two sentences of comparable colors. The contrastive learning module may successfully separate

the response sentence from other sentences, such as deceptive statements, when the model encodes hostile data.

Positive sample pairs (xj, yj) and a set of negative samples (yj, k) are used to compute the objective.

𝐿𝐼𝑛𝑓𝑜𝑁𝐶𝐸 = −
1

𝑀
∑ log

exp (𝑓(𝑥𝑗,𝑦𝑗))

exp(𝑓(𝑥𝑗,𝑦𝑗))+ ∑ exp (𝑓(𝑥𝑗,𝑦𝑗,𝑘))𝐾
𝑘=1

𝑀
𝑗=1 (12)

The similarity between xj and a negative sample is measured by f(xj, yj,k), where f(xj,yj) is the similarity

function between the representations of xj and yj. The number of positive sample pairs is denoted by yj, k, and

M. For every pair of positive samples, K is the number of negative samples.. In order to learn meaningful

representations, the InfoNCE loss seeks to maximize similarity between positive pairings and minimize

similarity between negative pairs. The best way to improve model performance is to combine it with contrastive

learning. With a recommender system that uses a static dataset, this approach is especially helpful in situations

where online interaction is too expensive or impossible. The ultimate goal of optimization becomes:

 L = LCE + ωLQ + LCO + αLCQL (13)

where LQ is the Q-learning, or TD loss, LCE is the cross-entropy loss, LCO is the contrastive objective, and

LCQL is the conservative Q-learning objective.

The suggested algorithm, known as CQL-BSO, effectively combines CQL with BSO to enhance BSO's

performance for the examined problem. The CQL-BSO steps are listed in detail below.

First, 90% of the population should be created at random, and 10% should be generated using the SQN-based

approach.

2. Based on selection probabilities, choose an update strategy for each individual and use various strategies to

update the population.

3. To further enhance its quality, carry out local searches for every individual.

4. Adjust the selection probabilities by QL and start a new iteration if the termination condition is not satisfied;

if it is, the algorithm ends.

5. Enter the QL area. Update the Q-table, award, and system state. After choosing the new action and carrying it

out to modify the probability, move on to step (2).

Results and Discussion

Dataset

 Explain the experiment carried out on five real-world datasets in this section to assess the effectiveness

of the suggested techniques, BSO and CQL. Use of electronic data has allowed for the extraction of useful

information. Patient electronic medical data is a difficult endeavor. Two distinct datasets related to diabetes are

used to simulate the suggested model. The "PIMA INDIAN Diabetes Database" is a dataset gathered from

Indian health organizations, while the electronic version of the "Hospital Frankfurt Germany" is another

diabetes dataset. These datasets were gathered from Kaggle and comprise the Frankfurt dataset, which has 2000

cases, and the PIMA dataset, which contains 768 instances with 9 attributes that are based on the target class of

diabetes. Table 4.1, which is provided below, discusses and describes each quality.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

687

Table 4.1 Feature information about the diabetes disease

Sr.no. Attribute Unit Ranges

1 Age Year 01-120

2 Family History Yes (1), No(0) 0,1

3 Glucose Mg/DI 37-380

4 Skin Thickness Mm 0-210

5 Blood Pressure (BP) Mm, Hg 90-190

6 Pregnancies Number (0 -9) 0-8

7 Insulin uU/ml 0-764

8 BMI Kg/m2 14-80.6

9 Diagnosis result Positive (1) , Negative (0) 1, 1

Baselines

 In order to evaluate the performance of the method in this paper, three baseline methods were used.

SASRec (Wang & Julian, 2018) is a self-attention-based sequential model, which uses an attention mechanism

to identify relevant items for predicting the next item.

SNQN, SA2C (Xin et al., 2022) Baselines SNQN performs a naive negative sampling; SA2C includes

advantage estimations to re-weight the Q-values.

SASRec_AC(Xin et al., 2020) self-supervised reinforcement learning for sequential recommendation tasks. All

models uses SASRec model as base model and use actor-critic framework.

4.5.3 Evaluation Protocols

The purpose of the experiment was to evaluate how well the suggested model could diagnose diabetes.

The information was first gathered from sensors and sent to the feature database via IoMT. Similar to this,

unstructured data about the patient—such as lab reports, inquiries, observations, and medical histories—were

transformed into structured format in order to undergo additional pre-processing. Additionally, the diabetes

datasets from Pima Indians and Hospital Frankfurt Germany were used to train the diabetes illness prediction

model. Xin et al. (2022) proposes a data split that is used to test the performance of the suggested approaches

through an adaptation of cross-validation. Two metrics are used to assess the quality of recommendations: top-k

Normalized Discounted Cumulative Gain (NDCG@k) and top-k Hit Ration (HR@k). A recall-based statistic

called HR @ K determines if the ground truth item appears in the top k positions of the list of recommendations.

The recommendation list's top spots are given greater scores by the rank-sensitive NDCG metric.

 The suggested model's performance as a recommendation system is assessed using precision, recall,

and F1 score. The precision of a forecast can be defined as the ratio of correct positive predictions to total

positive predictions. Recall is defined as the percentage of positive actuals to positive right predictions. The

weighted harmonic average of Precision and Recall is the F1− score. The following is the calculating formula:

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

688

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

F1 =
2 × Precision × Recall

Precision + Recall

Accuracy =
TP + TN

TP + TN + FP + FN

where FP is the number of normal points that were mistakenly recognized as anomaly points, FN is the number

of anomaly points that were mistakenly identified as normal points, and TP is the number of anomaly points that

were successfully detected.

Tabular Results

 The contrastive aim is only applied across data batches as positive and negative items in this case; there

is no negative action sampling. The suggested method uses both the contrastive and conservative aims and

accepts negative action sampling. Throughout the studies, there has been a consistent pattern whereby the

baseline techniques, SA2C and SNQN, initially achieve high accuracy but quickly lose performance as Q-

learning diverges. The performance comparison of several models on the diabetes datasets from Pima Indians

and Hospital Frankfurt, Germany, is shown in tables 4.2 and 4.3.

Table 4.2 Performance comparison of different models on Hospital Frankfurt Germany diabetes dataset

Model Acc (%) Pre (%) Rec (%) F1 (%)

SASRec 69.5 0.53 0.69 0.58

SASRec_AC 65.1 0.62 0.72 0.68

SNQN 79.2 0.75 0.83 0.6

SA2C 82.3 0.78 0.79 0.75

SA2C Smooth Enabled 87.6 0.86 0.85 0.81

Proposed 95.2 0.92 0.91 0.93

Table 4.3 Performance comparison of different models on Pima Indians diabetes dataset

Model Acc (%) Pre (%) Rec (%) F1 (%)

SASRec 75.2 0.62 0.62 0.62

SASRec_AC 74.1 0.71 0.72 0.71

SNQN 80.5 0.69 0.69 0.76

SA2C 72.2 0.75 0.75 0.82

SA2C Smooth Enabled 85.7 0.83 0.83 0.87

Proposed 93.3 0.96 0.96 0.97

 Results of accuracy, precision, recall, and F1 score are displayed in Figures 4.9, 4.10, 4.11, and 4.12,

which assess the suggested model's performance as a recommendation system. These findings indicate that

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

689

higher performance can be attained and stays constant with more negative samples, in contrast to baseline

techniques SNQN and SA2C, which demonstrate performance degradation and divergence.

Figure 4.9 Accuracy

Figure 4.10 Precision

0

10

20

30

40

50

60

70

80

90

100

SASRec SASRec_AC SNQN SA2C SA2C
Smooth
Enabled

Proposed

0

0.2

0.4

0.6

0.8

1

1.2

SASRec SASRec_AC SNQN SA2C SA2C Smooth
Enabled

Proposed

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

690

Figure 4.11 Recall

Figure 4.12 F1Score

Across all studied datasets, the proposed technique performs better than the baseline models. Combining

improvements to the negative sampling process with a sequential contrastive learning aim routinely yields better

results than the baselines. A new study reveals how well contrastive learning may be integrated into

recommender systems. This method enhances the learning capacity of the Q-function in the contrastive

embedding space by offering richer representations of states and actions. As such, it makes it possible to

distinguish between states and actions more precisely. Because Q-learning is conservative, it creates a useful

equilibrium by avoiding overestimating Q-values, which may otherwise result in less-than-ideal policies. This

Q-learning adjustment protects against too optimistic assumptions about the rewards that come with doing

0

0.2

0.4

0.6

0.8

1

1.2

SASRec SASRec_AC SNQN SA2C SA2C Smooth
Enabled

Proposed

0

0.2

0.4

0.6

0.8

1

1.2

SASRec SASRec_AC SNQN SA2C SA2C
Smooth
Enabled

Proposed

Frankfurt

PIMA

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

691

particular things. It is also found that adding negative action sampling greatly improves the model's overall

performance and guarantees stability during RL training.

The suggested approach training framework can successfully enhance recommendation performance, as

evidenced by the experimental findings. It is difficult to foresee human diseases, especially multimodal diabetes,

in order to provide more effective and timely care. Multidisciplinary diabetes is a potentially fatal disorder that

affects many vital human body parts. A suggested methodology is provided to rapidly and effectively forecast

and suggest interdisciplinary diabetes disease in individuals. In addition to effectively predicting and

recommending whether or not the patient has multidisciplinary diabetic illness, the suggested SHRS-M3DP

model can also determine the impact of the following human body parts: Ultimately, the analysis of this

research revealed that, when compared to previously published methods, the suggested model's overall

performance is an impressive 99.6%.

Conclusion

Our study provides new perspectives on how well contrastive learning can be incorporated into recommender

systems. The learning ability of the Q-function in the contrastive embedding space is enhanced by this method,

which offers richer representations of states and actions. As such, it makes it possible to distinguish between

states and actions more precisely. Furthermore, Q-learning's conservative character creates a useful equilibrium

by avoiding overestimation of Q-values, which may otherwise result in less-than-ideal policies. This Q-learning

adjustment protects against too optimistic assumptions about the rewards that come with doing particular

things.Furthermore, we found that adding negative action sampling improves the model's overall performance

and guarantees stability during RL training. This combination represents a significant gain in our understanding

of reinforcement learning and makes a significant contribution to the subject, although not being revolutionary.

References

[1] Afsar, M. M., Crump, T., and Far, B. (2022). Reinforcement learning based recommender systems: A

survey. ACM Computing Surveys, 55(7):1–38.

[2] Zhou, K., Wang, H., Zhao, W. X., Zhu, Y., Wang, S., Zhang, F., Wang, Z., and Wen, J.-R. (2020). S3-rec:

Self-supervised learning for sequential recommendation with mutual information maxi mization. In Proceedings

of the 29th ACM International Conference on Information and Knowledge Management, CIKM ’20, page

1893–1902, New York, NY, USA. Association for Computing Machinery.

[3] Xin, X., Karatzoglou, A., Arapakis, I., and Jose, J. M. (2022). Supervised advantage actor-critic for

recommender systems. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data

Mining, WSDM ’22, page 1186–1196, New York, NY, USA. Association for Computing Machinery.

[4] Xie, X., Sun, F., Liu, Z., Wu, S., Gao, J., Ding, B., and Cui, B. (2020). Contrastive learning for sequential

recommendation. https://arxiv.org/abs/2010.14395.

[5] Xin, X., Karatzoglou, A., Arapakis, I., and Jose, J. (2020). Self-supervised reinforcement learning for

recommender systems. In Proceedings of the 43th International ACM SIGIR Conference on Research and

Development in Information Retrieval (SIGIR ’20).

[6] Tang, J., Drori, Y., Chang, D., Sathiamoorthy, M., Gilmer, J., Wei, L., Yi, X., Hong, L., and Chi, E. H.

(2023). Improving training stability for multitask ranking models in recommender systems. arXiv preprint

arXiv:2302.09178.

[7] Li, J., Zhang, W., Wang, T., Xiong, G., Lu, A., and Medioni, G. (2023). Gpt4rec: A generative framework

for personalized recommendation and user interests interpretation.

[8] Kumar, A., Zhou, A., Tucker, G., and Levine, S. (2020). Conservative q-learning for offline reinforcement

learning. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and Lin, H., editors, Advances in Neural

Information Processing Systems, volume 33, pages 1179–1191. Curran Associates, Inc.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

692

[9] He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. B. (2020). Momentum contrast for unsupervised visual

representation learning. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR

2020, Seattle, WA, USA, June 13-19, 2020, pages 9726–9735. Computer Vision Foundation / IEEE.

[10] Gilmer, J., Ghorbani, B., Garg, A., Kudugunta, S., Neyshabur, B., Cardoze, D., Dahl, G., Nado, Z., and

Firat, O. (2021). A loss curvature perspective on training instability in deep learning. arXiv preprint

arXiv:2110.04369.

[11] Lixin Zou, Long Xia, Zhuoye Ding, Jiaxing Song, Weidong Liu, and Dawei Yin. 2019. Reinforcement

Learning to Optimize Long-term User Engagement in Recommender Systems. arXiv preprint arXiv:1902.05570

(2019)

[12] Christakopoulou, K., Xu, C., Zhang, S., Badam, S., Potter, T., Li, D., Wan, H., Yi, X., Le, Y., Berg, C.,

Dixon, E. B., Chi, E. H., and Chen, M. (2022). Reward shaping for user satisfaction in a reinforce recommender.

[13] Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020). A simple framework for contrastive learning

of visual representations. In International conference on machine learning, pages 1597 1607. PMLR.

[14] Chang, J., Gao, C., Zheng, Y., Hui, Y., Niu, Y., Song, Y., Jin, D., and Li, Y. (2021). Sequential

recommendation with graph neural networks. In Proceedings of the 44th international ACM SIGIR conference

on research and development in information retrieval, pages 378–387.

[15] Gao, T., Yao, X., and Chen, D. (2021). Simcse: Simple contrastive learning of sentence embeddings. In

Moens, M., Huang, X., Specia, L., and Yih, S. W., editors, Proceedings of the 2021 Conference on Empirical

Methods in Natural Language Processing, EMNLP 2021, Virtual Event / Punta Cana, Dominican Republic, 7-11

November, 2021, pages 6894–6910. Association for Computational Linguistics.

