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Abstract: - Genetic Algorithm (GA) is a meta-heuristic inspired by evolution, that belongs to the broad family of 

evolutionary algorithms. These algorithms are widely employed to provide high-quality solutions to optimization 

problems by concentrating on evolutionary biology operators (biological-inspired operators) such as:  mutations, 

crossover, and selection. This research aims to provide a comprehensive overview of GAs. The various research 

areas involved in GAs are covered, such as: the field of genetic operators, fitness function and hybrid algorithms, 

in addition to discuss GA models. Also, some other information on diversity maintenance methods is given, to 

allow readers to widen their knowledge in this field. 
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1. Introduction 

In recent years, real-world applications have become significantly more complex. Bioinformatics, Robotics, data 

mining, operations research, machine learning, decision making, and many other topics are extremely complicated 

and difficult to solve. Therefore, the term Evolutionary Algorithms (EAs) appeared to deal with such complex 

problems [1] [2].  EAs are a group of algorithms that were originally created to handle combinatorial optimization 

problems [3]. They try to solve optimization problems by mimicking Darwinian evolution process [4] [5]. They 

are considered as a branch of Evolutionary Computation (EC). EC is a subfield of Computational Intelligence that 

is a special branch of Artificial Intelligence (AI) [6]. Figure 1 depicts different approaches to optimization 

strategies, with a focus on evolutionary approaches. 

EAs are population-based metaheuristic optimization algorithms that mimic the theory of natural evolution [8], 

[9], [10], [11] and [12]. Using the survival of the fittest concept, evolutionary algorithms work on a set of possible 

solutions to produce the best solution or the closest to the best [13]. The process of choosing individuals based on 

their degree of fitness in the problem domain and breeding them using operators (such as crossover and mutation) 

taken from natural genetics, produces a new set of approximations at each generation [3], [6]. Thus, this process 

results in the evolution of groups of individuals that are more adapted to their environment than those from prior 

generations [14]. Figure 2 shows the diagrammatic view of simple EA. 

In general, The EAs family includes the following main algorithms: Genetic Algorithm (GA) [16], Evolution 

Strategy (ES) [17], Evolutionary Programming (EP) [18], Genetic Programming (GP) [19], and Differential 

Evolution (DE) [20]. Each of these approaches has several variations, and each is utilized in a wide range of 

industrial applications [7]. 
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Figure 1 Classification of nature-inspired approaches [7] 
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Figure 2 the general framework of the evolutionary algorithms [15] 

1.2 Genetic Algorithms  

 

GA is the most common type of EA [21], because it demonstrates the most accurate mapping of the natural 

evolution process on a computer [2]. It was introduced in the early 1970’s in the University of Michigan by John 

Holland [22]. It is a stochastic optimization technique inspired by the theory of natural selection [23]. It is a 

population-based search method that uses the principle of survival of the fittest, that generates fresh sample points 

in a search space by using selection and recombination (crossover) operators [24] [25] [26].  

GA's popularity has grown and spread among researchers  in various domains [27], since it has demonstrated its 

ability to solve a wide range of problems [28], and it is therefore regarded as an optimization tool [29] [30] and 

[26]; some examples of these domains are: robotics [31], software engineering [32], computer networks [33], 

speech recognition [34], Natural language processing [35], image processing [36], etc.  

GAs, in contrast to local search techniques, are classified as global search heuristics and are based on a series of 

independent computations managed by a probabilistic approach [37]. GA begins with a set of solutions known as 

the population. A chromosome represents solutions. The population size remains constant from generation to 

generation. At the end of each generation, each chromosome’s fitness is assessed, and chromosomes for the 

following generation are probabilistically picked based on their fitness ratings. Some of the chosen chromosomes 

mate at random and generate children (offspring). Crossover and mutation occur at random while creating 

offspring. The average fitness value of the new generation chromosomes may be higher compared to the fitness of 

the old generation, because there is a high probability of selecting chromosomes with high fitness values. The 

evolution procedure is repeated until the final condition is met [24]and [38]. 

2. Canonical GA (CGA) 

GA developed by John Holland in 1965 is referred regarded as the classic (Canonical) GA. Canonical GA (CGA) 

is depicted in Figure (3). It uses a binary/bit-string format to encode the genome, uses roulette-wheel proportional 

for selection, and relies on uniform mutation and on a single point crossover [26]. 

GA deals with a large number of potential solutions (population), in which each solution is represented by a 

different chromosome. The initial step is to encode all feasible solutions onto a chromosome, which is referred to 

as "encoding" or "representation" of problem solutions (e.g. binary encoding). The next steps are described as 

follows [39]: 

1. Initialization: Generating a random population [40], in which each member of this population in the CGA 

will be a binary string of length L that matches to the problem [26]. 

2. Evaluation: To distinguish good solutions from bad ones, each chromosome's fitness is calculated. Fitness 

is the term used in GAs to describe the measurement of how near an individual is to the goal [41].  
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3. New Generation: Repeating the steps from  6 to 8 to generate a new population until the new population 

is finished. 

4. Selection: According to the fitness value, two chromosomes are chosen from the population, the better 

ones are more often picked for reproduction than the bad ones; this is done at random, with a probability based on 

the individuals' relative fitness. In CGA, the roulette wheel Selection is used. 

 

Figure 3 Flowchart of Canonical Genetic Algorithm [42] 

 

5. Reproduction: The process may employ both crossover and mutation to create new chromosomes: 

• Crossover: Parts of two or more parental solutions are combined to create new, maybe superior solutions 

through recombination (i.e. offspring). This can be accomplished in a variety of ways (some of which are discussed 

in the next section). In CGA, the single-point crossover operator with crossover probability is used. 

• Mutation: Mutation modifies a solution locally, but randomly, and generally it entails one or more 

modifications to an individual's attribute or traits. Again, there are a lot of different mutations in which some of 

them are discussed in the next section. In CGA, the uniform mutation operator is used to generate offspring with 

a mutation probability.                                          

6. Regeneration (Replacement): Individuals from the previous population are replaced by new ones in the 

last stage. 

7. Steps 2–6 should be repeated until a termination condition is fulfilled. 
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8. Criteria for Stopping: Stop and return the best solution in the current population if the end condition is 

met. Several terminating conditions have been imposed [43], such as [25] [43]: 

• Achieving the maximum number of generations 

•  Improving fitness continues to fall short of the threshold value and the opportunity to affect change in 

future generations has limited. 

• Implying that the likelihood of population variety has increased. 

3. GA Structure Modification 

A standard GA can solve a complex problem that traditional gradient-based or hill-climbing approaches might 

struggle to solve. On the other hand, a standard GA, has several flaws. The structure of GA must be changed to 

meet the need when the problem grows more difficult, multitasking, and contradictory. There are also many aspects 

of change that must be introduced on chromosomes, operators, and initial populations [44], [45]. 

1. Chromosome Encoding (Representation) 

The first stage in implementing GA is to establish a link between the actual world and the GA's universe. This is 

referred to as "encoding". Encoding is mostly determined by the problem to be addressed, as there are several 

encoding techniques available. As a result, a suitable methodology must be chosen. The following are some 

examples of encoding techniques: 

• Binary encoding [16]: In this method of encoding, a chromosome is represented by a binary string (e.g. 

Knapsack problem). 

• Value encoding: A series of values is used to represent each chromosome. These values might be real 

number or character, etc. (e.g. a neural network) [46]. 

• Permutation encoding: This form of chromosome represents a place in a sequence (e.g., TSP) [47]. 

• Tree encoding: A tree of functions or instructions represents the chromosome (e.g. Floor planning) [48]. 

 

2. Initial Population 

The first phase of every GA application is the population seeding phase. As input for GA, it produces a population 

of possible solutions or individuals at random or through heuristic initialization. Because the quality of individual 

solutions created in the initial population stage is significant in determining the quality of the ultimate optimal 

solution, population initialization is an important phase in GA [49]. Random initialization is the most frequent 

approach for generating the initial population in GA [50] [51] and [52]. Random approach has a low fitness 

solution, which reduces the chances of discovering an optimal or near-optimal solution; it also takes a considerable 

search time if information is lacking. In a large search space, on the other hand, if prior heuristic knowledge about 

the best solution is provided, it may simply build the initial population and identify high-quality solution regions. 

The use of heuristic approaches to generate initial population seeding results in a high-quality population, allowing 

GAs to identify better solutions quicker. However, it is possible that it will end up with a narrow search space and 

will never be able to find globally optimum solution [53]. 

Since the inception of GA ideas, a variety of initialization strategies have been introduced, such as:  Gene bank 

initialization technique [54], Nearest Neighbor Initialization Technique [55], K-means Initial Population (KIP) 

[56], Initialization Mechanism Based on Regression Techniques [53] [51],  and Equi-begin Vari-diversity (EV) 

[56].  

3. Selection Mechanism  

The selection operator aims to leverage the best attributes of excellent candidate solutions in order to enhance 

these solutions across generations, which should, in theory, help GA to converge to an acceptable and adequate 

result of the optimization issue at hand [57]. The most crucial aspect that can impact a GA's performance is the 

selection operator [58] [59]. 

Several selection methods had been proposed in the literature, including Roulette Wheel Selection, Stochastic 

Universal Sampling, Tournament Selection, and Boltzmann Selection, among others. Despite decades of research, 
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no universal criteria or theoretical backing exist for picking an appropriate selection procedure for each problem 

[60] [61]. A summary of each mechanism is presented below: 

• Fitness Proportionate Selection: Fitness proportional selection was the first type of selection presented 

when genetic algorithms were initially established. Because of the likeness of selection to an actual roulette wheel; 

it is also known as Roulette Wheel Selection (RWS) [62]. It uses the fitness function to assign a fitness score to 

each chromosome (individual) in the population. Fitness level is utilized to correlate a likelihood of selection with 

each chromosome, and it is used to determine which solution is best [63]. Due to the possibility of the presence of 

a dominating person who always wins the competition and is picked as a parent, a well-known disadvantage of 

this approach is the potential of early convergence of GA to a local optimum [57]. 

• Stochastic Universal Sampling (SUS): This mechanism is based on the kind of fitness proportionate 

selection; it chooses solutions at equally spaced intervals using a single random value to sample all of them. One 

of its downsides of this mechanism is the premature convergence [24]. 

• Linear Rank Selection (LRS): LRS is one of the most widely used selection strategies, as well as a version 

of RWS that attempts to address the problem of premature convergence. It is based on an individual's rank rather 

than their fitness [61]. Low convergence sorting required, and computationally expensive, are some of its 

disadvantages [24]. 

• Tournament Selection (TOS):  Due to its effectiveness and ease of implementation, this sort of selection 

approach is arguably the most prevalent in GAs [64]. In tournament selection, n people are chosen at random from 

a bigger population, and the chosen individuals compete against one another. The person who achieves the best 

level of fitness wins and becomes a member of the next generation population. Tournament selection also allows 

all individuals a chance to be chosen, preserving diversity, albeit maintaining diversity may slow convergence 

pace [65].  

• Truncation Selection (TRS):  This approach is a relatively basic technique that ranks the possible solutions 

of population in order of fitness. Except for a very large population, it is less commonly employed in practice than 

other strategies [61]. The population sorting determines the time complexity of the truncation selection. Using a 

merge sort, for example, assures that the time complexity is O (n log n). While the truncation sort is the fastest of 

the choices presented, it has the disadvantage of excluding the greatest information variety in a given evolutionary 

set. Because only the best options are ever explored, the suggested ultimate solutions may become trapped at a 

local maximum of being a good, but not the best solution [66]. 

• Boltzmann Selection: This type is based on Monte Carlo Simulation's entropy and sampling 

methodologies. It aids in the solution of the premature convergence problem [67]. The chances of picking the best 

string are really good, and it takes very little time to do so. However, there is a risk of data loss [24]. 

• Elitism Selection: The initial best chromosomes or a few best chromosomes could be replicated to the 

new population via elitist selection. To begin, the chromosomes might be arranged in decreasing order. After that, 

every two chromosomes in the arrange set are selected. We don't need to make any changes since we can pass on 

the greatest individuals to the next generation [68]. 

 

4.  Crossover (Recombination) Operator 

By exchanging parts of the parent genes, two parents (chromosomes) can produce a new child. It's more probable 

that the new offspring (children) will inherit good characteristics from their parents and, as a result, do better than 

their forefathers [69] [70].  

Many different types of crossover had been produced throughout the years. The type of crossover we choose is 

mostly determined by the type of encoding employed; this can be difficult at times, but it usually increases the 

genetic algorithm's performance [71]. The first type was one-point crossover and expanded into a variety of 

approaches to handle a variety of situations such as Ring crossover [72], Uniform crossover [73], Heuristic  

crossover [74],  Multi-point crossover [75], Arithmetic crossover, and for the order-based problem, Cycle 

crossover (CX) [76],  the Partially Matched crossover (PMX) [77], Order crossover (OX) [30], Collision 

Crossover, and Select the best crossover (SBC) [69].  
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5. Mutation Operator 

It is the process of changing or swapping certain genes inside a single chromosome in order to build chromosomes 

that supply new solutions for the following generation [70]. Because of its influence on the investigation of global 

optima, mutation is one of the most critical stages of GA [78] [79], [80] It avoids the convergence of the local 

optimum by exploring fresh locations in the search space [81]. Holland invented classical mutation (Bit-flip 

Mutation) and because mutation is a critical process in the search process, several mutations have been developed 

in the literature such as Exchange Mutation,  Gaussian Mutation,  [82], Uniform Mutation and Creep Mutation 

[83], Inversion Mutation [84], Displacement Mutation [85], Worst gene with worst gene mutation [86], and 

IRGIBNNM [87]. 

6. Replacement (Reinsertion) 

We must introduce the new offspring solutions into the parental population after they have been formed through 

crossover and mutation. There are several approaches may be used. The parent chromosomes were previously 

chosen based on their fitness, so it is expected that  the offspring are among the fittest in the population, and that 

the population will progressively, on average, raise its fitness [39] [88]. The following are some of the most 

frequent replacement strategies: 

• Delete All: This approach removes all members of 

the present population and replaces them with the same number of newly generated chromosomes. Due to its 

relative ease of implementation, this is likely the most frequent strategy and will be the technique of choice for 

most people. 

• Steady-State: This approach replaces n existing members with n new members by deleting n old 

members. This deletion technique's parameter, n, is the number of items to remove and replace at any given 

moment. Another factor to consider while using this strategy is determining which members of the present 

population to remove [39] [89], are the worst population eliminated? or randomly selected, or eliminate the 

chromosomes that were used as parents? This is, again, a technical parameter. 

• Steady-State-no-Duplicates: This approach 

verifies that no duplicate chromosomes are introduced to the population, much like the steady-state strategy; this 

increases the processing burden but allows more of the search space to be investigated [39]. 

• Expansion Sampling: It combines the new 

individuals with the previous generation and selects the fittest half-individuals for the following generation. The 

traditional GA places new individuals straight into the next generation, denying older, better individuals who have 

been crossed or mutated access to future generations, slowing the population's convergence rate. The large-scale 

optimum sampling ensures that the better individuals make it into the following generation, speeding up 

convergence [90]. 

4. GA Control Parameter 

To manage their evolutionary search for a solution to their assigned issues, GAs employ a number of parameters. 

The rate of crossover and the rate of mutation are two examples. The maximum number of generations, the total 

number of individuals in the population, and so forth. When it comes to selecting proper values for these 

parameters, there are no hard and fast rules. A set of control parameters that is optimum or near-optimal for genetic 

algorithm application does not apply to all circumstances. Choosing settings for control parameters is sometimes 

a trial-and-error process. Hand-tuning each of the control settings one at a time is a typical procedure. This may 

be a time-consuming and exhausting process [91]. The basic parameters are as follows: 

• Population Size: The population size is an important parameter that has a direct impact on the capacity to 

find the best solution in the search space. In classical GA, the user establishes a fixed population size that remains 

constant throughout the iterative process. Many studies have shown that having a big population increases the 

accuracy of finding the best solution. However, if the search space is limited, a large population size is not a good 

option.. As a result, the ideal population size has been found, however the size is set. Despite the fact that the 

population size is ideal, the fixed population causes temporal complexity and complicates the search by increasing 

the number of generations required to converge. As a result, the size of the population size must be constantly 
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varied throughout the GA development of new solutions [92] [93]. Many researchers have looked at the impact of 

selecting a suitable initial population size on GA performance as in [94], [95], [96], [97], [98], and [99] . 

• Probability of Crossover (PC):  Crossover probability is a crucial factor in generating new children from a 

pair of chromosomes from two different parents. There is no crossover if the crossover probability is zero; 

offspring have the same chromosomes as their parents in the preceding population. Crossover probability of 100% 

indicates that crossover is responsible for all offspring. In the hopes that the new chromosome population would 

contain both good sections of old chromosomes and maybe new chromosomes that will converge the solution, a 

tradeoff between “0” and “100%” likelihood of crossover" would be a preferable tradeoff to evaluate. It's a good 

thing that some chromosomes from the previous population's generation make it to the next [100]. If the PC value 

is too high, new people are quickly created. Genetic models might be destroyed at the same time. The search 

procedure will be excessively slow if the value of pc is too tiny [101]. 

The fixed crossover rate operator is used by traditional genetic algorithms. Because the crossover rate of 

individuals is the same, all of the contemporary individuals in the cross-operation will be retained at the same 

probability, resulting in the current better individuals being selected several times at the choice operation of the 

next round, and the relatively poor individuals in the current generation being eliminated, causing the population 

to rapidly evolve in the direction of the current optimal individual. If the current optimal individual is a local 

optimum, the entire algorithm can quickly go into local optimum [90].  

• Probability of Mutation (Pm): To avoid the local optimal solution, the mutation operator's probability 

should be between 0 and 100, and a tradeoff probability will give good new offspring to reach the best solution 

[100]. If the value of Pm is too high, genetic algorithms can easily degenerate into a pure random search approach. 

However, if the value of Pm is too low, it is impossible to develop new individuals [101]. A fixed mutation rate is 

used in the classic genetic algorithm's calculation. As a result of the low mutation probability when the algorithm 

is in local optimum, it is difficult to jump out of it; however, in certain cases, even if they jumped out, they would 

be ineffective since they would not be picked in the following choice procedure [90].Several researches had arisen 

with the notion of dynamic PC and Pm   to prevent this scenario and maintain population diversity, such as: [102], 

[103], [104], and [105]. 

5. Premature Convergence 

GA's premature convergence occurs when the genes of a few highly ranked individuals suddenly come to dominate 

the population, forcing it to converge to a local optimum. The loss of variety within the population is usually the 

cause of early convergence. The selection pressure, the schemata dispersion related to crossover operators, and a 

bad evolution parameter setup can all contribute to this loss. When the population of a GA reaches a suboptimal 

state, the genetic operators are no longer able to create children that perform better than their grandparents. To 

avoid early convergence, it is critical to sustain population variety throughout evolution in a GA [106] [107]. 

Premature convergence and slow convergent speed are common downsides of GA [108]. Although GA has not 

attained a global or satisfying optimum, it is unable to create children that exceed their parents due to premature 

convergence. It is difficult for GA to eliminate a local optimum and obtain a global optimum when premature 

convergence occurs [109] [110]. 

Many studies had evolved to avoid premature convergence, such as: Xin et al. established the notion of multi-

domain inversion to expand the number of offspring for the objective of improving local search capability and 

raising the likelihood of producing great individuals [111]. Peng et al. [112] presented Low Visit Cost Crossover 

(LVC) method, which picks the genetic pieces based on nodes and anchor points. This method ensures that the 

population is distributed more evenly. In [108], researcher  introduced the "diversity-guided genetic algorithm-

convolutional neural network (DGGA-CNN)", which employs adaptive parameter management and random 

injection to simplify the search process through exploration and exploitation while maintaining population variety. 

A GA-based Edge Selection approach (ESGA) is suggested in [113]. The edge selection-based technique may 

create viable solutions during initialization and ensures that each feasible solution is generated with a reasonable 

probability, which improves the efficiency of GAs convergence. 

 

 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 5 (2023) 

386 

6. Diversity 

 

Diversity refers to how chromosomes in a population differ from one another. We are continuously looking for 

diversity, and its lack is the main reason for the population to reach local minima [114]. Members of the gene pool 

are too "similar" or lose diversity, which is the obvious explanation for early convergence [115]. However, the 

phrase population diversity had been used qualitatively in several articles to explore premature convergence. This 

insight implies that one way to avoid convergence is to ensure that various members of the gene pool are distinct. 

Because each structure is encoded as a bit string, it is sufficient to ensure that when a new structure is put to the 

pool, it varies from another structure by at least one bit. If the new individual is similar to another individual of 

the gene pool, modify one bit at a time and continue until the outcome is distinct from every other individual of 

the pool [116]. 

Diversity measures are used to offer information about the search state, such as exploring or exploiting [2]. 

Measuring diversity can therefore provide information into an algorithm's behavior at a given time step [117].  

There are several methods for measuring the genetic diversity, such as those found in: [118] [117] [119] and [120] 

and many approaches have arisen in recent years to enhance and sustain population diversity and thereby minimize 

premature convergence. In addition to dealing with the multi-modal function [81], this would aid progress by 

providing global exploration support and gaining access to multiple global and local optima [121] , [122]. Some 

of the used approaches are listed below. 

1. Multi-Population Genetic Algorithm (MPGA):  

MPGA algorithm is also known as the "island model", the basis of which is to divide the population into sub-

populations, where each island (sub-population) is more likely to take a distinct search path [123]. The migratory 

mechanism exchanges good individuals across subpopulations [122], while the crossover operator generates new 

people. This enables for the discovery of hitherto unknown places. The migration rate is the number of individuals 

to be swapped between segments of the population (sub-population), and it permits control of the level of diversity 

within the sub-population [122]. Another variable that encourages the subpopulation diversity is the migration 

interval: this variable affects the number of times a subpopulation migrates. 

The speciation method, which mixes the chromosomes based on genetic similarities, can be used to integrate a 

multi-population. The Euclidean distance, for example, is used to quantify similarity. Numerous peaks are formed 

in this process; hence there are multiple solutions to the problem rather than just one. 

 

2. Primal Dual GA (PDGA) [124] 

 

This approach works with a pair of chromosomes known as "primal-dual." Chromosomes registered in the GA 

population are referred to as "primal," while other chromosomes with the greatest distance (in genotype) in a given 

distance space for the primal chromosomes are referred to as "dual," and the modification task from primal to dual 

using a distance measure (e.g. Hamming distance) is referred to as "primal-dual mapping." The algorithm selects 

chromosomes with lower fitness to offer them a chance to go to their better dual. This method improves the search's 

efficiency. 

There are also various approaches that promote population diversity, such as Crowding, Elitist, Dual Population 

GA (DPGA) [125], Multi-Objective Evolutionary Algorithm (MOEA), Diversity Control Oriented GA (DCGA), 

Injection Strategy, and Restricted Mating. 

 

3. Nitching Method: 

Niching approaches had been devised to reduce the influence of genetic drift caused by the selection operator in 

classical GA [126], allowing for the simultaneous examination of numerous solutions in the population. In natural 

systems, animals compete and thrive in a variety of ways (for example, via grazing and hunting), and various 

species develop to fulfil each role. A niche may be thought of as an organism task that allows organisms to exist 

in their environment. A species is defined as a group of comparable organisms having similar characteristics. 

Physical resources are limited in each niche and must be shared by the inhabitants of that niche. A niche is 

frequently referred to as a domain optimum, with the fitness indicating the niche's resources. In terms of similarity 
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metrics, species may be characterized as comparable individuals [127]. Examples of such applications are multi-

objective optimization, multi- modal functions, and classification. 

 

7. Enhancements of Genetic Algorithms 

GAs had been improved over the years from what was popular during the Holland era [128], to meet some of the 

demands, such as time-dependent and optimizing multi-modal problems. As a result, numerous other extensions 

of the conventional GA have emerged, such as hybrid GAs and parallel GAs. There are a vast number of studies 

in the literature that address GA enhancements, the ultimate objective is to boost the efficiency of the GA by 

increasing the population diversity and reducing the premature convergence. 

7.1 Parallel GA (PGA) 

Sequential GAs had been proven to be quite effective in a variety of applications and areas. However, there are a 

few problems with their applications that can all be solved with some type of PGA [129] and [130] such as: 

• For some problems, a large population is necessary, and the amount of memory necessary to keep each 

individual may be significant. In some circumstances, this makes running an application efficiently on a single 

computer impractical, forcing the use of a parallel version of GA. 

• The process of evaluating individual's fitness normally takes a long period. In complicated domains, 

calculation periods of more than one CPU year have been recorded in the literature for a single run. It leaps to 

reason that parallel processing is the only viable technique to deliver this CPU power. 

• Sequential GAs may become stuck in a sub-optimal part of the search space, preventing them from finding 

better solutions. PGAs can explore many subspaces of the search space in concurrently, reducing the likelihood of 

being stuck by low-quality subspaces. 

The basic concept underlying the most parallel programs is to break a job into pieces and to solve each piece 

utilizing several processors at the same time. This divide-and-conquer strategy may be used to GAs in a variety of 

ways, and there are several instances of effective parallel implementations in the literature. Some parallelization 

approaches work with a single population, while some others split the population into numerous small 

subpopulations [131]. The following is the three main categories of Parallel GAs, as shown in Figure 4 – Figure 6 

[132] [133] [131]. 

1. Global Single-Population Master-Slave GAs 

This type, that is also known as Global Parallelization GA (GPGA) or distributed fitness function, has the 

population as the master, while the slaves undertake the evaluating individuals, applying mutations, and 

occasionally the crossover process. There is no requirement for touch when individuals are assessed (the procedure 

is done in parallel), but there is contact when the slave receives individuals or returns the fitness values upon 

completion of the evaluation.  

 

Figure 4  global parallelization 
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Figure 5 Coarse grain PGA 

 

Figure 6 Fine-grain FGPGA 

2. Single-Population Fine-Grained (FGPGA) 

Massively PGA (MPGA) or Diffusion GA are terms for fine-grained GA. Individuals in FGPGA can only mate 

with their neighbors and overlaps across neighbourhoods contribute for good individual spreads over the whole 

population. The function considers the form and the size of the neighbourhood as variables in determining the 

amount of overlap [134].  

3. Multiple-Population Coarse-Grained GAs 

This type of Parallel GAs is known by a variety of names, including distributed (DGA) or multiple-demes GA, 

multiple-population, and island parallel GA. The goal is to split the population into demes (small groups of people), 

each of which works independently. The propagation of good individuals is induced by migration across sub-

populations, which improves the solution. There are many other types of migration topologies, such as injection 

migration, ring migration and neighborhood migration. The migration rate, sub-population size, migration interval 

and number of sub-populations are all variables that might influence the search path and efficiency. One challenge 

for this method is the chance that new individuals would be ineffectual, implying that the resultant genetic material 

will be incompatible. The explanation for incompatibility in practice is that when two subpopulations of excellent 

people are mixed, they generate terrible people [135]. 
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7.2 Hybrid Genetic Algorithms (HGAs) 

As with any hybrid system, hybrid GAs are built on a complementary perspective of search approaches. Genetic 

and other search strategies can be viewed as complimentary tools that can be combined to achieve an optimization 

target. A GA integrates one or more approaches to increase the performance of the genetic search in these hybrids 

[136]. In other words, a hybrid GA is a GA that has been combined with a local search strategy. The following are 

the steps in a basic HGA technique [137]: 

1. As the existing parent population, produce the starting population at random. 

2. In the initial population, determine the fitness function for each chromosome. 

3. Create a population of offspring via GA operators (crossover, mutation, selection). 

4. Evaluate the fitness function of each individual. 

5. Conduct a local search on each offspring, and of each new location, assessing the fitness, and replace the 

offspring if a better solution exists nearby. 

6. Replacement. 

7. When a stopping requirement is met, the procedure is terminated. If not, go to Step 3. 

Without Step 5, HGA is nothing more than a GA. As a result, HGAs have all of the characteristics that GAs have. 

HGAs, like GAs, are a vast family of algorithms with similar fundamental structures but differ in various 

techniques such as stopping criteria, operators that regulate the search process. 

Although evolutionary algorithms may quickly detect the region where the global optimum occurs, it takes a 

considerable time to determine the exact local optimum in the zone of convergence [138]. GA combined with a 

local search approach can expedite the search for the precise global optimum. Performing a local search to 

solutions directed by a GA to the most promising location in such a hybrid can expedite convergence to the global 

optimum. The time required to achieve the global optimum can be lowered if local search techniques and local 

expertise are employed to speed discovering the most likely search region as well as locating the global optimum 

beginning within its area of attraction. Local search on the population of a GA can introduce the diversity and help 

to resist genetic drift. It allows for the equitable representation of diverse search regions in order to combat 

premature convergence. Using a local search algorithm also adds an explicit refining operator, that can yield high-

quality results [136]. There are many applications that have adopted the HGA; there are many applications that 

have adopted the hybrid, such as  Feature Selection [139], Routing problem [140], heart disease diagnosis [141] , 

and Robotics [142] . 

7.3 Multiobjective Genetic Algorithms (MOGAs) 

Genetic algorithms have primarily been used to solve issues with a single purpose. However, many real-life issues 

have numerous objective functions. To be dealt by a single-objective genetic algorithm, these objective functions 

need be integrated into a scalar fitness function. The path of search in GA is determined in the multi-dimensional 

goal space if a consistent weight is applied to each of numerous objective functions for merging them [143]. 

MOGAs are a variation of the regular GA [144]. It is a guided random search approach that is one of several 

engineering optimization strategies. It can solve Multi-objective Optimization Problems (MOPs) and explore 

different parts of the solution space. As a result, a diversified collection of solutions with more parameters that can 

be improved at the same time may be found [145]. The Pareto fronts are used to show MOGA solutions [146]. A 

non-dominated solutions frontier Pareto optimum set is a collection of solutions. The Pareto front refers to the 

values of the associated objective function in the objective space when the Pareto optimal set is used, simulated 

annealing, random searches, dynamic programming, and gradient techniques are traditional ways for addressing 

multi-objective problems, but newer heuristic methods include cognitive paradigms such as simulated annealing, 

Artificial Neural Networks (ANNs), and Lagrangian approaches. Some of these strategies are effective in locating 

the best solution, but they have a propensity to take longer to converge, necessitating a significant amount of 

processing time. As a result, MOGA technique, which is based on the natural biological assessment concept, will 

be employed to address this type of issue [147]. The following are some Evolutionary Optimization Methods for 

Solving MOPs [148]: 

• Vector Evaluated GA (VEGA) 

• Multiple Objective GA (MOGA) 
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• Micro GA-MOEA (µGA,µGA2) 

• Strength Pareto Evolutionary Algorithm (SPEA, SPEA2)  

• Weight Based GA (WBGA) 

• Pareto Archived Evolution Strategy (PAES) 

• Multi-Objective Messy GA (MOMGA-I, II, III)  

• Pareto Enveloped Based Selection Algorithm (PESA, PESA II). 

MOGA has been used in many real applications, including Auto pilot controller design, Road train design, analog 

filter tuning, Dose optimization in brachytherapy, and Electrostatic micro motor design. 

8. Genetic Algorithm Benefits and Drawbacks 

After describing the GA alteration, some insight into why it is becoming more popular should be provided. GA is 

appealing for a variety of reasons, such as: 

• It's a simple technique that requires very little (if any) mathematics [71]. 

• It's simple to integrate with current simulations [149]. 

• It can solve multimodal [150], noncontinuous [151], or even NP-complete problems [152], and 

nondifferentiable problems [153]. 

• Parallelism [154]. 

• It can handle Multiobjective problem [155]. 

• They are immune to being caught in local optima [24]. 

In fact, there are some tasks that GA is unable to complete or find hard. Some of these limitations are: 

• Premature convergence [156]. 

• The issue of determining fitness function is a difficult one [157] [158]. 

• Definition of the problem's representation [159] [158]. 

• The difficulty in determining numerous parameters, such as: mutation rate, cross-over rate, population 

size and selection technique [160]. 

9. Conclusion 

This study aimed to give a systematic and explained view of GAs. The topic of GA and its variations has been 

addressed. GA is a basic algorithm that may be easily implemented. It may be used to solve a broad range of 

problems, including stochastic programming, unconstrained and restricted optimization problems, combinatorial 

optimization problems, and nonlinear programming. 

GA is shown to converge towards the optimal or near to the optimal solution, through selection, crossover, and 

mutation processes across consecutive generations. Because GAs merges direction and chance in the search in an 

efficient and effective manner, this basic procedure should generate a quick, useful, and resilient approach. GAs 

combines the excellent information buried in one solution with good information from another to develop new 

solutions with good information acquired from both parents, always (hopefully) leading to optimality.  

GAs face significant challenges, limiting their applications. GAs was criticized for their excessive computational 

cost. It is generally computationally expensive to run, which means that it may have to run for a long time to 

provide good results, and employing a larger population or investigating a much more complex problem slows it 

down significantly. There are also issues with setting parameters, and how it influences the algorithm's results, the 

choice of the fit function, the representation of the entities and population seeding are all crucial to producing 

relevant, meaningful, and satisfying results.  On the other hand, several techniques had been proposed with the 

purpose of overcoming these problems, and research is continuing, and in a remarkable development.  

The ability of GA to simultaneously explore and exploit, as well as its successful application to real-world 

problems, lead to the conclusion that GA is a strong and flexible optimization tool. 
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We discussed in this review a source of new research in GAs and the information on each component of GA, with 

our hope to inspire researchers to learn the foundations of GA and to apply what they have learned to their research 

issues. 
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