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Abstract: Promising outcomes are shown when attention-based sequential recommendation techniques
effectively capture the dynamic interests of users in previous interactions. Recent work has started incorporating
reinforcement learning (RL) into these models in addition to improving user representations. We offer a
recommender system (RS) that combines direct user feedback into the compensating format and takes into
account significant features to deliver a more personalized experience, enabling development, by building up
consecutive suggestions for RL problems with compensating signals. Recent RS reinforcement learning systems
integrate Supervised Negative Q Learning (SNQN) and Supervised Superior Actor Critic (SA2C), yet these
issues still exist. For instance, because there aren't many positive compensation signals, Q-value estimates are
typically biased toward negative values.Additionally, the precise timestamp of the sequence has a significant
influence on the Q value. We suggest using contrast-based objectives using Brain Strom optimization in
conjunction with extensions to solve datasets with larger ranges in order to resolve the aforementioned
problems. Furthermore, we are aware that using negative sampling could lead to possible instability problems.
As a result, we present an enhanced strategy to address these issues with greater effectiveness.

Keywords: Reinforcement Learning (RL), recommender systems (RS), Supervised Negative Q-Learning

(SNQN), Supervised Advantage Actor-Critic (SA2C), Brain Strom Optimization.

1. Introduction

Recommendation systems (RS) are now a crucial tool in e-commerce, social networking, and journalism for
introducing products and offering customers personalized content. User interactions with projects usually
happen in a step-by-step fashion. These interactions' order and timing are crucial [1]. Recurrent neural network
(RNN) based models outperform first-generation sequential recommendation systems by a large margin. But in
some cases, such as when dealing with language or time series data, these left-to-right processing models are not
the greatest at capturing the nuances of user activity sequences that do not follow a strict order.In order to
increase suggestion accuracy, recent models like as Transformer take into account bidirectional dependencies
and better grasp the user's preferred operation order. It was discovered that large-scale language models that are
physically comparable to RS transformers, such GPT-4, work well in zero-shot item recommendation processes

2.

Proposed for reinforcement learning in RS, self-guided reinforcement learning [3] demonstrated encouraging
outcomes on offline evaluation criteria. Self-supervised Actor-Critic (SAC) and Self-supervised Q-learning
(SQN) are the two learning frameworks that have been presented. Using reinforcement learning components as
a kind of normalization to improve recommendation models for specified compensations is the fundamental idea
behind self-supervised reinforcement learning. E-commerce domains, for instance, offer recommendations that
increase sales rather than decrease them. Press [4]. Despite their high performance, SQN and SAC still have
certain drawbacks. SAC weighs the participant (supervised portion) using the output Q-value 2 as a critic. The
Q-value is heavily reliant on the sequence's unique timestamp, which adds more bias to the learning process [5].
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Map Speech Q-Learning (SNQN) is the name we give it. Imitation learning in a scenario of scarcity
compensation provides an additional rationale for negative sampling in reinforcement learning [6]. In this
configuration, the RL component of SNQN functions as a strong ranking model that may be utilized to produce
recommendations in addition to being a standardization tool.The "benefits" of positive activities in comparison
to other behaviors can be computed using the sampled negative behaviors and Q-value estimates [7]. Here, the
supervised output layer's weights are added using Supervised Advantage Actor-Critic (SA2C) using this
advantage in place of the initial Q-value. When estimating Q-values, the benefit value can be considered a
normalized Q-value that helps minimize sequence timestamp bias. This contributes in the following ways:

e We investigate the use of sequential reinforcement schemes and contrastive learning objectives, and we
present empirical results on a range of challenging real-world datasets demonstrating their efficacy.

o In line with earlier research, we identified the fundamental problems brought about by the use of negative
work sampling and created Brain to lessen these instabilities when RL training happened. We advise more
cautious objectives and Strom optimization.

In order to identify instabilities that could impair model performance in online deployments, our analysis
emphasizes the necessity of keeping an eye on the training process of reinforcement learning-based models.
When using reinforcement learning, we recommend documenting training progress and tabulating outcomes.

2. Literature Survey

Itinerant Suggestions The goal of sequential suggestions is to ascertain users' preferences from historical
behavior. Markov chain models and latent representation techniques have received the majority of attention in
the past. Convolutional neural networks, recurrent neural networks, and graph neural networks have gained
popularity and become strong foundational models for recommendation systems with the advent of deep
learning. Transformer models have been coupled with RL in sequence recommendation tasks because of their
performance in sequence modeling challenges across multiple domains. SASRec modifies the converter based
on the next forecast made by the recommendation system.By applying weights to various items in a user's past,
the transformer architecture employed in this assignment is able to determine which elements are most pertinent
to the user's current state of affairs. [8] Make better, more personalized recommendations by utilizing BERT.
Bidirectional encoder representations of sensors are incorporated into BERT4Rec [9], which consider that
sequential suggestions could not strictly follow the ordering requirements of the language model.

Comparative Education for Suggestion By bringing comparable occurrences closer to the representation space
and dissimilar instances farther away, contrastive learning seeks to learn data representations. Although
contrastive learning has been extensively researched and demonstrated outstanding performance in computer
vision [11] and natural language processing [12], it has not been thoroughly investigated in recommender
systems. Contrastive learning objectives are included into the SASRec framework by CL4SRec [13]. While
recommendation datasets are used for evaluation, reward-based datasets are not taken into account, and
reinforcement learning is not integrated into our methodology.The graph contrastive learning paradigm [14]
trains embeddings self-guidedly, thereby reducing the randomness of message loss. The model contrasted with
GNN-based recommendation models and multiple matrix factorization is shown in the image.

Additionally, research on slate-based recommendations was done in [15]. This work is regarded as a slate. If
you enable this setting, your workspace will increase significantly. Lastly, from the standpoint of long-term
optimization, the Bandit algorithm is likewise compensation-centric. But the Bandit algorithm believes that
actions have no effect on the state, whereas recommendations have an impact on the user's behavior. RL is a
wise option for RS operation as a result. Imitation learning, which teaches policies via expert demonstrations, is
another similar field.
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3. Methods

Recommendation in RL Problem

Considering the recommendation problem from the standpoint of reinforcement learning offers distinct
insights for user preference modeling and optimization of suggestion strategies. According to this concept, a
recommender system gains knowledge about how to communicate with people and objects by carrying out a
task (making recommendations), watching for rewards that follow (getting feedback from users), and gradually
enhancing its policy. It, based on user profile, context, and interaction history, which products or content to
suggest in response to incoming user queries. The recommendation issue is stated as a Markov decision process,
with a state space S and an action space A, represented by the tuple &S, A, P, R.Objects that are recommended
are represented by task alA, and interactive objects, or status sIS, indicate the user's interest. The distribution of
possible transitions that capture st+1 to P(.|st,at) is denoted by P. Lastly, the immediate compensation received
by carrying out action a on state s is represented by reward r(s,a). Map learning and reinforcement learning can
share knowledge thanks to this pattern of base model sharing. The first stage's TD (time difference) error is used
to define the loss of the reinforcement learning component.

2
Lo = E[r(spa) +vy :rxr%iul( Q(St+1:at+1 = Q(se, at)) ]

For each subsequent state-behavior combination, the discounted projected Q value is subtracted from the actual
observed compensated total to determine the TD error. In this approach, learning losses from both teaching and
reinforcement occur simultaneously throughout training.

Supervised Negative Q-learning (SNQN)

The cross-entropy across the classification distribution can be used to define the supervised training
loss given an input user-item interaction sequence x1:t and an existing recommendation model (-).

eYi

ST
i=1

Ly = — ¥, y;log(p;),wherep; =

As soon as the user interacts with the j-th item at the following timestamp, the display function Y is
declared as Y= 1. If not, Y = Q. It is clear that the positive logit climbs to greater levels as a result of the cross-
entropy loss. Conversely, cross-entropy loss may result in a negative learning signal by lowering the output
value of objects that have not yet been touched by the user. This is especially helpful in RS situations, where the
primary objective is to rank items according on how probable it is that users would interact with them in the
parent place. We may utilize the latent state st for RL training directly as (-) has already encoded the input
sequence. We create an additional output layer that converts the shared base model (+) states into Q-values.

Q(se,ar) = 8(s¢hi +b) = 6(G(xichi + b) ()

where ht and b are the trainable parameters of the Q-learning output layer, and & is the activation function.
Negative reward signals are frequently absent when learning from logged implicit feedback data (Hu et al. 2008,
Rendle et al. 2009). As a result, suggestions based just on observed (positive) behaviors cannot be produced
using such output Q values. In Figure 4.4, the supervised negative Q-learning architecture is shown.
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Figure 4.4 Learning Framework Architecture of SNQN
To this end, define the one-step time difference (TD) Q-loss of SNQN as:
Lq = Lp ( positive TD error)+ L, ( negative TD error)  (6)

Consequently, at timestamp t, the positive action is represented by a + t and the negative action by a — t. For
negative activities, a constant reward value, jn, is assigned. Next, using the replay buffer created by the logged
implicit feedback data, train both the supervised loss and the RL loss simultaneously:

Lann =L+ Lq (7)

For improved learning stability, double Q-learning is applied (Hasselt, 2010), where two copies of the
model parameters are alternatively trained. Thus, recommendations can be produced by the supervised head as
well as the RL head. Research indicates that teaching both heads simultaneously using a common base model
leads to superior performance compared to individual learning.

Overestimation is another issue with Q-learning techniques, however SQN can help with it. This
approach has been effectively used recently in conjunction with function approximation in the form of SQNSs.
The technique, known as SNQN, is a modification of the conventional SQN algorithm to the idea of supervised
Q-Learning. For Q-learning algorithms, the generic weight update rule can be expressed as

Ors1 =0 + a(yt —Q(Se, Ay gt))VGtQ(StﬂAt; 0:)

The target used in the weight update at step t is denoted by Y_t*Q in this instance. Every algorithm that is given
has a distinct version of this. The objective Y_t"Q for the conventional Q-learning method with a single network
is represented by the following expression:

Y8 =Re+y max Q(St+1,a; 6¢)

The target for SQN can be written as

YtsQN — Rt+1 + yma?XQ(SHl'a; Qt_)

where 0_t*- denotes the target network's parameters, which are copies of the primary network's parameters that
are changed every N”-steps. The aforementioned goal is represented in conventional Supervised Q-learning by

yUPETVISeAC = Ry 1+ ¥Q(Serr, argmax Q(Sps 1, ; 6,); 67)
a
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Having two distinct sets of network parameters represented by & t and 3 t"'. Both networks alternately
take on different roles during training; that is, one is utilized as the target network and the other to update its
weights at random, resulting in a training that is balanced for both. The objective suggested for the SNQN
strategy, which combines the two predecessors that were previously presented—Y_t"SupervisedQ and
Y_t"SNQN—is the last one that can be utilized. The following can be written for it:

YN = Ryt + ¥Q(Sesr, argmax Q(Seiq, @; 6,); 6,-)
a

The technique combines the two approaches to embrace the advantages of Supervised Q-Learning while
maintaining the idea of periodically copying parameters from the main network. While keeping the idea of
replicating the parameters of the main network per N”-steps, it also adopts the important idea from Supervised
Q-Learning, which is to separate the actual value retrieval for S_(t+1) and the selected argmaxa from the
maximization step.

Supervised Advantage Actor-Critic (SA2C)

RL and supervised learning are combined with the shared base model by SNQN, which also integrates
negative sampling within the RL training process. The sampled actions, which can be viewed as normalized Q-
values, are used by SA2C to determine the benefit of activities in the beginning. On the basis of this advantage
estimate critique, the performer is then reweighted. In RL research, actor-critic (AC) methods have been
successfully used. The actor, the supervised element of the suggested SNQN technique, aims to mimic the
behavior of the logged user. It is simple to respond to the critic's objection by using the output Q-values from
the RL head because they measure the overall benefits the system receives for the state-action pair. These Q-
values are influenced by the exact date of the series. Since Q-values are based on the total gains of all the
following actions in this series, a negative action at the beginning of a long series, for example, may also have a
high Q-value. This benefit can assist us in reducing the bias that the sequence timestamp introduced. Figure 4.5
shows the SA2C architecture.

actor critic
CE x A(s;,a]) + TD error updates
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—
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Figure 4.5 Learning framework architecture of SA2C.

On the other hand, computing the average Q-values over the entire action space would incur extra
computing costs, particularly if the candidate item set is big. Because of this, negative samples are included in
the suggested SNQN techniques. Therefore, a simple method is to approximate the average of the sampled acts

(good and negative instances included). This motivation allows us to define the average Q-values as follows:
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o/€ai NNQ(sp,a')
N[+ 1

Aspa) = = (8)

An observed (positive) action's benefit is expressed as follows:

A(sy, a;r) = Q(s¢, a;’) - (_?(St;a) ©9)

Next, reweight the actor (i.e., the supervised head) by utilizing this advantage. In the supervised
training process, give more weight to good actions if they outperform the average, and vice versa. When
determining the average and advantage, halt the gradient flow and adjust the Q values to improve stability. Next,
train the reviewer and the actor together. The SA2C training loss is expressed as follows:

Lsgzc = Lq+ Lg,where Ly = Lg . A(sp,af)  (10)

Q-value learning can be unstable during the training process, especially in the early stages (Parisotto et al.,
2019). With the exception of reweighting Ls and computing advantage, the training process of SA2C is identical
to that of Algorithm 4.2 and involves double Q-learning. Benefit values can be thought of as normalized Q-
values that help reduce the bias that results from overestimating the negative effects on Q-value estimates. The
off-policy learning outlined in the recommendation phase is then implemented by combining this with a
propensity score.

Let M= {S, A, T, R, y} represent a Markov Decision Process (MDP), where S stands for the state space, A for
the action space, T for the transition dynamics, R for the reward, and y for the discount factor. The trained
model's output represents the state space of the MDP in the specified active learning context, and the action
consists of subsampling informative cases with generated labels. If the state space is above the positive
threshold, designating the region of interest as a genuine nodule, or below the negative threshold, designating
the sample as normal, then it is deemed informative. The sampling strategy that yields the most expected reward
is the best course of action, or 7 *.

While there shouldn't be any limitations on the trained model's architecture that would prevent us from
using a SA2C technique, U-Net [2] segmentation network—which offers cutting-edge performance in the field
of medical imaging—was employed. A reward function approximation based on expert demonstration was
created using maximum margin IRL [16] since the U-Net's final performance is unmanageable during the
training rounds. This was utilized to update the A2C network along with validation accuracy.

We will formalize the agent's interactions with the environment to take advantage of unlabeled data
based on input from the environment, using the provided MDP definition. Like other semi-supervised
algorithms, the proposed model comprises two phases to its training.

Phase 1 (Supervised Learning): 25%, 50%, 75%, and 100% of the available labeled data are used in each of four
training settings to create a U-Net-like model. Following phase 2, the SSRAL training phase, these will be
compared to see how reliable the approach is with fewer labeled data.

In phase 2, the environment that interacts with the agent is the trained model. For the purpose of avoiding
needless information loss due to the final sigmoid activation layer, the state space will be defined as the logit
output of the model.

By the end of the first phase, the state space of the labeled training data and its original labels are used to create
a set of expert demonstrations from the environment. Using the greatest margin IRL, the reward function Rx is
estimated from the expert's behavior.

- .
EDY A'R(s)"|="] = E[>_A'R(s,)*|x] v

t=I0) t=l}
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In phase 2, the policy is assessed by the critic using the approximation of the reward function. The reward
function itself is not updated iteratively.

Phase 2 (SA2L): Based on the current strategy, which begins with random initialization, a subset of the
unlabeled data is formed and utilized to fine-tune the segmentation network. The long-term payoff at this point
is the validation accuracy r that results. The A2C network's policy and value function are trained to optimize the
long-term reward (r) and the short-term reward (R+ (s) supplied by the IRL trained in phase 1. Rx (S) is used to
stabilize learning, which was unstable when it was solely based on r. Using both Rx (s) and r, the value function
is computed via temporal difference (TD) methods [17].

a0 = B*(s) + V™ (") — V™(s)
The policy gradient serves as the basis for the actor's iterative update.
=0+ aVylogmry(s. a)),(s a)

where an objective assessment of the advantage function is represented by the real TD error. It should be
noted that this approach describes a clear relationship between the ultimate performance and the iterative
updates, in contrast to many of the earlier active learning algorithms.

Methodology
Brain Strom Optimization

Driven by the process of human creative idea generation, or brainstorming, Shi first put forth a

promising swarm-based metaheuristic called BSO. The original BSO has an easy-to-implement design and is
simple to use. In recent years, a variety of challenging issues, such as distributed flow shops, knowledge
spillover concerns, and real-parameter numerical optimization, have been successfully tackled by BSO and its
derivatives. Extensive testing has confirmed that BSO has strong performance to offer an exceptional balance
between exploration and exploitation capabilities.
BSO starts with a population made up of several candidate people, each of whom represents a potential solution
to the optimization issue. After that, it searches for solutions through three stages: clustering, creating, and
selecting. Using a clustering strategy, the population is divided into multiple different clusters during the
clustering phase. The center individual for each cluster is the best individual within it; the other individuals are
considered to be the regular ones. During the generating phase, one or two people from clusters are used to
create new individuals. Every freshly generated person is matched with an already-existing person. A selection
approach is used in the selecting phase to store the superior person from the paired individuals and save it for
the following population. Ultimately, the three stages are repeated until the ideal solution is obtained and a
termination requirement is met.

Recommendation Phase

In observational studies, propensity scoring is a statistical method that is frequently used to quantify the
efficacy of an intervention by taking into account the factors that predict getting the therapy. The likelihood that
an action will be selected by the behavior policy is frequently equal to the propensity score of that action in the
context of reinforcement learning (Chen et al., 2019a). Propensity score-based off-policy correction in
reinforcement learning and importance sampling (IS) are similar techniques. Both approaches aim to
compensate for the difference between the behavior-generating (data-generating) policy and the target policy.
The expected value under a distribution can be estimated using samples from that distribution and the IS
method. The suggested system's flow is depicted in figure 4.6.
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Inaccurate computation of propensity scores and advantage function estimates can lead to bias.
Furthermore, the previously cited data shows that instability and possible divergence can result from large
volatility in the propensity scores or estimated advantage function. Overly optimistic Q-value estimates could be
the cause of this instability, which is a particular kind of learning process instability. The aforementioned
elements add two families of enhancements to this learning algorithm framework: To address challenges
associated with off-policy training, (1) apply conservative Q-Learning Kumar et al. (2020); (2) add a contrastive
learning target to enhance the quality of learnt representations even more.

Conservative Q-Learning

Issues may arise when off-policy modifications are made using IS or propensity ratings. A problem
arises when there is a large difference between the target policy and the behavior policy, specifically the high
variation of IS. This happens as a result of the IS ratio become unnecessarily high or low. The propensity score
method may face comparable difficulties. As a result, as seen in Figures 3 and 4, the high variance may cause
instability in the learning process, which in turn may cause the Q-function to diverge. We propose that if the
benefit function and propensity scores are not computed appropriately, then estimating them both may cause
bias. Errors in modeling, estimate, or function approximation can all lead to this bias. Furthermore, the
previously cited data shows that instability and possible divergence can result from large volatility in the
propensity scores or estimated advantage function. Overly optimistic Q-value estimates could be the cause of
this instability, which is a particular kind of learning process instability. Q-values that are overestimated may
result in inaccurate learning and poor policy performance.

Constructed by Kumar et al. (2020), Conservative Q-Learning (CQL) aims to resolve the overestimation issue
that arises often while using Q-learning. With probable out-of-distribution and in-distribution actions (activities
that are included in the dataset) taken into account, the main objective of CQL is to minimize an upper bound on
the policy's expected value. By decreasing the subsequent goal, this is accomplished.

LCQL(H) = E(S,a,r,s')~D [(QQ(S, a)—r— YEy n [QQ’(SI; al)]> xz]

o(a’|s")

+aEs.p [logz exp Qp (5,a) = Eqnpais)[Q(s, a)l]
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The variables D, 0, [1', ¢, v, and a represent the fixed dataset, ¢, the policy parameters, v, the discount factor,
and «, the temperature parameter that controls the trade-off between the Q-function reduction and the
conservative regularization. Figure 4.7 shows the model architecture for the training process as well as the
connection between Q-learning and the transformer model with recommended objectives.
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Figure 4.7 Proposed architectural framework
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This method is based on the idea that these missed interactions indicate a collection of things the user is not
interested in. The quality of learned representations is then enhanced through the application of contrastive

learning.

Contrastive Learning with Temporal Augmentations:
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Figure 4.8 Contrastive Learning Method.

Learning effective representations is aided by the widely used loss function in contrastive learning, InfoNCE.
Figure 4.8 illustrates the contrastive learning method's strategy. Q stands for question phrases. Context is

685



Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 5 (2023)

indicated by C, other sentences in the context are indicated by ci, the sentences containing the answer are
indicated by A, and deceptive sentences are shown by V. A pair of positive samples produced via dropout are
represented by two sentences of comparable colors. The contrastive learning module may successfully separate
the response sentence from other sentences, such as deceptive statements, when the model encodes hostile data.
Positive sample pairs (Xj, yj) and a set of negative samples (yj, K) are used to compute the objective.

exp (f(xj.¥;))
exp(f(x}:75))+ Ty exp (F(xj¥ 1))

1
Linfonce = — EZ}illog (12)

The similarity between xj and a negative sample is measured by f(xj, yj,k), where f(xj,yj) is the similarity
function between the representations of xj and yj. The number of positive sample pairs is denoted by yj, k, and
M. For every pair of positive samples, K is the number of negative samples.. In order to learn meaningful
representations, the INfoNCE loss seeks to maximize similarity between positive pairings and minimize
similarity between negative pairs. The best way to improve model performance is to combine it with contrastive
learning. With a recommender system that uses a static dataset, this approach is especially helpful in situations
where online interaction is too expensive or impossible. The ultimate goal of optimization becomes:

L =Lce+ wlq + Lco + alcqL (13)

where LQ is the Q-learning, or TD loss, LCE is the cross-entropy loss, LCO is the contrastive objective, and
LCQL is the conservative Q-learning objective.

The suggested algorithm, known as CQL-BSO, effectively combines CQL with BSO to enhance BSO's
performance for the examined problem. The CQL-BSO steps are listed in detail below.

First, 90% of the population should be created at random, and 10% should be generated using the SQN-based
approach.

2. Based on selection probabilities, choose an update strategy for each individual and use various strategies to
update the population.

3. To further enhance its quality, carry out local searches for every individual.

4. Adjust the selection probabilities by QL and start a new iteration if the termination condition is not satisfied;
if it is, the algorithm ends.

5. Enter the QL area. Update the Q-table, award, and system state. After choosing the new action and carrying it
out to modify the probability, move on to step (2).

Results and Discussion
Dataset

Explain the experiment carried out on five real-world datasets in this section to assess the effectiveness
of the suggested techniques, BSO and CQL. Use of electronic data has allowed for the extraction of useful
information. Patient electronic medical data is a difficult endeavor. Two distinct datasets related to diabetes are
used to simulate the suggested model. The "PIMA INDIAN Diabetes Database" is a dataset gathered from
Indian health organizations, while the electronic version of the "Hospital Frankfurt Germany" is another
diabetes dataset. These datasets were gathered from Kaggle and comprise the Frankfurt dataset, which has 2000
cases, and the PIMA dataset, which contains 768 instances with 9 attributes that are based on the target class of
diabetes. Table 4.1, which is provided below, discusses and describes each quality.
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Table 4.1 Feature information about the diabetes disease

Sr.no. Attribute Unit Ranges

1 Age Year 01-120
2 Family History Yes (1), No(0) 0,1

3 Glucose Mg/DlI 37-380
4 Skin Thickness Mm 0-210
5 Blood Pressure (BP) Mm, Hg 90-190
6 Pregnancies Number (0 -9) 0-8

7 Insulin ul/ml 0-764
8 BMI Kg/m? 14-80.6
9 Diagnosis result Positive (1) , Negative (0) 1,1

Baselines

In order to evaluate the performance of the method in this paper, three baseline methods were used.

SASRec (Wang & Julian, 2018) is a self-attention-based sequential model, which uses an attention mechanism
to identify relevant items for predicting the next item.

SNQN, SA2C (Xin et al., 2022) Baselines SNQN performs a naive negative sampling; SA2C includes
advantage estimations to re-weight the Q-values.

SASRec_AC(Xin et al., 2020) self-supervised reinforcement learning for sequential recommendation tasks. All
models uses SASRec model as base model and use actor-critic framework.

4.5.3 Evaluation Protocols

The purpose of the experiment was to evaluate how well the suggested model could diagnose diabetes.
The information was first gathered from sensors and sent to the feature database via IoMT. Similar to this,
unstructured data about the patient—such as lab reports, inquiries, observations, and medical histories—were
transformed into structured format in order to undergo additional pre-processing. Additionally, the diabetes
datasets from Pima Indians and Hospital Frankfurt Germany were used to train the diabetes illness prediction
model. Xin et al. (2022) proposes a data split that is used to test the performance of the suggested approaches
through an adaptation of cross-validation. Two metrics are used to assess the quality of recommendations: top-k
Normalized Discounted Cumulative Gain (NDCG@k) and top-k Hit Ration (HR@Xk). A recall-based statistic
called HR @ K determines if the ground truth item appears in the top k positions of the list of recommendations.
The recommendation list's top spots are given greater scores by the rank-sensitive NDCG metric.

The suggested model's performance as a recommendation system is assessed using precision, recall,
and F1 score. The precision of a forecast can be defined as the ratio of correct positive predictions to total
positive predictions. Recall is defined as the percentage of positive actuals to positive right predictions. The
weighted harmonic average of Precision and Recall is the F1— score. The following is the calculating formula:

precision = TP
recision = TP + FP
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TP

Recall = TP+—FN

Fl = 2 X Precision X Recall

Precision + Recall

R _ TP + TN
COUraACY = TP ¥ TN + FP + FN

where FP is the number of normal points that were mistakenly recognized as anomaly points, FN is the number
of anomaly points that were mistakenly identified as normal points, and TP is the number of anomaly points that
were successfully detected.

Tabular Results

The contrastive aim is only applied across data batches as positive and negative items in this case; there
is no negative action sampling. The suggested method uses both the contrastive and conservative aims and
accepts negative action sampling. Throughout the studies, there has been a consistent pattern whereby the
baseline techniques, SA2C and SNQN, initially achieve high accuracy but quickly lose performance as Q-
learning diverges. The performance comparison of several models on the diabetes datasets from Pima Indians
and Hospital Frankfurt, Germany, is shown in tables 4.2 and 4.3.

Table 4.2 Performance comparison of different models on Hospital Frankfurt Germany diabetes dataset

Model Acc (%) Pre (%) Rec (%) F1 (%)
SASRec 69.5 0.53 0.69 0.58
SASRec_AC 65.1 0.62 0.72 0.68
SNQON 79.2 0.75 0.83 0.6
SA2C 82.3 0.78 0.79 0.75
SA2C Smooth Enabled 87.6 0.86 0.85 0.81
Proposed 95.2 0.92 0.91 0.93

Table 4.3 Performance comparison of different models on Pima Indians diabetes dataset

Model Acc (%) Pre (%) Rec (%) F1 (%)
SASRec 75.2 0.62 0.62 0.62
SASRec_AC 74.1 0.71 0.72 0.71
SNQON 80.5 0.69 0.69 0.76
SA2C 72.2 0.75 0.75 0.82
SA2C Smooth Enabled 85.7 0.83 0.83 0.87
Proposed 93.3 0.96 0.96 0.97

Results of accuracy, precision, recall, and F1 score are displayed in Figures 4.9, 4.10, 4.11, and 4.12,
which assess the suggested model's performance as a recommendation system. These findings indicate that
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higher performance can be attained and stays constant with more negative samples, in contrast to baseline
techniques SNQN and SA2C, which demonstrate performance degradation and divergence.
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Figure 4.10 Precision
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Figure 4.12 F1Score

Across all studied datasets, the proposed technique performs better than the baseline models. Combining
improvements to the negative sampling process with a sequential contrastive learning aim routinely yields better
results than the baselines. A new study reveals how well contrastive learning may be integrated into
recommender systems. This method enhances the learning capacity of the Q-function in the contrastive
embedding space by offering richer representations of states and actions. As such, it makes it possible to
distinguish between states and actions more precisely. Because Q-learning is conservative, it creates a useful
equilibrium by avoiding overestimating Q-values, which may otherwise result in less-than-ideal policies. This
Q-learning adjustment protects against too optimistic assumptions about the rewards that come with doing
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particular things. It is also found that adding negative action sampling greatly improves the model's overall
performance and guarantees stability during RL training.

The suggested approach training framework can successfully enhance recommendation performance, as
evidenced by the experimental findings. It is difficult to foresee human diseases, especially multimodal diabetes,
in order to provide more effective and timely care. Multidisciplinary diabetes is a potentially fatal disorder that
affects many vital human body parts. A suggested methodology is provided to rapidly and effectively forecast
and suggest interdisciplinary diabetes disease in individuals. In addition to effectively predicting and
recommending whether or not the patient has multidisciplinary diabetic illness, the suggested SHRS-M3DP
model can also determine the impact of the following human body parts: Ultimately, the analysis of this
research revealed that, when compared to previously published methods, the suggested model's overall
performance is an impressive 99.6%.

Conclusion

Our study provides new perspectives on how well contrastive learning can be incorporated into recommender
systems. The learning ability of the Q-function in the contrastive embedding space is enhanced by this method,
which offers richer representations of states and actions. As such, it makes it possible to distinguish between
states and actions more precisely. Furthermore, Q-learning's conservative character creates a useful equilibrium
by avoiding overestimation of Q-values, which may otherwise result in less-than-ideal policies. This Q-learning
adjustment protects against too optimistic assumptions about the rewards that come with doing particular
things.Furthermore, we found that adding negative action sampling improves the model's overall performance
and guarantees stability during RL training. This combination represents a significant gain in our understanding
of reinforcement learning and makes a significant contribution to the subject, although not being revolutionary.
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