ISSN: 1001-4055 Vol. 44 No. 5 (2023)

An Operator Defined on Hadamard Product Pertaining to Generalized Hurwitz-Lerch Zeta Function with Conical Section

Ambrose Prabhu R¹ Chinthamani S^{2*} Sethukumarasamy K³

¹Department of Mathematics, Rajalakshmi Institute of Technology, Chennai, India,

^{2*} Department of Mathematics, Stella Maris College (Autonomous), Chennai, India

³ Division of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, Chennai, India

* Corresponding Author

Abstract:- The author's goal is to highlight the most recent developments in the research on the study of complex-valued functions as seen through an understanding of geometric function theory. Contributions will be required for any aspect of the Hadamard product associated to the generalized Hurwitz-Lerch Zeta function convoluted with the theory of functions that are univalent. In the present investigation, the author focused into the inclusion relations of a few subclasses of the k-starlike functions, k-uniformly convex functions, and k-quasi-convex functions which together make up the generalized Hurwitz-Lerch Zeta function.

Key words: Starlike function, convex function, k - uniformly starlike functions, k - uniformly convex functions, quasi-convex functions, generalized Hurwitz-Lerch Zeta Function.

1. Introduction

The class of all holomorphic functions f in \mathcal{A} , of the method

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n,$$

defined on

$$\mathbb{U} = \{ z : z \in \mathbb{C} : |z| < 1 \}.$$

Let g be given as

$$g(z) = z + \sum_{n=p+1}^{\infty} b_n z^n,$$

their convolution is

$$(f * g)(z) = z + \sum_{n=2}^{\infty} a_n b_n z^n.$$

If $f \in \mathcal{A}$ satisfies

$$\Re(T(Z) - \alpha) \ge k|T(Z) - 1| \quad (z \in \mathbb{U})$$

where $T(Z) = \left(\frac{zf'(z)}{f(z)}\right)$ for certain $\alpha(0 \le \alpha < 1)$ with $k(0 \le k < \infty)$, then we affirm that f is k-uniformly starlike of order α . This category is denoted as $k - \mathcal{ST}(\alpha)$. If $f \in \mathcal{A}$ gratifies

$$\Re(1 + M(Z) - \alpha) \ge k|M(Z)| \quad (z \in \mathbb{U})$$

where $M(Z) = \left(\frac{zf''(z)}{f'(z)}\right)$ for certain $\alpha(0 \le \alpha < 1)$ with $k(0 \le k < \infty)$, then we affirm that f is k-uniformly convex of order α . This class is denoted as $k - \mathcal{UCV}(\alpha)$. (see also Kharasani and Hijari). While k = 0 inequalities [1.2] and [1.3] diminish to the already established starlike (S^*) and convex (C) respectively. While k = 1, [1.3] leads to the class \mathcal{UCV} proposed by Goodman and studied further by Rønning , Ma and Minda . While k = 1, [1.2] leads to the class ST studied by Rønning . Conical sections were putforth by Kanas, Kanas and Wiśniowska –. For $0 \le k < \infty$ define the domain $\Omega_{k,\alpha}$ as

$$\Omega_{k,\alpha} = \{u + iv: (u - \alpha)^2 > k^2(u - 1)^2 + k^2v^2\}.$$

for 0 < k < 1,

$$\Omega_{k,\alpha} = \left\{ u + iv : \left(\frac{u + \frac{k^2 - \alpha}{1 - k^2}}{k \left(\frac{1 - \alpha}{1 - k^2} \right)} \right)^2 - \left(\frac{v}{\frac{1 - \alpha}{\sqrt{1 - k^2}}} \right)^2 > 1 \right\},$$

and for k > 1,

$$\Omega_{k,\alpha} = \left\{ u + iv : \left(\frac{u + \frac{k^2 - \alpha}{k^2 - 1}}{k \left(\frac{1 - \alpha}{k^2 - 1} \right)} \right)^2 + \left(\frac{v}{\frac{1 - \alpha}{\sqrt{k^2 - 1}}} \right)^2 < 1 \right\}.$$

The conspicuous representation of the connecting extremal function $\mathbb U$ onto $\Omega_{k,\alpha}$ is given by

$$Q_{k,\alpha}(z) = \begin{cases} \frac{\frac{1+(1-2\alpha)z}{1-z}}{1-z} & k = 0\\ 1 + \frac{2(1-\alpha)}{\pi^2} \log^2\left(\frac{1+\sqrt{z}}{1-\sqrt{z}}\right), & k = 1\\ 1 + \frac{2(1-\alpha)}{1-k^2} \sinh^2\left(A(k)\operatorname{arctanh}\sqrt{z}\right), & 0 < k < 1\\ \frac{(1-\alpha)}{k^2 - 1} \sin^2\left(\frac{\pi}{2\kappa(t)}\zeta\left(\frac{\sqrt{z}}{\sqrt{t}}, t\right)\right) + \frac{k^2 - \alpha}{k^2 - 1} & k > 1 \end{cases}$$

where $A(k) = \frac{2}{\pi} \arccos k$, $\zeta(\omega, t)$ is Legendre's elliptic integral

$$\zeta(\omega,t) = \int_0^\omega \frac{dx}{\sqrt{1-x^2}\sqrt{1-t^2x^2}}, \quad \kappa(t) = \zeta(1,t)$$

and $t \in (0,1)$ is selected that $k = \cosh \frac{\pi \kappa'(t)}{4\kappa(t)}$, maps \mathbb{U} onto the conic domain. The image of \mathbb{U} under $Q_{k,\alpha}(z)$ for various values of α is given by the figures 1-3 By feature of

$$p(z) = T(z) < Q_{k,\alpha}(z)$$
 and $p(z) = 1 + M(z) < Q_{k,\alpha}(z)$

By the characteristics of domains, we claim

$$\Re(p(z)) > \Re(Q_{k,\alpha}(z)) > \frac{k+\alpha}{k+1}$$

Express $\mathcal{UCC}(k,\alpha,\beta)$, let $f \in \mathcal{A}$ that satisfies

$$\eta(z) \prec Q_{k,\alpha}(z)$$
 for certain $g \in k - \mathcal{ST}(\alpha)$.

In the same way, we define $\mathcal{UQC}(k, \alpha, \beta)$, let $f \in \mathcal{A}$ that satisfies

$$\eta'(z) < Q_{k,\alpha}(z)$$
, for certain $g \in k - \mathcal{UCV}(\alpha)$.

The category of close-to-convex and quasi-convex univalent functions of order α and type β are $\mathcal{UCC}(0,\alpha,\beta)$ and $\mathcal{UQC}(0,\alpha,\beta)$ respectively.

Figure 1. The image of $\mathbb U$ under $Q_{k,\alpha}(z)$ for k=0 with various values of α

Figure 2. The image of \mathbb{U} under $Q_{k,\alpha}(z)$ for k=1 with various values of α

Figure 3. The image of \mathbb{U} under $Q_{k,\alpha}(z)$ for k=0.5 with various values of α

2 Preliminaries

Now we study about some subclasses of Generalized Hurwitz-Lerch Zeta Function considered by Mohammed and Darus.

Denote by D^{λ} : $\mathcal{A} \to \mathcal{A}$ the operator labelled as

$$D^{\lambda}f(z) = \frac{z}{(1-z)^{\lambda+1}} * f(z) \quad \lambda > -1.$$

More precisely, $D^0 f(z) = f(z)$ and $D^1 f(z) = zf'(z)$ and,

$$D^m f(z) = \frac{z(z^{m-1}f(z))^{(m)}}{m!}, \quad m \in N_0 = N \cup 0.$$

we spot that

$$D^{m}f(z) = z + \sum_{k=2}^{\infty} C(m, k) a_{k} z^{k}$$

where
$$C(m, k) = \frac{(k+m-1)!}{(m!)(k-1)!}$$
.

 $D^n f$ is termed as the *n*-th order Ruscheweyh.

 $I_n: \mathcal{A} \to \mathcal{A}$ the operator is labelled as:

$$f_n(z) * f_n^{-1}(z) = \frac{z}{1-z}$$
, where $f_n(z) = \frac{z}{(1-z)^{n+1}}$, $n \in N_0$.

Then,

$$f_n^{-1}(z) = \left[\frac{z}{(1-z)^{n+1}}\right]^{(-1)}$$

$$I_n f(z) = z + \sum_{k=2}^{\infty} \frac{n! \, k!}{(k+n-1)!} a_k z^k$$

Vol. 44 No. 5 (2023)

Also $I_0 f(z) = f(z)$ and $I_1 f(z) = z f'(z)$. I_n is termed as Noor integral operator defined and studied by Noor and Noor.

For $f \in \mathcal{A}$, Salagean familiarized the following operator

$$D^n f(z) = f(z) * \left(z + \sum_{k=2}^{\infty} k^n z^k\right), \quad m \in N_0 = N \cup 0.$$

Note that $D^0 f(z) = f(z)$ and $D^1 f(z) = zf'(z)$.

Latterly, Shaqsi and Darus putforththe linear operator

$$D_{\lambda}^{n}f(z)=\left(G(n,z)\right)^{(-1)}*f(z),$$

$$G(n,z) = \sum_{k=1}^{\infty} \frac{z^k}{k^n}$$
 and

$$\sum_{k=1}^{\infty} \frac{z^k}{k^n} * \left(G(n,z) \right)^{(-1)} = \frac{z}{(1-z)^{\lambda+1}} = \sum_{k=0}^{\infty} \frac{(\lambda+1)_k}{k!} z^{k+1} \quad \lambda > -1.$$

where

$$(G(n,z))^{(-1)} = \sum_{k=1}^{\infty} k^n \frac{(k+\lambda-1)!}{\lambda! (k-1)!} a_k z^k.$$

Hence

$$D_{\lambda}^{n}f(z) = z + \sum_{k=2}^{\infty} k^{n} \frac{(k+\lambda-1)!}{\lambda! (k-1)!} a_{k} z^{k}, \quad n, \lambda \in N_{0}.$$

Now, we consider

$$\phi_{\mu}(z,s,\sigma) = \sum_{k=0}^{\infty} \frac{(\mu)_k}{k!} \frac{z^k}{(k+\sigma)^{\mu}}, z \in \mathbb{C}, |z| < 1, \sigma \in \mathbb{C} \{0,-1,-2,\dots\}, \mu, s \in \mathbb{C},$$

the generalized Hurwitz-Lerch zeta function, putforth by Goyal and Laddha.

$$(\mu)_k = \frac{\Gamma(\mu+k)}{\Gamma(\mu)} = \mu(\mu+1) \dots (\mu+k-1)$$
 for $k = 1,2,3,\dots$ $\mu \in R$ $(\mu)_0 = 1$

Apparently, the distinct cases of Hurwitz-Lerch zeta function were investigated by numerous authors like Lin and Srivastava and Kanemitsu et al..

when $\sigma = 1$, the generalized Hurwitz-Lerch zeta function diminishes to

$$z\phi_{\mu}(z,s,1) = \sum_{k=1}^{\infty} \frac{(\mu)_{k-1} z^k}{(k-1)! \, k^s}$$

Now introduced a function $\left[z\phi_{\mu}(z,s,1)\right]^{(-1)}$ given by:

$$[z\phi_{\mu}(z,s,1)] * [z\phi_{\mu}(z,s,1)]^{(-1)} = \frac{z}{(1-z)^{\lambda+1}} = \sum_{k=0}^{\infty} \frac{(\lambda+1)_k}{k!} z^{k+1},$$

and gained a linear operator:

Vol. 44 No. 5 (2023)

$$\theta_{\mu}^{\lambda,s}f(z) = \left[z\phi_{\mu}(z,s,1)\right]^{(-1)} * f(z)$$

From [2.2] we attained

$$^{(-1)} = \sum_{k=1}^{\infty} \frac{(\lambda+1)_{k-1}}{(\mu)_{k-1}} k^{s} z^{k},$$

For $s, \lambda \in \mathbb{N}_0$ and $\mu \in \mathbb{N}$, we observe

$$\theta_{\mu}^{\lambda,s}f(z) = z + \sum_{k=2}^{\infty} \frac{(\lambda+1)_{k-1}}{(\mu)_{k-1}} k^s a_k z^k,$$

putforth by Mohammed and Darus or

$$\theta_{\mu}^{\lambda,s} f(z) = z + \sum_{k=2}^{\infty} \frac{(k+\lambda-1)(\mu-1)!}{\lambda! (k+\mu-2)!} k^s a_k z^k,$$

which is analogous to:

$$\theta_{\mu}^{\lambda,s}f(z) = z + \sum_{k=2}^{\infty} \frac{C(\lambda,k)}{\delta(\mu,k)} k^{s} a_{k} z^{k},$$

where

$$C(\lambda, k) = \frac{(1+\lambda)_{k-1}}{(\lambda)!}$$
 and $\delta(\mu, k) = \frac{(\mu)_{k-1}}{(\mu-1)!}$

We observe that

- 1. Ruscheweyh introduced the derivative operator $\theta_1^{\lambda,0} f(z)$,
- 2. Salagean introduced the derivative operator $\theta_1^{1,s} f(z)$
- 3. Noor and Noor introduced the integral operator $\theta_{u+1}^{0,0} f(z)$
- 4. Shaqsi and Darus introduced $\theta_1^{k,s} f(z)$

More precisely, $\theta_1^{0,0} f(z) = f(z)$ and $\theta_1^{0,1} f(z) = zf'(z)$. In view of [1.1] and [2.4] we obtain:

$$z\left(\theta_{\mu}^{\lambda,s}f(z)\right)' = (\lambda+1)\theta_{\mu}^{\lambda+1,s}f(z) - \lambda\theta_{\mu}^{\lambda,s}f(z)$$

and

$$z\left(\theta_{\mu}^{\lambda,s}f(z)\right)'=\mu\theta_{\mu}^{\lambda,s}f(z)-(\mu-1)\theta_{\mu+1}^{\lambda,s}f(z).$$

The relation [2.9] play vital role in obtaining our results.

Lemma 1. Raghib Nadeem Let h be convex holomorphic function in \mathbb{U} and q(0) = 1, $\Re(vq(z) + \mu) > 0$ $(v, \mu \in \mathbb{C})$. If p isholomorphic in \mathbb{U} and p(0) = 1 Hence $p(z) + \frac{zp'(z)}{vp(z) + \mu} < q(z)$, $(z \in \mathbb{U}) \Rightarrow p(z) < q(z)$ $(z \in \mathbb{U})$.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

Lemma 2. S.S. Miller and P.T. Mocanu Let q be convex in \mathbb{U} and $E \ge 0$. Suppose B is holomorphic in \mathbb{U} and $\Re(B(z)) > 0$. If g is holomorphic in \mathbb{U} with q(0) = g(0). Hence $Ez^2g''(z) + B(z)g(z) < q(z) \Rightarrow g(z) < q(z)$.

Eventually, we recollect the Bernardi-Libera-Livingston integral operator given by

$$L_{\gamma}(f(z)) = \frac{\gamma + 1}{z^{\gamma}} \int_{0}^{z} t^{\gamma - 1} f(t) dt, \quad \gamma > -1.$$

3 Main Results

Theorem 1. Let $f \in \mathcal{A}$. If $\theta_{\mu}^{\lambda,s} f(z) \in k - \mathcal{ST}(\alpha)$. Then $\theta_{\mu}^{\lambda+1,s} f(z) \in k - \mathcal{ST}(\alpha)$.

Proof. Let

$$s(z) = z \frac{\left(\theta_{\mu}^{\lambda,s} f(z)\right)'}{\theta_{\mu}^{\lambda,s} f(z)} \quad (z \in \mathbb{U})$$

where s is holomorphic in \mathbb{U} and s(0) = 1. Utilizind [2.9], the following is obtained

$$s(z) + \lambda = (\lambda + 1) \frac{\theta_{\mu}^{\lambda + 1, s} f(z)}{\theta_{\mu}^{\lambda, s} f(z)}$$

Differentiating both sode logarithmically w.r.to z and multiplying with z, we attain

$$s(z) + \frac{zs'(z)}{s(z) + \lambda} = \frac{z\left(\theta_{\mu}^{\lambda + 1, s} f(z)\right)'}{\theta_{\mu}^{\lambda + 1, s} f(z)}.$$

From this argument, we affirm

$$s(z) + \frac{zs'(z)}{s(z) + \lambda} < Q_{k,\alpha}(z).$$

Using Lemma 1 and [1.3a], $Q_{k,\alpha}(z)$ is injective holomorphic function on an open subset of the complex plane and convex in \mathbb{U} , also $\Re\left(Q_{k,\alpha}(z)\right) > \frac{k+\alpha}{k+1}$.

Theorem 2. Suppose $f \in \mathcal{A}$. If $\theta_{\mu}^{\lambda,s} f(z) \in k - \mathcal{UCV}(\alpha)$, then $\theta_{\mu}^{\lambda+1,s} f(z) \in k - \mathcal{UCV}(\alpha)$.

Proof. From equations [1.2] and [1.3] and the Theorem 1 we attain

$$\begin{array}{ll} \theta_{\mu}^{\lambda,s}f(z) \in k - \mathcal{UCV}(\alpha) \Leftrightarrow & z\left(\theta_{\mu}^{\lambda,s}f(z)\right)' \in k - \mathcal{ST}(\alpha) \\ \Leftrightarrow & \theta_{\mu}^{\lambda,s}zf'(z) \in k - \mathcal{ST}(\alpha) \\ \Rightarrow & \theta_{\mu}^{\lambda+1,s}zf'(z) \in k - \mathcal{ST}(\alpha) \\ \Leftrightarrow & \theta_{\mu}^{\lambda+1,s}f(z) \in k - \mathcal{UCV}(\alpha) \end{array}$$

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

Theorem 3. Suppose $f \in \mathcal{A}$. If $\theta_{\mu}^{\lambda,s} f \in \mathcal{UCC}(k,\alpha,\beta)$, then $\theta_{\mu}^{\lambda+1,s} f \in \mathcal{UCC}(k,\alpha,\beta)$.

Proof. Given

$$\theta_u^{\lambda,s} f(z) \in \mathcal{UCC}(k,\alpha,\beta)$$

$$\frac{z\left(\theta_{\mu}^{\lambda,s}f(z)\right)'}{k(z)} < Q_{k,\alpha}(z), for \ certain \ k(z) \in k - \mathcal{ST}(\beta).$$

For g(z), $\theta_{\mu}^{\lambda,s}g(z) = k(z)$ we attain

$$\frac{z\left(\theta_{\mu}^{\lambda,s}f(z)\right)'}{\theta_{\mu}^{\lambda,s}g(z)} < Q_{k,\alpha}(z).$$

Letting

$$h(z) = \frac{z\left(\theta_{\mu}^{\lambda+1,s}f(z)\right)'}{\theta_{\mu}^{\lambda+1,s}g(z)} \quad and \quad H(z) = \frac{z\left(\theta_{\mu}^{\lambda+1,s}g(z)\right)'}{\theta_{\mu}^{\lambda+1,s}g(z)},$$

Hence h, H are holomorphic in \mathbb{U} with h(0) = H(0) = 1. Using Theorem 1,

$$\theta_{\mu}^{\lambda+1,s}g(z) \in k - \mathcal{ST}(\beta) \text{ with } \Re(H(z)) > \frac{k+\beta}{k+1}$$

Also

$$z\left(\theta_{\mu}^{\lambda+1,s}f(z)\right)' = \left(\theta_{\mu}^{\lambda+1,s}g(z)\right)h(z)$$

Differentiating [neweq] on both sides w.r.to z, we attain

$$\frac{z\left(z\left(\theta_{\mu}^{\lambda+1,s}f(z)\right)'\right)'}{\theta_{\mu}^{\lambda+1,s}g(z)} = \frac{z\left(\theta_{\mu}^{\lambda+1,s}g(z)\right)'}{\theta_{\mu}^{\lambda+1,s}g(z)}h(z) + zh'(z) = H(z).h(z) + zh'(z).$$

Using [2.9], we attain

$$\begin{split} \frac{z(\theta_{\mu}^{\lambda,s})'}{\theta_{\mu}^{\lambda,s}g(z)} &= \frac{\theta_{\mu}^{\lambda,s}(zf'(z))}{\theta_{\mu}^{\lambda,s}g(z)} \\ &= \frac{z(\theta_{\mu}^{\lambda+1,s}zf'(z))' + \lambda\theta_{\mu}^{\lambda+1,s}(zf'(z))'}{z(\theta_{\mu}^{\lambda+1,s}g(z))' + \lambda\theta_{\mu}^{\lambda+1,s}g(z)} \\ &= \frac{\frac{z(\theta_{\mu}^{\lambda+1,s}zf'(z))'}{\theta_{\mu}^{\lambda+1,s}g(z)} + \lambda\frac{\theta_{\mu}^{\lambda+1,s}(zf(z))'}{\theta_{\mu}^{\lambda+1,s}g(z)} \\ &= \frac{\frac{z(\theta_{\mu}^{\lambda+1,s}zf'(z))'}{\theta_{\mu}^{\lambda+1,s}g(z)} + \lambda\frac{\theta_{\mu}^{\lambda+1,s}(zf(z))'}{\theta_{\mu}^{\lambda+1,s}g(z)} \\ &= \frac{H(z)h(z) + zh'(z) + \lambda h(z)}{H(z) + \lambda} \\ &= h(z) + \frac{zh'(z)}{H(z) + \lambda}. \end{split}$$

Using [3.4], [3.5] and above equation, we conclude

Vol. 44 No. 5 (2023)

$$h(z) + \frac{zh'(z)}{H(z) + \lambda} < Q_{k,\alpha}(z)$$

When E = 0 with $B(z) = \frac{1}{H(z) + \lambda}$, we attain

$$\Re(B(z)) = \frac{\Re(H(z) + \lambda)}{|H(z) + \lambda|^2} > 0$$

the above mentioned inequality well pleased the constraints prescribed in Lemma 1. Therefore

$$h(z) \prec Q_{k,\alpha}(z)$$

Using analogous argument in Theorem 3, we can verify the succeding theorems.

Theorem 4. Suppose $f \in \mathcal{A}$, if $\theta_{\mu}^{\lambda,s} f \in \mathcal{UQC}(k,\alpha,\beta)$, then $\theta_{\mu}^{\lambda,s} f(z) \in \mathcal{UQC}(k,\alpha,\beta)$.

Theorem 5. Suppose $\gamma > -\frac{k+\alpha}{k+1}$, if $\theta_{\mu}^{\lambda,s} f \in k - \mathcal{UCV}(\alpha)$ so is $\theta_{\mu}^{\lambda,s} L_{\gamma}(f(z))$.

Theorem 6. Suppose $\gamma > -\frac{k+\alpha}{k+1}$, if $\theta_{\mu}^{\lambda+1,s} f \in k - \mathcal{UCC}(\alpha,\beta)$ so is $\theta_{\mu}^{\lambda,s} L_{\gamma}(f(z))$.

Proof. By the definition, we have

$$K(z) = \theta_{\mu}^{\lambda,s} g(z) \in k - \mathcal{ST}(\beta)$$

Hence

$$\frac{z\left(\theta_{\mu}^{\lambda+1,s}\big(f(z)\big)\right)'}{\theta_{\mu}^{\lambda+1,s}\big(g(z)\big)} < Q_{k,\alpha}(z)\big(z \in \mathbb{U}\big).$$

Now from [2.8] we have

$$\frac{z(\theta_{\mu}^{\lambda+1,s}f)'}{\theta_{\mu}^{\lambda+1,s}(g(z))} = \frac{z(\theta_{\mu}^{\lambda+1,s}L_{\gamma}(zf'))' + \gamma\theta_{\mu}^{\lambda+1,s}L_{\gamma}(zf'(z))}{z(\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z)))' + \lambda\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z))}$$

$$= \frac{\frac{z(\theta_{\mu}^{\lambda+1,s}(zf'(z)))'}{\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z))} + \frac{\gamma\theta_{\mu}^{\lambda+1,s}(zf'(z))}{\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z))}$$

$$= \frac{\frac{z(\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z)))'}{\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z))} + \gamma$$

Since $\theta_{\mu}^{\lambda+1,s}g \in k - \mathcal{ST}(\beta)$, by Theorem 4, we have $L_{\gamma}\left(\theta_{\mu}^{\lambda+1,s}g\right) \in k - \mathcal{ST}(\alpha)$. Taking

$$\frac{z\left(\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z))\right)'}{\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g)} = H(z)$$

We observe $\Re(H(z)) > \frac{k+\beta}{k+1}$. Also

$$h(z) = \frac{z \left(\theta_{\mu}^{\lambda+1,s} L_{\gamma}(f(z))\right)'}{\theta_{\mu}^{\lambda+1,s} L_{\gamma}(g(z))}$$

we obtain

$$z\left(\theta_{\mu}^{\lambda+1,s}L_{\gamma}(f(z))\right)'=h(z)\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g(z)).$$

Differentiating [eq3.18] both sides w.r.to z, we attain

$$\frac{z\left(\theta_{\mu}^{\lambda+1,s}\left(zL_{\gamma}(f)\right)'\right)'}{\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g)} = zh'(z) + h(z)\frac{z\left(\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g)\right)'}{\theta_{\mu}^{\lambda+1,s}L_{\gamma}(g)}$$
$$= zh'(z) + H(z)h(z).$$

Using [eq3.17] and [eq3.19], we attain

$$\frac{z\left(\theta_{\mu}^{\lambda+1,s}f(z)\right)'}{\theta_{\mu}^{\lambda+1,s}q} = \frac{zh'(z) + H(z)h(z) + \gamma h(z)}{H(z) + \gamma}$$

Also using [eq3.16], we attain

$$h(z) + \frac{zh'(z)}{H(z) + \gamma} < Q(k, \alpha)(z).$$

We proceed $B(z) = \frac{1}{H(z) + \gamma}$ in [eq3.21] and observing that $\Re(B(z)) > 0$ with $\gamma > -\frac{k + \alpha}{k + 1}$. Now for A = 0 and B. Also the suitable conditions of Lemma 2 are satisfied, the proof is concluded.

An analogous argument leads to the following theorem

Theorem 7. Let
$$\gamma > -\frac{k+\alpha}{k+1}$$
. If $\theta_{\mu}^{\lambda+1,s} f(z) \in \mathcal{UQC}(k,\alpha,\beta)$ so is $\theta_{\mu}^{\lambda,s} L_{\gamma}(f(z))$.

References

- [1] H. A. Al-Kharsani and S. S. Al-Hajiry, Subordination results for the family of uniformly convex *p*-valent functions, J. Inequal. Pure Appl. Math. **7** (2006), no. 1, Article 20, 11 pp. (electronic).
- [2] P. Eenigenburg et al., On a Briot Bouquet differential subordination, in *General inequalities, 3 (Oberwolfach, 1981)*, 339–348, Internat. Schriftenreihe Numer. Math., 64, Birkhäuser, Basel.
- [3] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364–370.
- [4] S.P. Goyal and R. K. Laddha, On the generalized Riemann zeta functions and the generalized Lambert transform, Ganita Sandesh 11: 99-108.
- [5] S. Kanas, Alternative characterization of the class k UCV and related classes of univalent functions, Serdia Math. J., **25** (1999), 341–350.
- [6] S. Kanas, Techniques of the differential subordination for domains bounded by conic sections, Internat. J. Math. Sci., **38** (2003), 2389–2400.
- [7] S. Kanas, Differential subordination related to conic sections, J. Math. Anal. Appl., 317 (2006), 650-658.
- [8] S. Kanas, Subordination for domains bounded by conic sections, Bull. Belg. Math. Soc. Simon Stevin, **15** (2008), 589–598.
- [9] S. Kanas, Norm of pre-Schwarzian derivative for the class of *k*-uniform convex and *k*-starlike functions, Appl. Math. Comput, **215** (2009), 2275–2282.
- [10] S. Kanas and H. M. Srivastava, Linear operators associated with *k*-uniform convex functions, Integral Transforms Spec. Function., **9** (2000), 121–132.
- [11] S. Kanas and A. Wisniowska, Conic regions and *k*-uniform convexity, II, Zeszyty Nauk.Politech. Rzeszowskiej Mat., **22** (1998), 65–78.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

- [12] S. Kanas and A. Wiśniowska, Conic regions and *k*-uniform convexity, J. Comput. Appl. Math. **105** (1999), no. 1-2, 327–336.
- [13] S. Kanas and A. Wiśniowska, Conic regions and *k*-starlike function, Rev. Roumania Math. Pures Appl., **45** (2000), 647–657.
- [14] S. Kanemitsu, M. Katsurada and M. Yoshimoto, *On the Hurwitz-Lerch zeta-function*, Aequationes Mathematics 59: 1-19.
- [15] F. R. Keogh and E. P. Merkes, *A coefficient inequality for certain classes of analytic functions*, Proc. Amer. Math. Soc. **20** (1969), 8–12.
- [16] S. Lin and H. M. Srivastava, *Some families of the Hurwitz-Lerch zeta functions and associated fractional derivative and other integral representations*, Appl. Math. and Comp. 154: 725-733.
- [17] S. S. Miller and P. T. Mocanu, Differential subordinations and inequalities in the complex plane, J. differential equations **67** (1978), 199-211.
- [18] A.Mohammed and M.Darus, An Operator defined by convolution involving the generalised Hurwitz-Lerch Zeta function, Sains Malaysiana 41(12)(2012): 1657-1661.
- [19] K. I. Noor, On new classes of integral operators, Jour. of Nat. Geo. 16: 71-80.
- [20] K. I. Noor and M. A. Noor, On integral operators, Jour. of Math. Anal. and Appl. 238: 341-352.
- [21] D. V. Prokhorov and J. Szynal, *Inverse coefficients for* (α, β) -convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A **35** (1981), 125–143 (1984).
- [22] S.D. Purohit and R.K. Raina, Certain subclasses of analytic functions associated with fractional q-calculus operators, Mathematica Scandinavica, 109 1 (2001), pp. 55-77.
- [23] Raghib Nadeem, Analytical properties of the Hurwitz–Lerch zeta function, Advances in Difference Equations, (2020) 2020:466, 1-15.
- [24] F. Rønning, A survey on uniformly convex and uniformly starlike functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A **47** (1993), 123–134.
- [25] S. Ruscheweyh, New criteria for univalent functions, Proc of Amer. Math. Soc. 49: 109-115.
- [26] W. C. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57 (1992), no. 2, 165–175.
- [27] G. S.Salagean, Subclasses of univalent functions Lecture Notes in Math. 1013: 262-372.
- [28] K. Al-Shaqsi and M. Darus, *An operator defined by convolution involving the polylogarithms functions*, Jour. of Math. and Stat. 4: 46-50.