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Abstract: Promising outcomes are shown when attention-based sequential recommendation techniques 

effectively capture the dynamic interests of users in previous interactions. Recent work has started incorporating 

reinforcement learning (RL) into these models in addition to improving user representations. We offer a 

recommender system (RS) that combines direct user feedback into the compensating format and takes into 

account significant features to deliver a more personalized experience, enabling development, by building up 

consecutive suggestions for RL problems with compensating signals. Recent RS reinforcement learning systems 

integrate Supervised Negative Q Learning (SNQN) and Supervised Superior Actor Critic (SA2C), yet these 

issues still exist. For instance, because there aren't many positive compensation signals, Q-value estimates are 

typically biased toward negative values.Additionally, the precise timestamp of the sequence has a significant 

influence on the Q value. We suggest using contrast-based objectives using Brain Strom optimization in 

conjunction with extensions to solve datasets with larger ranges in order to resolve the aforementioned 

problems. Furthermore, we are aware that using negative sampling could lead to possible instability problems. 

As a result, we present an enhanced strategy to address these issues with greater effectiveness. 

Keywords: Reinforcement Learning (RL), recommender systems (RS), Supervised Negative Q-Learning 

(SNQN), Supervised Advantage Actor-Critic (SA2C), Brain Strom Optimization. 

 

1. Introduction 

Recommendation systems (RS) are now a crucial tool in e-commerce, social networking, and journalism for 

introducing products and offering customers personalized content. User interactions with projects usually 

happen in a step-by-step fashion. These interactions' order and timing are crucial [1]. Recurrent neural network 

(RNN) based models outperform first-generation sequential recommendation systems by a large margin. But in 

some cases, such as when dealing with language or time series data, these left-to-right processing models are not 

the greatest at capturing the nuances of user activity sequences that do not follow a strict order.In order to 

increase suggestion accuracy, recent models like as Transformer take into account bidirectional dependencies 

and better grasp the user's preferred operation order. It was discovered that large-scale language models that are 

physically comparable to RS transformers, such GPT-4, work well in zero-shot item recommendation processes 

[2]. 

Proposed for reinforcement learning in RS, self-guided reinforcement learning [3] demonstrated encouraging 

outcomes on offline evaluation criteria. Self-supervised Actor-Critic (SAC) and Self-supervised Q-learning 

(SQN) are the two learning frameworks that have been presented. Using reinforcement learning components as 

a kind of normalization to improve recommendation models for specified compensations is the fundamental idea 

behind self-supervised reinforcement learning. E-commerce domains, for instance, offer recommendations that 

increase sales rather than decrease them. Press [4]. Despite their high performance, SQN and SAC still have 

certain drawbacks. SAC weighs the participant (supervised portion) using the output Q-value 2 as a critic. The 

Q-value is heavily reliant on the sequence's unique timestamp, which adds more bias to the learning process [5]. 
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 Map Speech Q-Learning (SNQN) is the name we give it. Imitation learning in a scenario of scarcity 

compensation provides an additional rationale for negative sampling in reinforcement learning [6]. In this 

configuration, the RL component of SNQN functions as a strong ranking model that may be utilized to produce 

recommendations in addition to being a standardization tool.The "benefits" of positive activities in comparison 

to other behaviors can be computed using the sampled negative behaviors and Q-value estimates [7]. Here, the 

supervised output layer's weights are added using Supervised Advantage Actor-Critic (SA2C) using this 

advantage in place of the initial Q-value. When estimating Q-values, the benefit value can be considered a 

normalized Q-value that helps minimize sequence timestamp bias. This contributes in the following ways: 

• We investigate the use of sequential reinforcement schemes and contrastive learning objectives, and we 

present empirical results on a range of challenging real-world datasets demonstrating their efficacy. 

• In line with earlier research, we identified the fundamental problems brought about by the use of negative 

work sampling and created Brain to lessen these instabilities when RL training happened. We advise more 

cautious objectives and Strom optimization. 

In order to identify instabilities that could impair model performance in online deployments, our analysis 

emphasizes the necessity of keeping an eye on the training process of reinforcement learning-based models. 

When using reinforcement learning, we recommend documenting training progress and tabulating outcomes. 

2. Literature Survey 

 

Itinerant Suggestions The goal of sequential suggestions is to ascertain users' preferences from historical 

behavior. Markov chain models and latent representation techniques have received the majority of attention in 

the past. Convolutional neural networks, recurrent neural networks, and graph neural networks have gained 

popularity and become strong foundational models for recommendation systems with the advent of deep 

learning. Transformer models have been coupled with RL in sequence recommendation tasks because of their 

performance in sequence modeling challenges across multiple domains. SASRec modifies the converter based 

on the next forecast made by the recommendation system.By applying weights to various items in a user's past, 

the transformer architecture employed in this assignment is able to determine which elements are most pertinent 

to the user's current state of affairs. [8] Make better, more personalized recommendations by utilizing BERT. 

Bidirectional encoder representations of sensors are incorporated into BERT4Rec [9], which consider that 

sequential suggestions could not strictly follow the ordering requirements of the language model. 

 

Comparative Education for Suggestion By bringing comparable occurrences closer to the representation space 

and dissimilar instances farther away, contrastive learning seeks to learn data representations. Although 

contrastive learning has been extensively researched and demonstrated outstanding performance in computer 

vision [11] and natural language processing [12], it has not been thoroughly investigated in recommender 

systems. Contrastive learning objectives are included into the SASRec framework by CL4SRec [13]. While 

recommendation datasets are used for evaluation, reward-based datasets are not taken into account, and 

reinforcement learning is not integrated into our methodology.The graph contrastive learning paradigm [14] 

trains embeddings self-guidedly, thereby reducing the randomness of message loss. The model contrasted with 

GNN-based recommendation models and multiple matrix factorization is shown in the image. 

Additionally, research on slate-based recommendations was done in [15]. This work is regarded as a slate. If 

you enable this setting, your workspace will increase significantly. Lastly, from the standpoint of long-term 

optimization, the Bandit algorithm is likewise compensation-centric. But the Bandit algorithm believes that 

actions have no effect on the state, whereas recommendations have an impact on the user's behavior. RL is a 

wise option for RS operation as a result. Imitation learning, which teaches policies via expert demonstrations, is 

another similar field. 
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3. Methods 

Recommendation in RL Problem 

 Considering the recommendation problem from the standpoint of reinforcement learning offers distinct 

insights for user preference modeling and optimization of suggestion strategies. According to this concept, a 

recommender system gains knowledge about how to communicate with people and objects by carrying out a 

task (making recommendations), watching for rewards that follow (getting feedback from users), and gradually 

enhancing its policy. It, based on user profile, context, and interaction history, which products or content to 

suggest in response to incoming user queries. The recommendation issue is stated as a Markov decision process, 

with a state space S and an action space A, represented by the tuple ▨S, A, P, R.Objects that are recommended 

are represented by task aÎA, and interactive objects, or status sÎS, indicate the user's interest. The distribution of 

possible transitions that capture st+1 to P(.|st,at) is denoted by P. Lastly, the immediate compensation received 

by carrying out action a on state s is represented by reward r(s,a). Map learning and reinforcement learning can 

share knowledge thanks to this pattern of base model sharing. The first stage's TD (time difference) error is used 

to define the loss of the reinforcement learning component. 

𝐿𝑄 = 𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾 max
𝛼𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1 − 𝑄(𝑠𝑡, 𝑎𝑡))
2

] 

For each subsequent state-behavior combination, the discounted projected Q value is subtracted from the actual 

observed compensated total to determine the TD error. In this approach, learning losses from both teaching and 

reinforcement occur simultaneously throughout training.  

Supervised Negative Q-learning (SNQN) 

 The cross-entropy across the classification distribution can be used to define the supervised training 

loss given an input user-item interaction sequence 𝑥1:𝑡 and an existing recommendation model (·).  

𝐿𝑠 =  − ∑ 𝑦𝑖 log(𝑝𝑖), 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖
𝑛
𝑖=1 =  

𝑒𝑦𝑖

∑ 𝑒
𝑦

𝑖′𝑛
𝑖′=1

(4) 

  As soon as the user interacts with the j-th item at the following timestamp, the display function 𝑌 is 

declared as 𝑌= 1. If not, 𝑌 = 0. It is clear that the positive logit climbs to greater levels as a result of the cross-

entropy loss. Conversely, cross-entropy loss may result in a negative learning signal by lowering the output 

value of objects that have not yet been touched by the user. This is especially helpful in RS situations, where the 

primary objective is to rank items according on how probable it is that users would interact with them in the 

parent place. We may utilize the latent state s𝑡 for RL training directly as (·) has already encoded the input 

sequence. We create an additional output layer that converts the shared base model (·) states into Q-values. 

𝑄(𝑠𝑡, 𝑎𝑡) = 𝛿(𝑠𝑡ℎ𝑡
𝑇 + 𝑏) = 𝛿(𝐺(𝑥𝑖:𝑡ℎ𝑡

𝑇 + 𝑏)  (5) 

where h𝑡 and 𝑏 are the trainable parameters of the Q-learning output layer, and 𝛿 is the activation function. 

Negative reward signals are frequently absent when learning from logged implicit feedback data (Hu et al. 2008, 

Rendle et al. 2009). As a result, suggestions based just on observed (positive) behaviors cannot be produced 

using such output Q values. In Figure 4.4, the supervised negative Q-learning architecture is shown. 
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Figure 4.4 Learning Framework Architecture of SNQN 

To this end, define the one-step time difference (TD) Q-loss of SNQN as: 

Lq = Lp ( positive TD error)+ Ln ( negative TD error)      (6) 

Consequently, at timestamp 𝑡, the positive action is represented by 𝑎 + 𝑡 and the negative action by 𝑎 − 𝑡. For 

negative activities, a constant reward value, 𝑗𝑛, is assigned. Next, using the replay buffer created by the logged 

implicit feedback data, train both the supervised loss and the RL loss simultaneously:  

𝐿𝑠𝑛𝑞𝑛 = 𝐿𝑠 + 𝐿𝑞   (7) 

 For improved learning stability, double Q-learning is applied (Hasselt, 2010), where two copies of the 

model parameters are alternatively trained. Thus, recommendations can be produced by the supervised head as 

well as the RL head. Research indicates that teaching both heads simultaneously using a common base model 

leads to superior performance compared to individual learning.  

 Overestimation is another issue with Q-learning techniques, however SQN can help with it. This 

approach has been effectively used recently in conjunction with function approximation in the form of SQNs. 

The technique, known as SNQN, is a modification of the conventional SQN algorithm to the idea of supervised 

Q-Learning. For Q-learning algorithms, the generic weight update rule can be expressed as 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼(𝑌𝑡 − 𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡))∇𝜃𝑡
𝑄(𝑆𝑡, 𝐴𝑡; 𝜃𝑡) 

The target used in the weight update at step t is denoted by Y_t^Q in this instance. Every algorithm that is given 

has a distinct version of this. The objective Y_t^Q for the conventional Q-learning method with a single network 

is represented by the following expression: 

𝑌𝑡
𝑄 = 𝑅𝑡+1 + 𝛾 max

𝑎
𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡) 

The target for SQN can be written as 

𝑌𝑡
𝑆𝑄𝑁 = 𝑅𝑡+1 +  𝛾 max

𝑎
𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡

−) 

where θ_t^- denotes the target network's parameters, which are copies of the primary network's parameters that 

are changed every N^-steps. The aforementioned goal is represented in conventional Supervised Q-learning by 

𝑌𝑡
𝑆𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑𝑄

= 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, argmax
𝑎

𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡
′ ) 
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 Having two distinct sets of network parameters represented by δ_t and δ_t^'. Both networks alternately 

take on different roles during training; that is, one is utilized as the target network and the other to update its 

weights at random, resulting in a training that is balanced for both. The objective suggested for the SNQN 

strategy, which combines the two predecessors that were previously presented—Y_t^SupervisedQ and 

Y_t^SNQN—is the last one that can be utilized. The following can be written for it: 

𝑌𝑡
𝑆𝑁𝑄𝑁

= 𝑅𝑡+1 + 𝛾𝑄(𝑆𝑡+1, argmax
𝑎

𝑄(𝑆𝑡+1, 𝑎; 𝜃𝑡); 𝜃𝑡−) 

             The technique combines the two approaches to embrace the advantages of Supervised Q-Learning while 

maintaining the idea of periodically copying parameters from the main network. While keeping the idea of 

replicating the parameters of the main network per N^-steps, it also adopts the important idea from Supervised 

Q-Learning, which is to separate the actual value retrieval for S_(t+1) and the selected argmax┬a from the 

maximization step. 

Supervised Advantage Actor-Critic (SA2C)  

RL and supervised learning are combined with the shared base model by SNQN, which also integrates 

negative sampling within the RL training process. The sampled actions, which can be viewed as normalized Q-

values, are used by SA2C to determine the benefit of activities in the beginning. On the basis of this advantage 

estimate critique, the performer is then reweighted.  In RL research, actor-critic (AC) methods have been 

successfully used. The actor, the supervised element of the suggested SNQN technique, aims to mimic the 

behavior of the logged user. It is simple to respond to the critic's objection by using the output Q-values from 

the RL head because they measure the overall benefits the system receives for the state-action pair. These Q-

values are influenced by the exact date of the series. Since Q-values are based on the total gains of all the 

following actions in this series, a negative action at the beginning of a long series, for example, may also have a 

high Q-value. This benefit can assist us in reducing the bias that the sequence timestamp introduced. Figure 4.5 

shows the SA2C architecture. 

 

Figure 4.5 Learning framework architecture of SA2C. 

On the other hand, computing the average Q-values over the entire action space would incur extra 

computing costs, particularly if the candidate item set is big. Because of this, negative samples are included in 

the suggested SNQN techniques. Therefore, a simple method is to approximate the average of the sampled acts 

(good and negative instances included). This motivation allows us to define the average Q-values as follows:  
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𝑄̅(𝑠𝑡, 𝑎) =  
∑ ∈𝑎𝑡

+∩𝑁𝑡𝑄(𝑠𝑡,𝑎′)𝑎′

|𝑁𝑡|+ 1
 (8) 

An observed (positive) action's benefit is expressed as follows:  

𝐴(𝑠𝑡, 𝑎𝑡
+) =  𝑄(𝑠𝑡 , 𝑎𝑡

+) − 𝑄̅(𝑠𝑡 , 𝑎)  (9) 

 Next, reweight the actor (i.e., the supervised head) by utilizing this advantage. In the supervised 

training process, give more weight to good actions if they outperform the average, and vice versa. When 

determining the average and advantage, halt the gradient flow and adjust the Q values to improve stability. Next, 

train the reviewer and the actor together. The SA2C training loss is expressed as follows:  

𝐿𝑠𝑎2𝑐 = 𝐿𝑎 + 𝐿𝑞  , 𝑤ℎ𝑒𝑟𝑒 𝐿𝑎 =  𝐿𝑠  . 𝐴(𝑠𝑡 , 𝑎𝑡
+)      (10) 

Q-value learning can be unstable during the training process, especially in the early stages (Parisotto et al., 

2019). With the exception of reweighting Ls and computing advantage, the training process of SA2C is identical 

to that of Algorithm 4.2 and involves double Q-learning. Benefit values can be thought of as normalized Q-

values that help reduce the bias that results from overestimating the negative effects on Q-value estimates. The 

off-policy learning outlined in the recommendation phase is then implemented by combining this with a 

propensity score. 

Let M = {S, A, T, R, γ} represent a Markov Decision Process (MDP), where S stands for the state space, A for 

the action space, T for the transition dynamics, R for the reward, and γ for the discount factor. The trained 

model's output represents the state space of the MDP in the specified active learning context, and the action 

consists of subsampling informative cases with generated labels. If the state space is above the positive 

threshold, designating the region of interest as a genuine nodule, or below the negative threshold, designating 

the sample as normal, then it is deemed informative. The sampling strategy that yields the most expected reward 

is the best course of action, or π ∗.  

 While there shouldn't be any limitations on the trained model's architecture that would prevent us from 

using a SA2C technique, U-Net [2] segmentation network—which offers cutting-edge performance in the field 

of medical imaging—was employed. A reward function approximation based on expert demonstration was 

created using maximum margin IRL [16] since the U-Net's final performance is unmanageable during the 

training rounds. This was utilized to update the A2C network along with validation accuracy.  

 We will formalize the agent's interactions with the environment to take advantage of unlabeled data 

based on input from the environment, using the provided MDP definition. Like other semi-supervised 

algorithms, the proposed model comprises two phases to its training.  

Phase 1 (Supervised Learning): 25%, 50%, 75%, and 100% of the available labeled data are used in each of four 

training settings to create a U-Net-like model. Following phase 2, the SSRAL training phase, these will be 

compared to see how reliable the approach is with fewer labeled data.  

In phase 2, the environment that interacts with the agent is the trained model. For the purpose of avoiding 

needless information loss due to the final sigmoid activation layer, the state space will be defined as the logit 

output of the model.  

By the end of the first phase, the state space of the labeled training data and its original labels are used to create 

a set of expert demonstrations from the environment. Using the greatest margin IRL, the reward function R∗ is 

estimated from the expert's behavior. 
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In phase 2, the policy is assessed by the critic using the approximation of the reward function. The reward 

function itself is not updated iteratively.  

Phase 2 (SA2L): Based on the current strategy, which begins with random initialization, a subset of the 

unlabeled data is formed and utilized to fine-tune the segmentation network. The long-term payoff at this point 

is the validation accuracy r that results. The A2C network's policy and value function are trained to optimize the 

long-term reward (r) and the short-term reward (R∗ (s) supplied by the IRL trained in phase 1. R∗ (s) is used to 

stabilize learning, which was unstable when it was solely based on r. Using both R∗ (s) and r, the value function 

is computed via temporal difference (TD) methods [17]. 

 

The policy gradient serves as the basis for the actor's iterative update. 

 

where an objective assessment of the advantage function is represented by the real TD error. It should be 

noted that this approach describes a clear relationship between the ultimate performance and the iterative 

updates, in contrast to many of the earlier active learning algorithms. 

 

Methodology 

Brain Strom Optimization 

 Driven by the process of human creative idea generation, or brainstorming, Shi first put forth a 

promising swarm-based metaheuristic called BSO. The original BSO has an easy-to-implement design and is 

simple to use. In recent years, a variety of challenging issues, such as distributed flow shops, knowledge 

spillover concerns, and real-parameter numerical optimization, have been successfully tackled by BSO and its 

derivatives. Extensive testing has confirmed that BSO has strong performance to offer an exceptional balance 

between exploration and exploitation capabilities. 

BSO starts with a population made up of several candidate people, each of whom represents a potential solution 

to the optimization issue. After that, it searches for solutions through three stages: clustering, creating, and 

selecting. Using a clustering strategy, the population is divided into multiple different clusters during the 

clustering phase. The center individual for each cluster is the best individual within it; the other individuals are 

considered to be the regular ones. During the generating phase, one or two people from clusters are used to 

create new individuals. Every freshly generated person is matched with an already-existing person. A selection 

approach is used in the selecting phase to store the superior person from the paired individuals and save it for 

the following population. Ultimately, the three stages are repeated until the ideal solution is obtained and a 

termination requirement is met. 

 

Recommendation Phase 

  In observational studies, propensity scoring is a statistical method that is frequently used to quantify the 

efficacy of an intervention by taking into account the factors that predict getting the therapy. The likelihood that 

an action will be selected by the behavior policy is frequently equal to the propensity score of that action in the 

context of reinforcement learning (Chen et al., 2019a). Propensity score-based off-policy correction in 

reinforcement learning and importance sampling (IS) are similar techniques. Both approaches aim to 

compensate for the difference between the behavior-generating (data-generating) policy and the target policy. 

The expected value under a distribution can be estimated using samples from that distribution and the IS 

method.The suggested system's flow is depicted in figure 4.6. 
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Figure 4.6 Flow of Proposed System 

 Inaccurate computation of propensity scores and advantage function estimates can lead to bias. 

Furthermore, the previously cited data shows that instability and possible divergence can result from large 

volatility in the propensity scores or estimated advantage function. Overly optimistic Q-value estimates could be 

the cause of this instability, which is a particular kind of learning process instability. The aforementioned 

elements add two families of enhancements to this learning algorithm framework: To address challenges 

associated with off-policy training, (1) apply conservative Q-Learning Kumar et al. (2020); (2) add a contrastive 

learning target to enhance the quality of learnt representations even more. 

Conservative Q-Learning 

 Issues may arise when off-policy modifications are made using IS or propensity ratings. A problem 

arises when there is a large difference between the target policy and the behavior policy, specifically the high 

variation of IS. This happens as a result of the IS ratio become unnecessarily high or low. The propensity score 

method may face comparable difficulties. As a result, as seen in Figures 3 and 4, the high variance may cause 

instability in the learning process, which in turn may cause the Q-function to diverge. We propose that if the 

benefit function and propensity scores are not computed appropriately, then estimating them both may cause 

bias. Errors in modeling, estimate, or function approximation can all lead to this bias. Furthermore, the 

previously cited data shows that instability and possible divergence can result from large volatility in the 

propensity scores or estimated advantage function. Overly optimistic Q-value estimates could be the cause of 

this instability, which is a particular kind of learning process instability. Q-values that are overestimated may 

result in inaccurate learning and poor policy performance. 

Constructed by Kumar et al. (2020), Conservative Q-Learning (CQL) aims to resolve the overestimation issue 

that arises often while using Q-learning. With probable out-of-distribution and in-distribution actions (activities 

that are included in the dataset) taken into account, the main objective of CQL is to minimize an upper bound on 

the policy's expected value. By decreasing the subsequent goal, this is accomplished. 

𝐿𝐶𝑄𝐿(𝜃) =  𝐸(𝑠,𝑎,𝑟,𝑠′)~𝐷 [(𝑄𝜃(𝑠, 𝑎) − 𝑟 − 𝛾𝐸𝑎′~𝜋
∅(𝑎′

|𝑠′
)

[𝑄𝜃′(𝑠′, 𝑎′)]) 𝑥2]

+ 𝛼𝐸𝑠~𝐷[log ∑ exp 𝑄𝜃
𝑎

(𝑠, 𝑎) −  𝐸𝑎~𝜋𝛽(𝑎|𝑠)[𝑄(𝑠, 𝑎)]] 
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The variables D, θ, ΃′, ϕ, γ, and α represent the fixed dataset, ϕ, the policy parameters, γ, the discount factor, 

and α, the temperature parameter that controls the trade-off between the Q-function reduction and the 

conservative regularization. Figure 4.7 shows the model architecture for the training process as well as the 

connection between Q-learning and the transformer model with recommended objectives.  

 

Figure 4.7 Proposed architectural framework  

This method is based on the idea that these missed interactions indicate a collection of things the user is not 

interested in. The quality of learned representations is then enhanced through the application of contrastive 

learning. 

Contrastive Learning with Temporal Augmentations: 

 

Figure 4.8 Contrastive Learning Method. 

Learning effective representations is aided by the widely used loss function in contrastive learning, InfoNCE. 

Figure 4.8 illustrates the contrastive learning method's strategy. Q stands for question phrases. Context is 
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indicated by C, other sentences in the context are indicated by ci, the sentences containing the answer are 

indicated by A, and deceptive sentences are shown by V. A pair of positive samples produced via dropout are 

represented by two sentences of comparable colors. The contrastive learning module may successfully separate 

the response sentence from other sentences, such as deceptive statements, when the model encodes hostile data. 

Positive sample pairs (xj, yj) and a set of negative samples (yj, k) are used to compute the objective. 

𝐿𝐼𝑛𝑓𝑜𝑁𝐶𝐸 =  − 
1

𝑀
∑ log

exp (𝑓(𝑥𝑗,𝑦𝑗))

exp(𝑓(𝑥𝑗,𝑦𝑗))+ ∑ exp (𝑓(𝑥𝑗,𝑦𝑗,𝑘))𝐾
𝑘=1 

𝑀
𝑗=1             (12) 

The similarity between xj and a negative sample is measured by f(xj, yj,k), where f(xj,yj) is the similarity 

function between the representations of xj and yj. The number of positive sample pairs is denoted by yj, k, and 

M. For every pair of positive samples, K is the number of negative samples.. In order to learn meaningful 

representations, the InfoNCE loss seeks to maximize similarity between positive pairings and minimize 

similarity between negative pairs. The best way to improve model performance is to combine it with contrastive 

learning. With a recommender system that uses a static dataset, this approach is especially helpful in situations 

where online interaction is too expensive or impossible. The ultimate goal of optimization becomes: 

 L = LCE + ωLQ + LCO + αLCQL (13) 

where LQ is the Q-learning, or TD loss, LCE is the cross-entropy loss, LCO is the contrastive objective, and 

LCQL is the conservative Q-learning objective. 

The suggested algorithm, known as CQL-BSO, effectively combines CQL with BSO to enhance BSO's 

performance for the examined problem. The CQL-BSO steps are listed in detail below. 

First, 90% of the population should be created at random, and 10% should be generated using the SQN-based 

approach. 

2. Based on selection probabilities, choose an update strategy for each individual and use various strategies to 

update the population. 

3. To further enhance its quality, carry out local searches for every individual. 

4. Adjust the selection probabilities by QL and start a new iteration if the termination condition is not satisfied; 

if it is, the algorithm ends. 

5. Enter the QL area. Update the Q-table, award, and system state. After choosing the new action and carrying it 

out to modify the probability, move on to step (2). 

 

Results and Discussion 

Dataset   

 Explain the experiment carried out on five real-world datasets in this section to assess the effectiveness 

of the suggested techniques, BSO and CQL. Use of electronic data has allowed for the extraction of useful 

information. Patient electronic medical data is a difficult endeavor. Two distinct datasets related to diabetes are 

used to simulate the suggested model. The "PIMA INDIAN Diabetes Database" is a dataset gathered from 

Indian health organizations, while the electronic version of the "Hospital Frankfurt Germany" is another 

diabetes dataset. These datasets were gathered from Kaggle and comprise the Frankfurt dataset, which has 2000 

cases, and the PIMA dataset, which contains 768 instances with 9 attributes that are based on the target class of 

diabetes. Table 4.1, which is provided below, discusses and describes each quality.  
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Table 4.1 Feature information about the diabetes disease 

Sr.no. Attribute Unit Ranges 

1 Age Year 01-120 

2 Family History Yes (1), No(0) 0,1 

3 Glucose Mg/DI 37-380 

4 Skin Thickness Mm 0-210 

5 Blood Pressure (BP) Mm, Hg 90-190 

6 Pregnancies Number (0 -9) 0-8 

7 Insulin uU/ml 0-764 

8 BMI Kg/m2 14-80.6 

9 Diagnosis result Positive (1) , Negative (0) 1, 1 

      

Baselines   

 In order to evaluate the performance of the method in this paper, three baseline methods were used.  

SASRec (Wang & Julian, 2018) is a self-attention-based sequential model, which uses an attention mechanism 

to identify relevant items for predicting the next item. 

SNQN, SA2C (Xin et al., 2022) Baselines SNQN performs a naive negative sampling; SA2C includes 

advantage estimations to re-weight the Q-values. 

SASRec_AC(Xin et al., 2020) self-supervised reinforcement learning for sequential recommendation tasks. All 

models uses SASRec model as base model and use actor-critic framework. 

4.5.3 Evaluation Protocols  

The purpose of the experiment was to evaluate how well the suggested model could diagnose diabetes. 

The information was first gathered from sensors and sent to the feature database via IoMT. Similar to this, 

unstructured data about the patient—such as lab reports, inquiries, observations, and medical histories—were 

transformed into structured format in order to undergo additional pre-processing. Additionally, the diabetes 

datasets from Pima Indians and Hospital Frankfurt Germany were used to train the diabetes illness prediction 

model. Xin et al. (2022) proposes a data split that is used to test the performance of the suggested approaches 

through an adaptation of cross-validation. Two metrics are used to assess the quality of recommendations: top-k 

Normalized Discounted Cumulative Gain (NDCG@k) and top-k Hit Ration (HR@k). A recall-based statistic 

called HR @ K determines if the ground truth item appears in the top k positions of the list of recommendations. 

The recommendation list's top spots are given greater scores by the rank-sensitive NDCG metric. 

 The suggested model's performance as a recommendation system is assessed using precision, recall, 

and F1 score. The precision of a forecast can be defined as the ratio of correct positive predictions to total 

positive predictions. Recall is defined as the percentage of positive actuals to positive right predictions. The 

weighted harmonic average of Precision and Recall is the F1− score. The following is the calculating formula: 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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Recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 =  
2 ×  Precision ×  Recall

Precision +  Recall
 

Accuracy =
TP + TN

TP + TN + FP + FN
 

where FP is the number of normal points that were mistakenly recognized as anomaly points, FN is the number 

of anomaly points that were mistakenly identified as normal points, and TP is the number of anomaly points that 

were successfully detected.  

Tabular Results 

 The contrastive aim is only applied across data batches as positive and negative items in this case; there 

is no negative action sampling. The suggested method uses both the contrastive and conservative aims and 

accepts negative action sampling. Throughout the studies, there has been a consistent pattern whereby the 

baseline techniques, SA2C and SNQN, initially achieve high accuracy but quickly lose performance as Q-

learning diverges. The performance comparison of several models on the diabetes datasets from Pima Indians 

and Hospital Frankfurt, Germany, is shown in tables 4.2 and 4.3. 

Table 4.2 Performance comparison of different models on Hospital Frankfurt Germany diabetes dataset  

Model Acc (%) Pre (%) Rec (%) F1 (%) 

SASRec 69.5 0.53 0.69 0.58 

SASRec_AC 65.1 0.62 0.72 0.68 

SNQN 79.2 0.75 0.83 0.6 

SA2C 82.3 0.78 0.79 0.75 

SA2C Smooth Enabled 87.6 0.86 0.85 0.81 

Proposed  95.2 0.92 0.91 0.93 

 

Table 4.3 Performance comparison of different models on Pima Indians diabetes dataset 

Model Acc (%) Pre (%) Rec (%) F1 (%) 

SASRec 75.2 0.62 0.62 0.62 

SASRec_AC 74.1 0.71 0.72 0.71 

SNQN 80.5 0.69 0.69 0.76 

SA2C 72.2 0.75 0.75 0.82 

SA2C Smooth Enabled 85.7 0.83 0.83 0.87 

Proposed  93.3 0.96 0.96 0.97 

 Results of accuracy, precision, recall, and F1 score are displayed in Figures 4.9, 4.10, 4.11, and 4.12, 

which assess the suggested model's performance as a recommendation system. These findings indicate that 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 5 (2023) 

689 

higher performance can be attained and stays constant with more negative samples, in contrast to baseline 

techniques SNQN and SA2C, which demonstrate performance degradation and divergence. 

 

Figure 4.9 Accuracy 

 

Figure 4.10 Precision 
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Figure 4.11 Recall 

 

Figure 4.12 F1Score 
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particular things. It is also found that adding negative action sampling greatly improves the model's overall 

performance and guarantees stability during RL training.  

The suggested approach training framework can successfully enhance recommendation performance, as 

evidenced by the experimental findings. It is difficult to foresee human diseases, especially multimodal diabetes, 

in order to provide more effective and timely care. Multidisciplinary diabetes is a potentially fatal disorder that 

affects many vital human body parts. A suggested methodology is provided to rapidly and effectively forecast 

and suggest interdisciplinary diabetes disease in individuals. In addition to effectively predicting and 

recommending whether or not the patient has multidisciplinary diabetic illness, the suggested SHRS-M3DP 

model can also determine the impact of the following human body parts: Ultimately, the analysis of this 

research revealed that, when compared to previously published methods, the suggested model's overall 

performance is an impressive 99.6%. 

Conclusion 

Our study provides new perspectives on how well contrastive learning can be incorporated into recommender 

systems. The learning ability of the Q-function in the contrastive embedding space is enhanced by this method, 

which offers richer representations of states and actions. As such, it makes it possible to distinguish between 

states and actions more precisely. Furthermore, Q-learning's conservative character creates a useful equilibrium 

by avoiding overestimation of Q-values, which may otherwise result in less-than-ideal policies. This Q-learning 

adjustment protects against too optimistic assumptions about the rewards that come with doing particular 

things.Furthermore, we found that adding negative action sampling improves the model's overall performance 

and guarantees stability during RL training. This combination represents a significant gain in our understanding 

of reinforcement learning and makes a significant contribution to the subject, although not being revolutionary. 
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