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Abstract - In the agriculture sector, it's crucial to provide detailed explanations and methodically work towards 

predicting crop yields. This involves making informed decisions to enhance the quality of the analysis. Crop yield 

largely depends on the health of the crops, influenced significantly by key nutrients like nitrogen (N). A lack of 

nitrogen can lead to yellowish fields, potassium deficiency might result in leaf blotches, and phosphorus scarcity 

can turn fields brownish. Identifying these nutrient-deficient areas in paddy fields is a major challenge in 

estimating total yield. To address this, we use an efficient hierarchical model to segment these problem areas 

accurately. This approach has demonstrated impressive results in system accuracy. 
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1 Introduction 

Integrating modern technology with traditional farming practices is increasingly crucial for enhancing agricultural 

productivity. As technology evolves, sophisticated crop models and predictive tools are becoming vital for 

precision farming. Accurate crop yield prediction is essential for farmers, agricultural bodies, and consultants, 

given that complex interactions among air, water, soil, and plants influence crop yield. To effectively model these 

interactions, advanced engineering methods are necessary. 

Such models are invaluable for land managers and policymakers, especially when they must extrapolate outcomes 

from one location to another without specific response data. Various factors, both direct and indirect, affect crop 

production. Soil science, for example, examines aspects like pH, texture, nutrients, organic matter, fertilization, 

and farming practices. Agriculture is complex, with each issue requiring substantial data analysis. 

Despite these challenges, current technology lacks comprehensive solutions for optimizing agricultural output and 

quality. One way to enhance these is by analyzing the total yield by segmenting field areas affected by nutrient 

deficiencies. Yellow areas in fields often indicate nitrogen deficiency, brown areas suggest potassium deficiency 

and brown leaf spots can signify phosphorus deficiency. This study focuses on these aspects to improve yield 

predictions. 

2 Literature Survey 

The field of agriculture has seen significant advancements through the integration of image processing and soft 

computing techniques in various research studies, each contributing unique methods and insights: 

Hiteshwari Sabrol et al. focused on identifying and classifying plant diseases. Their method involved collecting 

images of healthy and diseased plants, preprocessing them, and segmenting the diseased areas. This approach 

classifies plant diseases and contributes to the academic understanding of plant pathology. 

S. A. Ramesh Kumar et al. developed a strategy for identifying risk areas in paddy fields using image processing 

and data mining. Their research aimed to identify diseases and other factors affecting paddy production. The 
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proposed solution increased efficiency and reduced the subjectivity of human experts in detecting faults in paddy. 

They used "associative rule mining" to categorize paddy characteristics. 

Manickam Gopperundevi et al. created a method to estimate and map crop vigor. This involved using various 

factors to assess paddy fields' condition, supervised classification, and the Vegetation Index. Their study also 

explored the relationship between yield and the Normalized Difference Vegetation Index (NDVI), utilizing 

MODIS data to monitor rice crop growth, map the area, and measure productivity. 

K.R. Sri et al. developed a technique for determining optimal crop yield and recommending the best crops for 

maximizing agricultural profitability and quality. Their research focused on enhancing agricultural output using 

environmental and land data. Farmers collected data on various factors, such as temperature, soil type, and water 

level, to select the most suitable crops for their soil. Their predictions relied on the accuracy of the Bayesian 

algorithm. 

Additionally, the proposed plan included techniques like color segmentation-based nitrogen (N) area separation 

using hierarchical methods. After collecting the N-segmented areas, an SVM classifier was applied to identify 

whether it is an N-partitioned region. Finally, the total yield within the Paddy Field Image was estimated following 

the validation stage, exemplifying the potential of integrating advanced computational methods in agriculture. 

3 Methodology 

In the system depicted in Figure 1, a comprehensive approach involving training and testing phases is used to 

analyze paddy field images. During the testing phase, an image of the paddy fields is read and passed through a 

pre-processing block. This pre-processing includes scaling the image to the appropriate size and reducing noise, 

achieved using a median filter. After noise reduction, the image may still contain several irrelevant sections. These 

are manually eliminated by selecting the Region of Interest (ROI), effectively akin to cropping and downsampling 

the image to focus solely on noise-free areas. Once pre-processed, the image is applied to differentiate between 

healthy and unhealthy regions in the paddy fields. The segmented cluster from the markedly unhealthy region is 

then chosen and converted into a binary format, enabling hierarchical color segmentation. This step is crucial as 

it identifies potential nitrogen-deficient areas (N areas) through color thresholding, isolating actual N-deficient 

regions in the original paddy field image. This systematic process enhances the accuracy and efficiency of 

agricultural analysis, crop health, and management decision-making. 

 
Fig. 1: Block Diagram of Proposed System 

 

The feature extraction block is pivotal in the described system, particularly in extracting Gray Level Co-

occurrence Matrix (GLCM) features from the segments and healthy zones identified in the paddy field images. 

This extraction process is a key component in the program's training and testing phases, as it involves analyzing 

both unhealthy and normal (healthy) crop samples. 
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Once the Support Vector Machine (SVM) training is complete, feature extraction proceeds similarly during the 

testing phase. The features extracted during testing and training are fed into an SVM classifier. This step is crucial 

as it ensures the accuracy of the classification process by effectively differentiating between healthy and unhealthy 

regions based on the extracted features. 

After the classification process is concluded, the identified non-healthy (NH) regions, derived from the nitrogen-

deficient (N) areas, are directed into the yield estimate block. This is an important step after the segmented N-

deficient and healthy areas have been analyzed to confirm their health status. At this stage, the total yield in the 

paddy field image is calculated, providing a crucial insight into the impact of nutrient deficiencies on crop 

production. 

By assessing and quantifying the effect of nutrient deficiencies, particularly nitrogen, on the paddy yield, this 

system offers a comprehensive approach to analyzing agricultural health and productivity. This allows for more 

informed decision-making in agricultural practices, potentially leading to improved crop management and yield 

optimization. 

3.1 Pre-Processing  

Figure 2 in the referenced documentation illustrates the process where the input image of a paddy field undergoes 

pre-processing analysis. A key component of this stage is the application of a median filter, specifically a weighted 

median filter, to the input image. The weighted median filter is a nonlinear digital filtering technique 

predominantly used for noise removal in image processing. 

The effectiveness of this pre-processing step, particularly the use of the median filter, is noteworthy because it 

significantly improves the processing results. One of the notable advantages of the median filter, especially in the 

context of agricultural image analysis, is its ability to preserve the edges of features in the image while effectively 

reducing noise. This quality is crucial in maintaining the integrity of important details in the image, such as the 

boundaries between healthy and unhealthy regions of the crop. 

In the process of applying this filter, the objective is to understand how the input image, denoted as I, influences 

the output of the weighted median filter, represented by v. The relationship between the input image and the filter's 

output is described by a specific formula, referred to here as Eqn (1). This equation likely details the mathematical 

operation of the weighted median filter, considering the intensity values of the pixels in the input image and 

applying the filter's weighting criteria to produce the filtered output. Understanding and applying this formula is 

essential for effectively reducing noise in the paddy field images, thereby enhancing the accuracy of subsequent 

analysis stages, such as feature extraction and disease classification. 

𝑚𝑖𝑛
𝑣

∑ ∑ 𝑤𝑖𝑙|𝑣𝑖 −  𝐼𝑙|

𝑙∈𝑁𝑖𝑖∈𝑉

                                                                                      (1) 

 

 
Fig. 2: Input Paddy Field Image 

Ni is the position of pixel V in the picture. 'wii' denotes the set containing pixel ‘i’ and its 
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surrounding pixels. The non-negative weight [12] is denoted. 

3.2 Hierarchical Color Segmentation for Region Selection 

In the process outlined in Figure 3, the system employs a suspicious region block to isolate nitrogen-deficient (N) 

regions in paddy fields, focusing on segmenting clusters indicative of unhealthy and healthy areas. This approach 

starts with a binary conversion of the diseased image, simplifying the data to highlight features associated with 

the disease or deficiency. Following this conversion, the system identifies and calculates the centroids of various 

components within the binary image, each representing a diseased portion of the crop. This step is crucial for 

determining the distribution and severity of the disease. Finally, the areas within the bounding boxes encapsulating 

these diseased components are upsampled. This upsampling involves applying a scaling factor determined during 

the pre-processing stage, enhancing the resolution of the specific areas for more detailed and accurate analysis. 

Following these steps, the system efficiently segments and analyzes nitrogen-deficient regions, facilitating precise 

disease detection and management in agricultural practices. 

TABLE  1: THE THRESHOLD FOR N DEFICIENCY REGIONS 

 Red Plane Green Plane Blue Plane 

Nitrogen 43 to 85 34 to 67 32 to 54 

 
In the described process, following the upsampling of a specific region in the primary image of a paddy field, the 

system locates this region and trims its edges. This step is part of what is known as a hierarchical approach, which 

is essential due to the complexity and size of the original image. The large field size of the original image makes 

processing challenging, thus necessitating the use of the hierarchical method to simplify the segmentation 

operation. 

After segmenting the blocks, they are advanced to the color segmentation stage. They are divided into N groups 

based on N threshold values, as indicated in Table 1. This segmentation process also applies to other essential 

components found throughout the original image, segmenting these components into N distinct areas. 

Once the N areas are defined, each block is placed on a separate plane, creating N-independent planes. These 

segmented N sections are then subject to verification through an SVM classifier. The classifier compares the 

features of the segmented areas with the previously recorded characteristics in the knowledge base. This 

comparison results in the generation of validated N or VN segments, as shown in Figure 4. 

The process then focuses on identifying healthy zones in the N areas, referred to as HN (Healthy in N). This is 

achieved by subtracting the VN from the segmented image. This step is crucial for distinguishing between the 

areas affected by nitrogen deficiency and those not, ultimately contributing to a more accurate crop health 

assessment and aiding in effective agricultural management. The hierarchical method, along with the subsequent 

segmentation and classification steps, provides a comprehensive and detailed analysis of the paddy field image, 

enhancing the precision of agricultural practices. 
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Fig. 3: Flowchart for Hierarchical Approach of Colour Segmentation 

3.3 Feature Extraction 

Quantitative evaluations, commonly referred to as features, are used to assess one or more characteristics of an 

object. These features represent the measurable attributes of the object, capturing only the crucial information. In 

the next section, the strategies used for feature extraction in this study are detailed, focusing on how these essential 

attributes are isolated and analyzed. 

3.3.1 Grey-Level Co-Occurrence Matrix 

In the field of statistical texture analysis, the process begins with selecting a specific location within the pixel 

matrix of an image. This chosen location is the starting point for determining the basis of pixel distributions and 

texture characteristics. The significance of each pixel combination in the image is determined by the number of 

pixels present in each combination. The analysis delves into first, second, and higher-order statistics to accurately 

represent the image's texture. 

Second-order statistics based on the Gray Level Co-occurrence Matrix (GLCM) are essential for a detailed texture 

analysis. The GLCM technique tracks how frequently a particular arrangement of pixel brightness values occurs 

within the image. This method is crucial for understanding the spatial relationship between pixels, reflecting the 

image's texture. 

Figure 5 demonstrates the GLCM formulation for four grey levels. In this specific example, the image is analyzed 

with a distance parameter d = 1 and an orientation of 0 degrees. This orientation and distance parameter are pivotal 

in determining how the pixel values are paired for the GLCM calculation, ultimately influencing the texture 

features extracted from the image. Such detailed texture analysis using GLCM is a fundamental part of image 

processing, especially in applications where the texture provides significant insights, such as in agricultural image 

analysis, medical imaging, and pattern recognition. 
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Fig. 4: Area affected due to Nitrogen Deficiency 

 

 
(a)  

(b) 

Fig. 5: (a) Example Matrix of the pixel intensity; (b) GLCM matrix 
The methodology described focuses on extracting key features from images, specifically contrast, energy, entropy, 

and correlation. To quantify the intensity difference between adjacent pixels in the analyzed image, an equation 

like the following is employed: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ |𝑖 − 𝑗|2𝑝(𝑖, 𝑗)
𝑖,𝑗

                       (2) 

The term "value" in this context refers to the cumulative co-occurrence of adjacent pixels labeled 'i' and their 

neighboring pixel 'j,' where p(i,j) denotes the specific position in the Gray Level Co-occurrence Matrix (GLCM). 

"Correlation," as used here, measures the extent to which individual pixels in an image are dependent on other 

pixels. It specifically analyzes the linear relationship between the grey levels of two adjacent pixels. This 

correlation is quantified by a specific formula, which assesses the inter-pixel relationship within the image, 

providing insights into the textural characteristics of the image based on how pixel values are linearly related. 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ∑
(𝑖 − 𝜇𝑖)(𝑗 − 𝜇𝑗)𝑝(𝑖, 𝑗)       

𝜎𝑖𝜎𝑗𝑖,𝑗
              (3) 

The energy calculation in this context involves summing up the squared values of all elements in the Gray Level 

Co-occurrence Matrix (GLCM). An equation denotes Eq. (4), effectively quantifying the energy metric. In image 

texture analysis, the energy metric reflects an image's uniformity and texture regularity, with higher values 

indicating more uniform and consistent patterns. This calculation is a key part of analyzing the textural properties 

of images, especially in applications like medical imaging, remote sensing, and agricultural monitoring. 

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗                            (4) 

Entropy, in the context of image analysis and GLCM (Gray Level Co-occurrence Matrix) computation, represents 

the information required to compress the analyzed image. It also accounts for the loss of image information during 

the GLCM computation process. Entropy quantifies the randomness or complexity in the image's texture, with 

higher entropy values indicating more complex or less predictable patterns. This metric is crucial for 
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understanding the textural characteristics of an image, as it provides insights into the level of detail and variation 

present in the image's pixel intensity distribution. 

  𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = ∑ ∑ −𝑝𝑖𝑗 ∗ 𝑙𝑜𝑔𝑝𝑖𝑗

𝑁𝑔−1

𝑗=0

𝑁𝑔−1

𝑖=0

                   (5) 

MATLAB, a widely used software for numerical computing and advanced data analysis, calculates the Gray Level 

Co-occurrence Matrix (GLCM) and derives a feature vector. The feature vector comprising approximately 88 

elements is crucial for formulating and extracting the input data's nitrogen-deficient (N) segments. This process 

involves analyzing the textural characteristics of the images, with MATLAB providing the computational tools 

necessary to perform these sophisticated image-processing tasks. The extraction of such a detailed feature vector 

enables a comprehensive analysis of the N segments, facilitating accurate identification and assessment of areas 

in the paddy fields affected by nitrogen deficiency. 

3.4 SVM Classifier 

Support Vector Machine (SVM) is a renowned supervised learning technique for classification and regression 

tasks. It is particularly effective in separating target classes in n-dimensional or multidimensional spaces. The 

primary objective of SVM is to establish the optimal decision boundary, characterized by the largest significant 

margin, to categorize new data points. 

In n-dimensional space, while there could be multiple potential lines or decision boundaries, the aim is to identify 

the simplest decision boundary that effectively categorizes the data. The dimensions of the SVM hyperplane, the 

decision boundary in this context, are determined by the dataset's features. The construction of hyperplanes in 

SVM focuses on maximizing the margins, where the margin measures the distance between the closest data points 

of different classes. 

To achieve this, SVM finds an n-dimensional hyperplane that best separates the data points. The kernel function 

within SVM plays a critical role in this process. It calculates the distances between data points (x-n and x-m), with 

closer points receiving higher scores in the kernel's computation. Figure 6 in the referenced material likely 

illustrates how the SVM kernel operates, showing its capability to handle complex data distribution and effectively 

classify data points in the multidimensional space. This makes SVM a powerful tool for tasks involving high-

dimensional feature spaces, such as image classification, text categorization, and bioinformatics. 

 
Figure 6. Non-Linear SVM Kernel 

The Radial Basis Function (RBF) Kernel, utilized in this context, shares similarities with the K-Nearest Neighbors 

(K-NN) algorithm's functionality. The RBF Kernel is a popular choice in various kernelized machine learning 

methods, especially in Support Vector Machine (SVM) classification, due to its ability to handle non-linear data 

distributions effectively. 

One of the key advantages of using the RBF Kernel, akin to the K-NN algorithm, is its simplicity in storing only 

the support vectors during the training phase. This approach significantly reduces the space complexity, a critical 

consideration in machine learning models dealing with large datasets. 
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The mathematical workings of the RBF Kernel are encapsulated in Equation 6. This equation likely details the 

computation involved in the RBF Kernel, which typically includes measuring the distance between data points in 

a feature space and applying a Gaussian function to these distances. The RBF Kernel's ability to map data points 

to a higher-dimensional space where they can be linearly separated makes it a powerful tool in SVM classification, 

allowing for more accurate and effective modeling of complex and non-linear relationships in the data. 

𝑘(𝑥⃗𝑖, 𝑥⃗𝑗) = exp(−𝛾  ⃦𝑥⃗𝑖 − 𝑥⃗𝑗  ⃦2) 𝑓𝑜𝑟 𝛾 > 0                                                                           (6) 

where, 
  𝑥⃗𝑖, 𝑥⃗𝑗 = feature vectors 

  𝛾 = 
1

2𝜎2 

  𝜎 = free parameter 
In building a knowledge base for training in machine learning, a foundational dataset is established from which 

the system can learn and identify patterns for effective classification. The crucial stage following the creation of 

this knowledge base is to evaluate the model's classification performance, which is done using test data or images 

that are distinct from those used in training. This ensures the model's ability to generalize to new data. The testing 

involves several steps, starting with preprocessing the test data to ensure uniformity and suitability for analysis. 

Subsequent feature extraction isolates relevant characteristics or attributes from the data using techniques 

consistent with those applied during training. Finally, these features are tested against the knowledge base, 

employing the learned patterns and insights to classify or predict outcomes for the test data. This comprehensive 

process is vital for assessing the effectiveness of the machine learning model and identifying areas for potential 

improvement, ensuring its accuracy and reliability in practical applications. 

3.5 Yield Estimation 

Following verification, the segmented nitrogen-deficient (N) and Healthy areas are forwarded to the yield estimate 

block for calculation. This crucial step involves determining the estimated yield block based on the Validated 

Healthy Image (H). To do this, the value derived from the Validated Healthy Image is divided by the area of the 

Input Paddy Crop Image. This computation measures the yield relative to the total area under consideration. 

Additionally, the scope of the general healthy area (H) is expanded by including the NH areas. NH refers to the 

healthy zone identified after applying the Support Vector Machine (SVM) classifier to the N region and verifying 

its results. Essentially, NH areas are portions of the field initially identified as nitrogen-deficient but later 

confirmed as healthy through the classification process. 

The total yield is then represented as a percentage, as outlined in equation (7). This equation likely provides a 

formula to quantify the total yield about the overall area of the paddy field, considering both the healthy and 

recovered (NH) areas. By calculating this percentage, the model offers a comprehensive crop yield assessment, 

factoring in the various health statuses of different field parts, which is essential for accurate agricultural planning 

and management. 

𝑇𝑜𝑡𝑎𝑙 𝑌𝑖𝑒𝑙𝑑 =
𝐻+𝑁𝐻

𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑑𝑑𝑦 𝐹𝑖𝑒𝑙𝑑 𝐴𝑟𝑒𝑎
∗ 100                  (7) 

4 Experimental result 

4.1 Database  

The proposed system employs images captured by various standard cameras to execute operations across five 

databases. Each database contains unique photographs in at least one characteristic, setting them apart from images 

in the other databases. This diversity in the image data is crucial as it allows the system to handle various scenarios 

and variations encountered in actual field conditions. 

The system leverages image analysis tools to enhance its performance, particularly in identifying defects or 

anomalies in field images. By analyzing these diverse sets of images, the system can be fine-tuned to detect various 

issues, such as disease infestations, nutrient deficiencies, or other factors affecting crop health. The ability to 

process and analyze images from different databases ensures the system is robust and versatile, adapting to 

different image data types and environmental conditions. 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 5 (2023) 

652 

This approach of using multiple databases with distinct characteristics for each set of images allows for a more 

comprehensive analysis. It increases the accuracy and reliability of the system in real-world agricultural 

applications. Standard cameras make the system more accessible and feasible for practical use, as it doesn't require 

specialized or expensive imaging equipment. 

4.2 Experimental Setup 

The proposed model was developed using the MATLAB Tool, facilitating distinct training and testing phases in 

the experimental setup. In the testing phase, real-time paddy field images are considered as input. These input 

images undergo a series of processes, including preprocessing, clustering, and segmentation, to prepare them for 

analysis. Following these preparatory steps, an SVM (Support Vector Machine) decision-based Classifier is 

employed to compare the input field image with the existing knowledge base. This comparison is enriched by 

feature extraction techniques, which help accurately assess and classify the input images based on the learned 

patterns and characteristics from the training phase. 

 

 
Fig. 7: Input Paddy Field Image 

The upcoming sections will delve into a detailed analysis of the results obtained at each stage of the proposed 

system. Initially, as depicted in Figure 7, an image of the paddy field is captured and subjected to pre-processing. 

This phase involves techniques like noise reduction and image resizing. Upon completing these pre-processing 

steps, the image is analyzed to identify Healthy and Unhealthy zones, as illustrated in Figures 8a and 8b. However, 

additional areas affected by nitrogen (N) deficiencies lead to inaccuracies in the initially identified N regions. 

The next step involves passing the processed image through a hierarchical color segmentation block. This block 

employs threshold values to segment the image into various N-specific areas, including regions of poor health or 

lack of nitrogen. Subsequently, features derived from the Gray Level Co-occurrence Matrix (GLCM) are extracted 

and fed into the SVM classifier for validation. 

The outcome of this classification, the validated segments VN, is showcased in Figure 9. This validation step is 

crucial for confirming the health status of different areas within the paddy field. Finally, as seen in Figure 10, the 

estimated yield based on this analysis is approximately 70.3799%. This percentage reflects the system's crop 

health and productivity assessment, considering the various health conditions across the paddy field. 
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(a) (b) 

Fig. 8: (a) Healthy Region; (b) Unhealthy Region 

 
Fig.  9: VN Region 

 
Fig. 10: Total Yield Estimated for 

the Input Image 

 

Table 2 presents a comparative analysis between the current and proposed systems. This comparison highlights 

the advantages and improvements the proposed system offers over the existing ones, demonstrating its superiority 

in various aspects. In the comparative analysis of yield prediction accuracy between different systems, the data 

presented is as follows: 

- Existing System 1 [5] has a yield prediction accuracy of 78%. 
- Existing System 2 shows a lower accuracy at 47%. 

- Existing System 3 varies between 78-84%, with a mid-value consideration leading to an 

accuracy of 81%. 
- The Proposed System significantly outperforms these with a yield prediction accuracy of 

92.22%. 

TABLE  2: COMPARISON TABLE FOR PROPOSED AND EXISTING SYSTEMS 

 

 

 

 

 
The confusion matrix is a tool that presents both actual and predicted values, allowing for detailed analysis of 

datasets with more than four criteria. It includes different types of predictions: the true positive, which correctly 

predicts a 'yes' outcome; the true negative, accurately predicting 'no'; the false positive, incorrectly predicting 'yes' 

when the actual outcome is 'no'; and the false negative, wrongly predicting 'no' when the outcome is actually 'yes.' 

Additionally, the confusion matrix provides the total counts for each row and column. Errors in the matrix are 

categorized as Type 1 (false positives) and Type 2 (false negatives) errors, representing inaccuracies in prediction 

outcomes. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                                    (8) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                                                     (9) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
                                                                              (10) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
                                                                                              (11) 

 
Figure 11 presents a confusion matrix that illustrates the performance of the constructed system, providing a 

comprehensive assessment through various criteria. The confusion matrix is instrumental in evaluating key 

performance metrics such as precision, recall (sensitivity), accuracy, and specificity. These metrics are crucial in 

determining how effectively the system performs its tasks. 

Paper Yield Prediction Accuracy 

(Existing System 1) [5]. 78% 

 (Existing System 2) 47% 

 (Existing System 3) 78- 84% (considering mid-value i.e. 81%) 

Proposed system 92.22% 
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The specific performance parameters of the proposed system are detailed in Table 3, where they are categorized 

under the headings of Precision, Recall or Sensitivity, and Specificity. To calculate these parameters, 

mathematical formulas are employed, starting from Equation (8) and extending through Equation (11). Each 

equation plays a role in quantifying different aspects of the system's performance. 

Additionally, the performance of the proposed system is visually represented in a graph, as shown in Figure 12. 

This graphical representation provides an intuitive understanding of how well the system performs, highlighting 

its strengths and areas for improvement in a clear and accessible manner. 

 
Fig. 11 Confusion Matrix of Proposed Method 

 

TABLE  3: PERFORMANCE ANALYSIS TABLE FOR THE DIFFERENT DATA SET 

Database 
Number of 

Images worked 
Precision Recall or Sensitivity Specificity 

Total Number of Images = 180 95.90 90.74 92.86 

 
Fig. 12 All System Performance Graph 

5 Conclusion 

The results of this study introduce a method for segmenting the affected areas in paddy field images, with a 

specific focus on addressing nutrient deficiencies like nitrogen (N). This method incorporates sophisticated 

techniques such as selecting suspected regions based on hierarchical color segmentation and using an SVM 

classifier. These techniques contribute significantly to the accuracy of estimating the total yield in the input field 

image by taking into account the effects of nutrient deficiencies. 

The methodology proposed in this study showcases a more precise and systematic approach to calculating the 

total yield, particularly by considering the severity of illnesses affecting the crop. This approach has been applied 

to various field images, yielding impressive results with an accuracy rate of 92.22%. The study suggests 
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integrating an exact prediction mechanism within the Paddy Field Image system, enhancing the ability to compute 

the total yield with even greater precision. This advancement promises to significantly contribute to agricultural 

imaging and analysis, providing a more accurate and reliable tool for yield estimation in paddy fields. 
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