Empirical Mode Decomposition with Imf Using Ant Colony Optimization

G. Anandharaj¹ R. Angelin Preethi²

1. Assistant Professor of Computer Science, Department of Maths and Computer Science, Sri Vasavi College (Govt. Aided), Erode
2. Assistant Professor, Department of Computer Science, Kamban College of Arts and Science for Women, Tiruvannamalai

Abstract:
The serial remote sensing images allow us to view how a certain area has changed and grown across period. Even though these raw images have fewer opportunities to generate information and additional insight, serial remote sensing images (SRSI) offer a significant opportunity to generate clusters and patterns. The implementation of SRSI aggregation is supported by the developments of patterns in a variety of circumstances, which include urbanization, the spread of native vegetation, and farming. We propose a novel outlook to mining sequence patterns that makes use of Ant Colony Optimization and Empirical Mode Decomposition. The newly created Empirical Mode Decomposition (EMD) and Ant Colony Optimization (ACO) approach is integrated to extract the most important characteristics features of significantly accurate performance from serial remote sensing images based on distinct criteria. The outcomes demonstrate that the accuracy of projected sequence patterns can be greatly improved by combining a new hybrid method with EMD and ACO feature selection. Because of this, the method is appealing for employing a farmland dataset based on serial remote sensing images to create ground-based stream-flow for strategically extracting spatially sequential patterns despite requesting less computational mining time and cost.

Keywords: Serial Remote Sensing Images, Empirical Mode Decomposition, Ant Colony Optimization, Sequential Pattern Mining.

1. Introduction:
Agriculture has played an important role in a nation's growth throughout centuries and centuries in every ancient empire. Humans were affected by agriculture sector insofar as their energy production for nutritious foods is considered. Every crop's development cycle consists of three basic phases: planting, monitoring then maintenance, and harvesting. Every phase includes a variety of tasks. The cultivating step involved choosing the crops that will be grown, preparing the land, arranging the watering, preparing the crop, and planting the seed. As monitoring and regulating the development of the harvests is the primary responsibility of agriculture following the cultivation stages. The tasks in this monitoring phase are time-dependent and also it includes planned crop continuous monitoring, fertilizer application, infection and vegetation diagnosis, and pest management. The harvesting phase, including tasks like crop harvesting, fragmentation, storage, and market sale, is the final and most important stage of the agricultural cycle.
Sequential Pattern Mining (SPM) would be a primary information mining process that has a broad range of real-world application areas. Identifying sub-sequences and features that frequently occur in a series of sequencing is the goal of the popular data mining technology called as sequential pattern mining. Nevertheless, it is more difficult and complicated than several pattern mining tasks, such as frequently utilized pattern mining and association analysis computing, and it also faces the aforementioned difficulties when dealing with enormous amounts of cropland dataset. Identifying sequential patterns in a concurrent or scattered computing system has become a crucial problem for many application areas in order to address these issues.

Due to its importance as well as potential impact on predicted abilities, decomposition techniques are required to be provided far more consideration than most signal processing methods. Consequently, using empirical mode decomposition methodology (EMD) may serve as a viable replacement to enhance the effectiveness of decomposition approaches. The EMD method is generally simple to grasp and implement to address certain problems. The basic goal is to break down the original complicated patterns into a variety of stationary sub-series termed IMFs and residual those really are simple to model. These necessary prerequisites should be met for an IMF to qualify as just a component: (a). In the information, the average of the input signal and the numerous constraints must equal each other, whereas (b). Its average, which is determined by the feature points and minima must be zero at any point.

Understanding non-stationary and non-linear information uses empirical mode decomposition, also known as empirical pattern decomposition. It offers a data-driven method for breaking down complicated signals into manageable Intrinsic Mode Functions (IMFs) based on the strength of local oscillations in the spatial realm. The IMF's aspect has special data that can reflect the received data. Numerous studies claim that the empirical mode decomposition has been effective in resolving problems like identifying diseases, predicting landslide migration, finding gas leaks in pipes, and financial sector predictions.

According to the ant analysis, ants have similar natural vision information to other organisms. Nevertheless, by maximizing the real-world complexity of the actual environment, researchers organize their route quite effectively. Several fundamental issues are being helped to reach their optimum by the ACO algorithm. A form of artificial intelligence used for optimization is considered an ACO algorithm. The technique is based on how ants solve problems by finding the shortest path. Ants have a strong sense of independence. They always make plans to really be close to its preliminary step when pursuing the food. Each ant has the innate capacity to produce on the land surface that living organisms compound is considered as both a fragrance, which serves as the navigation indication for other ants to follow. They help one another locate and follow the quickest route in this manner. ACO represents one of the most sophisticated evolutionary algorithms, which is why agriculture technology is currently using it.

Initially, researchers provide a pixel cluster approach to minimize the original SRSI cropland dataset. Our proposed methodology is used to efficiently compress the SRSI pixel value. Frames of SRSI were overlapped at the horizontal level using proposed method characterization to group pixels with similar spatial patterns. The SRSI will then be consolidated into a single format that solely provides data about the clusters. Furthermore, to even further decrease the information proportion, having similar clusters may be combined.

2. Objectives
The ACO technique is expanded to handle with extracting frequent patterns from clustered in the final phase. A cluster's size and the frequency of sequence data it contains are both classified by the number of pixel in the clusters. By taking the dimensions of the clusters into account, researchers change the way to determine the assistance of an accurately being able to detect sequence pattern. The frames of clustering of the pixels that use the pixel clustering methods to reduce the computing complexity and consumption of time. The suggested technique is made more resilient towards image acquisition threats using the EMD and ACO based pattern mining algorithm, significantly enhances picture quality. It also generates very reliable temporal features and matches the minimum level support values.

3. Related Work:
Finding numerous recurring patterns in a SRSI cropland dataset database with certain spatial and temporal properties is the goal of sequential pattern mining. From either the transactional area to the spatiotemporal region, Sequential pattern mining derives and expands it. Despite the fact that Agrawal and Srikant first presented the issue of sequential pattern mining in 1995, the development of SPM has provided a variety of useful methodologies and algorithms.

Several restrictions could be applied to significantly increase SPM effectiveness and prune the search area. Numerous researches have been conducted based on these techniques to address issues in specialized sectors. The locations and internal spatial linkages of occurrences are handled with by SPM, whereas the SPM concentrates on procedural or content data. [1,2] EMD is a recommended methodology for dynamic noise-assisted information extraction. EMD is especially well suited to nonlinear and non-stationary pattern information and it requires that the information have a simple inherent pattern of fluctuations.

For the purpose of analyzing dynamic and non-linear patterns, empirical mode decomposition or empirical pattern decomposition, is used [3]. It offers a data-driven method for breaking down complicated patterns into restricted intrinsic mode functions (IMFs) in accordance with the strength of local oscillations in the outer world. The IMF's aspect has special data that can reflect the original patterns. [4] This method involves finding local peak spots that are both positive and negative, which produces intrinsic mode functions (IMFs). The original time series is deducted from IMF because it has the most volatility.[5] The statistics that have been eliminated are also derivatives in later IMFs. Dai Z et al. claim that if the technique is used perfectly, the sum of all IMFs and residual data must roughly match the original data.[6]

The ACO algorithm is becoming more widely used in agricultural activities every day. Bakhtiairi et al. [7] demonstrate the process of route optimization in the agricultural environment utilizing ACO. In addition, Cao et al. [8] investigated the maintenance of agricultural equipment and suggested the ACO model provides a framework for pattern mining. One of the most important pieces of machinery for enhancing the efficiency of numerous farming methods. Jiang Z et al. [9] propose the optimization technique of a similar automaton by using the ACO optimization method. They have showed how to design the ant's path around obstacles using ACO. Saving time and money on agricultural production seems to be the major goal of the presented effort. Mythili et al. [10] discuss the use of ACO as an optimization in the agricultural areas. The agricultural crop yielding system uses the ACO to optimize routing signals and the significance of trained parameters.
4. Method:

Researchers provide a sequential pattern mining technique utilizing pixel clustering. Utilizing the fact that neighboring pixels consistently exhibit those very same frequent patterns is the aim of this technique. As soon as it is possible to organize pixels into groupings that do have similar patterns, it is not necessary to calculate every pixel. Initially the pixels group is a phenomenon that researchers propose. In the following part, researchers offer a technique for grouping pixels based on empirical mode decomposition. The decomposed optimum solutions based on the ant colony optimization technique are explained in the final section in order to identify a sequential pattern. This section gives a brief overview of the whole proposed workflow of the methodology that is being given. The proposed methodology is shown in the following Figure 1:

![Figure 1: Workflow of Proposed work.](image)

Implementing the EMD approach to solve particular challenges is comparatively simple to understand. The fundamental goal is to break down the serial remote sensing images into a number of fairly static sub-series called
IMFs and residues, which seem to be simple to predict. In order to be recognized as a feature, an IMF must meet the following requirements: (i) the total value of a maxima, and thus the total value of the input signal, must be equivalent and must not vary significantly by more than one; and (ii) the average of the frame, which is determined by the regional maxima and minima, must be zero at all times. The EMD implementation workflow for all of this research is shown in Fig. 3, and the EMD computation is expressed as follows:

\[
S_{RSI}(t) = \sum_{k=1}^{n} (S_i(t) + Res_n(t))
\]

Where SRSI(t) be a given serial remote sensing image, \(S_i(t)\) (i=1,2,3,......n) is the different IMF and \(Res_n(t)\) is the left after residues n IMF’s are derived. In order to separate patterns from their having been limited in the maximum spectral region, that whole EMD approach is just an easy and efficient way. Additionally, every IMF has the ability to generate different amounts of effort. As per Peng et al., the adoption of prospective strategic priorities for recovering non-linear and non-stationary information features is also more resource constrained [11].

Marco Dorigo introduced Ant Colony Optimization technique in 1990. This technique is completely inspired from the foraging behavior of ant colonies. Ants prefer living in group as a community rather than as individual species. They communicate with each other using organic chemical compounds called as pheromone. Pheromones are secreted by the ants that initiate a social response among the members of same species. Pheromones act like hormones outside the body of the secreting ant, to impact the behavior of the receiving ant. As most of the ants live on the ground, they use the soil surface to leave pheromone trails that may be smelled and followed by other ants.

The fundamental principle of the ACO algorithm is to perceive the movement of the ants from their nests in order to search for food in the shortest possible path. Initially, ants start to move randomly in search of food around their nests. This randomized search opens up multiple routes from the nest to the food source. Now, based on the quality and quantity of the food, ants carry a portion of the food back with necessary pheromone concentration on its return path. Depending on these pheromone trials, the probability of selection of a specific path by the following ants would be a guiding factor to the food source. Evidently, this probability is based on the concentration as well as the rate of evaporation of pheromone. It can also be observed that since the evaporation rate of pheromone is also a deciding factor, the length of each path can easily be accounted for. Figure 2 illustrates the food searching process of the ant colony.

![Figure 2: Food searching process of Ant colony](image-url)
The stages can be analyzed as follows:

1. **Stage 1:** All ants are in their nest. There is no pheromone content in the environment.
2. **Stage 2:** Ants begin their food forage with equal (0.5 each) probability along each path. Clearly, the curved path is the longer one when compared to the straight path. Hence, the time taken by ants to reach food source along the curved path is higher than the other path.
3. **Stage 3:** The ants can quickly reach the food source through the shorter path. Currently, the ants could evidently face with a similar selection dilemma. Due to the pheromone trail along the shorter path is already available, probability of selection of the shortest path is higher than the curved path.
4. **Stage 4:** With more ants returning via the shorter path, the pheromone concentrations also increase subsequently. Also, due to evaporation, the pheromone concentration in the curved path reduces with lapse of time. This decreased the probability of selection of this curved path in further stages. Therefore, the whole ant colony uses the shorter path due to the higher selection probabilities. Hence, path optimization is achieved.

4. 1 Performance Analysis:

This article evaluates the effectiveness of the suggested methodology and displays the results that were obtained. The algorithm's effectiveness is estimated using the Cropland dataset collection. You can access the information by clicking the next link (https://nassgeodata.gmu.edu/CropScape/).

The SRSI images depict the state of Iowans in the America' land surfaces. Thus this effect covers around 150,000 square kilometers, with every pixel value covering an area of 900 square meters. The different agricultural crops in the areas are shown by the hue of the chart. Based on the needed time-span for the SRSI image, the information was split into four categories: D1, D2, D3, and D4 as shown in Table 1.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Regions</th>
<th>Pixel Count</th>
<th>Duration (time)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>Smaller portion of butler country</td>
<td>21* 132</td>
<td>From 2010 to 2016</td>
</tr>
<tr>
<td>D2</td>
<td>Regions of butler country</td>
<td>1323*1348</td>
<td>From 2010 to 2016</td>
</tr>
<tr>
<td>D3</td>
<td>Region of ASD 1910</td>
<td>5971*3534</td>
<td>From 2010 to 2016</td>
</tr>
<tr>
<td>D4</td>
<td>Region of IOWA state</td>
<td>17,795*11,671</td>
<td>From 2010 to 2016</td>
</tr>
</tbody>
</table>

Table 1: Cropland Dataset

The deconstructed image is represented by Figure 3 & 4. Empirical Mode Decomposition is used to perform the decomposition.
To demonstrate the effectiveness of the recommended system and the offered strategy, an analysis is conducted, and the results are related to conventional approaches. To demonstrate the effectiveness of the proposed method in comparison to other existing methodologies, estimation is conducted, and the results are then compared with conventional approaches.

5. Conclusion:
One of the most difficult aspects was supposed to be extracting temporal serial patterns from large quantity of SRSI, elevated satellite image collections. For the purpose of extracting spatial frequent patterns, a novel method dependent on ant colony optimization and empirical mode decomposition patterns is proposed. The proposed method is quite effective because it can use a pixel grouping methodology to minimize the collections of satellite images. To demonstrate the effectiveness of the proposed algorithm in aspects of extraction time and consumption of time, which then in turn needs to generate appropriate patterns further than the measure quality, the methodologies used were approximated and confirmed using cropland data layer datasets.

References:

