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Abstract This research paper presents a comprehensive analysis of southwest monsoon rainfall data in flood-

prone regions of Karnataka State, employing suitable statistical techniques and data distribution modeling. The 

detailed analysis of the dataset helped in understanding rainfall patterns, which is essential in identifying flood 

risks in Karnataka.The analysis includes the computation of descriptive statistics, exploration of data stationarity 

and the application of distribution models to characterize rainfall patterns. Maximum likelihood estimator has 

been used to estimate the parameters involved in the data distribution modelling. Further, hypothesis tests were 

conducted to assess the goodness-of-fit of these distribution models. These models are found to be suitable for 

the dataset in comparison with the Gaussian models.  
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1. Introduction: 

Rainfall plays a vital role in the hydrological cycle, but accurately predicting rainfall events at specific locations 

is challenging due to the intricate processes involved, from convection to cloud formation and precipitation. In 

India more than 80% of the country's total rainfall occurs during the summer monsoon season which is from 

June - September. 

Rainfall data as time series does not follow a regular pattern which can be shown as non-Gaussian.Most of the 

studies in the literature assumed rainfall distribution to be Gaussian for the sake of predictions.  However, it is 

essential to acknowledge the non-Gaussian nature of these data, considering various factors affecting the data 

such as mean, variance, skewness, kurtosis and stationarity. This requires extensive data analysis using suitable 

techniques.  

When dealing with non-Gaussian time series data, it is preferable to define the data in terms of key moments 

and the power spectral density function. Gaussian processes are commonly used for this purpose, and 

transformations of Gaussian processes can serve as a non-Gaussian modeling approach. 

NavneetKumar,BernhardTischbein, MirzaKaleem Begdiscussed a study on rainfall and temperature trends in 

India's Upper Kharun Catchment. It employs various trend detection methods and introduces a new approach. 

Rainfall data from 1961 to 2011 showed no significant trends except for an increase in peak monthly rainfall. 

Temperature data displayed no significant trends, but slight increases in specific months were observed. The 

study provides valuable insights into local climate dynamics, aiding climate change adaptation and resource 

management decisions in the region. The study's approach, which combines both parametric and non-parametric 

tests, including the innovative Gaussian-linear trend detection test, contributes to a more nuanced understanding 

of climate dynamics in the region. These insights are crucial for informed decision-making, especially in the 

context of climate change adaptation and resource management. 

https://www.researchgate.net/profile/Navneet-Kumar-24?_sg%5B0%5D=T6YeQJW4ZGDrChV34TWoH3r_jjmcOtFY8m3bTCvPAWKrXrFWstY3fpT7YoVXZdrOB5nC8mQ.iXAlyyY-sb3_-wwgbDwUvZLbbO-A_0BqmUkrwcYI1bk2KihAfbtH-XqzuJktqTfJtHnsj2GHA13IJFPF2uTZNA&_sg%5B1%5D=0oBqXmRH7vA6hRpIX6CAV9pIcmO4MH9CM0CkL2hWoA5b0vUCPu27fIHv7cryFI5qjKjWERo.0RQfl_aEB2R6EjsAJS01594ol82VBEZs0ebJEnvlt7EFKtAp3nXa-0tmVUCja-ymDSVAlA66paGJyxqFrab7zA&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24ifX0
https://www.researchgate.net/profile/Bernhard-Tischbein?_sg%5B0%5D=T6YeQJW4ZGDrChV34TWoH3r_jjmcOtFY8m3bTCvPAWKrXrFWstY3fpT7YoVXZdrOB5nC8mQ.iXAlyyY-sb3_-wwgbDwUvZLbbO-A_0BqmUkrwcYI1bk2KihAfbtH-XqzuJktqTfJtHnsj2GHA13IJFPF2uTZNA&_sg%5B1%5D=0oBqXmRH7vA6hRpIX6CAV9pIcmO4MH9CM0CkL2hWoA5b0vUCPu27fIHv7cryFI5qjKjWERo.0RQfl_aEB2R6EjsAJS01594ol82VBEZs0ebJEnvlt7EFKtAp3nXa-0tmVUCja-ymDSVAlA66paGJyxqFrab7zA&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24ifX0
https://www.researchgate.net/scientific-contributions/Mirza-Kaleem-Beg-2128413555?_sg%5B0%5D=T6YeQJW4ZGDrChV34TWoH3r_jjmcOtFY8m3bTCvPAWKrXrFWstY3fpT7YoVXZdrOB5nC8mQ.iXAlyyY-sb3_-wwgbDwUvZLbbO-A_0BqmUkrwcYI1bk2KihAfbtH-XqzuJktqTfJtHnsj2GHA13IJFPF2uTZNA&_sg%5B1%5D=0oBqXmRH7vA6hRpIX6CAV9pIcmO4MH9CM0CkL2hWoA5b0vUCPu27fIHv7cryFI5qjKjWERo.0RQfl_aEB2R6EjsAJS01594ol82VBEZs0ebJEnvlt7EFKtAp3nXa-0tmVUCja-ymDSVAlA66paGJyxqFrab7zA&_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6Il9kaXJlY3QiLCJwYWdlIjoicHVibGljYXRpb24ifX0
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In the study of Prediction of heavy rainfall days over a peninsular Indian station using the machine learning, the 

authors Kandula V Subrahmanyam ,Cramsenthiland et al emphasize the significance of predicting heavy rainfall 

events for effective weather-dependent activities management. They highlight the limitations of traditional 

Numerical Weather Prediction models and propose the use of machine learning, specifically Gaussian Process 

Regression (GPR), for predicting heavy and light rainfall days. The study uses 116 years of daily rainfall data 

from Sriharikota, India, for model training. The GPR model's performance is assessed and compared with other 

machine learning models such as K-nearest neighbor, random forest, and decision trees. The GPR model 

exhibits promising results, particularly for heavy rainfall predictions, with low errors (root mean square error = 

0.161; mean absolute error = 0.126; mean squared error = 0.026). Furthermore, the GPR model is extended to 

predict the spatial distribution of monthly rainfall across India. The study suggests that the GPR model could be 

a valuable tool for predicting heavy rainfall events at specific locations. The authors acknowledge the support 

from the Indian Space Research Organisation (ISRO) and the use of historical rainfall data from the India 

Meteorological Department (IMD) for their research.  

 The study of Best-Fit Probability Models for Maximum Monthly Rainfall in Bangladesh Using Gaussian  

Distributions, the authors MdAshrafulAlam, Craig Farnham and Kazuo Emura  focuses on analyzing extreme 

precipitation data from 35 weather stations in Bangladesh using various statistical distributions, including 

Gaussian (normal) distributions and s of multiple Gaussian distributions. The researchers employed maximum 

likelihood estimation for parameter estimation and used graphical and numerical criteria to determine the best-

fit distribution for each station. 

The study found that Gaussian (normal) distributions (N) were the best-fit model for 51% of the weather stations 

of two Gaussian distributions (N2) and three Gaussian distributions (N3) provided the best-fit results for 20% 

and 14% of the stations, respectively.Five-component Gaussian  distribution (N5) was the best-fit for 11% of the 

stations.The research calculated rainfall heights corresponding to different return periods (10-year, 25-year, 50-

year, and 100-year) for each location using the selected distributions.The results have practical implications for 

policymakers, as they can use this data to plan initiatives aimed at mitigating the impacts of extreme rainfall 

events, such as floods and landslides, in different regions of Bangladesh. 

Overall, this study provides valuable insights into the statistical modeling of extreme precipitation events and 

their potential consequences, offering a useful tool for risk assessment and disaster management in Bangladesh. 

C.A. Glasbey and I.M. Nevison, presented a novel approach to model hourly rainfall data by applying a 

monotonic transformation to achieve normality. The transformed data create a latent Gaussian variable, allowing 

for autocorrelation modeling. The study validates the model's performance against real data and traditional point 

process models, demonstrating its flexibility and potential for disaggregation. This innovative approach has 

applications in rainfall simulation, forecasting, and fine-resolution data generation. The model's suitability for 

fitting the Edinburgh rainfall data is comparable to that of well-established point process models. 

Niharika Mishra and Ajay Kushwaha, emphasizes the importance of rainfall prediction for water resource 

management and the challenges posed by dynamic weather patterns. The paper draws upon meteorological data 

collected by the Department of Agricultural Meteorology at Indira Gandhi Agricultural University, Raipur 

(C.G.), as the basis for their research. It discusses the application of machine learning, specifically Gaussian 

Process Regression, to enhance accuracy. Utilizing meteorological data, the study achieves an impressive 95.4% 

accuracy in rainfall prediction, confirming the practical promise of the proposed model. 

Zhengzheng Li, Yan Zhang and Scott E. Giangrande - A study focused on developing a Gaussian  rainfall-rate 

estimator (GMRE) for polar metric radar-based rainfall-rate estimation. The study follows a general framework 

based on the Gaussian  model () and Bayes least squares estimation for weather radar parameter estimations. It 

highlights the advantages of GMRE, its application across various rain regimes and regions, and its flexibility in 

incorporating or excluding polar metric radar variables as inputs.  GMRE offers several advantages, including 

its minimum variance unbiased estimation property, adaptability to various conditions, and flexibility in radar 

variable inputs. The study's evaluation demonstrates GMRE's superior performance over existing techniques, 

particularly for specific datasets. Future research avenues include combining radar measurements and 
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addressing attenuation issues. GMRE's potential for global applications suggests its significance in advancing 

accurate rainfall-rate estimation. 

PradeebaneVaittinadaAyar, Juliette Blanchet, Emmanuel Paquet and David Penot studied the aims to create a 

high-resolution spatial rainfall model using station data for hydrological applications, focusing on the Ardèche 

catchment in southern France. The model combines an autoregressive meta-Gaussian process to account for 

spatio-temporal dependencies with weather pattern sub-sampling to differentiate rainfall intensity classes. It's 

designed for mountainous catchments and aims to provide fine-scale precipitation data. The model's novelty lies 

in this combination. The four-step estimation process involves marginal distribution characterization, parameter 

mapping, temporal correlation determination, and spatial covariance function establishment. Model evaluation 

against observations shows strong performance in replicating rainfall statistics with minimal discrepancies. This 

model offers promise for accurate hydrological modeling in complex terrain. 

K'ufre-Mfon E. Ekerete, and et al, focused on understanding and modeling the drop size distribution of rainfall, 

which is crucial for applications like predicting and mitigating satellite signal attenuation in the millimetre band. 

Several statistical distributions, including exponential, gamma, and lognormal, have been proposed to model 

rainfall rates. However, empirical observations have sometimes revealed bimodal distributions. This paper 

examines how well gamma and lognormal distributions fit empirical rainfall data. In conclusion, this study 

addresses the challenge of accurately modeling rainfall drop size distributions and their impact on satellite signal 

attenuation. It highlights the limitations of standard models and introduces alternative models based on Gaussian  

Models as a step toward improved fitting and a deeper understanding of rainfall distribution patterns. 

Moonhyuk Kwon, Hyun-Han Kwon and Dawei Han, introduced a multivariate stochastic soil moisture (SM) 

estimation approach utilizing a Gaussian- nonstationary hidden Markov model (GM-NHMM) to spatially 

disaggregate AMSR2 SM data across multiple locations in South Korea's Yongdam dam watershed. In this 

modeling framework, rainfall and air temperature are included as additional predictors. The GM-NHMM model 

consists of six states, with three predictors representing an unobserved state linked to SM. The key findings such 

as rainfall is found to significantly contribute to overall predictability in the GM-NHMM model. It plays a 

crucial role in estimating local SM not captured by the AMSR2 data. Larger-Scale Dynamics: The AMSR2 data, 

which captures larger scale dynamic features, aids in identifying regional spatial patterns of SM. It complements 

the local information provided by weather variables (rainfall and temperature). Comparison with Ordinary 

Regression Model (OLR): The study compares the efficiency of the GM-NHMM model with that of an ordinary 

regression model (OLR) using the same predictors. The GM-NHMM exhibits a substantially higher mean 

correlation coefficient (about 0.78) compared to the OLR (about 0.49). Preservation of Spatial Coherence: The 

GM-NHMM not only provides a more accurate representation of observed SM but also maintains spatial 

coherence across all stations reasonably well. 

In summary, this study presents a stochastic SM estimation model based on a GM-NHMM to spatially 

disaggregate AMSR2 SM data across multiple locations. It incorporates rainfall and air temperature as 

predictors and demonstrates the significance of these variables in improving SM predictability. The GM-

NHMM model outperforms the OLR model, offering a better representation of observed SM and preserving 

spatial coherence effectively. 

Amjad Hussein and Safaa K. Kadhem, investigated spatial variation in maximum monthly rainfall in Ireland 

from 2018 to 2020. Also, study calculates return periods for 50 and 100 years for each station using prediction 

intervals derived from the posterior predictive distribution of the selected models. This information aids in 

understanding long-term rainfall rates and planning for mitigating high rainfall risks.It uses Bayesian normal  

models to identify the best-fitting model for 25 weather stations. Model selection criteria and graphical plots 

confirm that some stations exhibit greater heterogeneity (three components) while others are more homogeneous 

(two components). The study also calculates return periods for extreme rainfall events. While effective in 

revealing data heterogeneity, the method does not consider hidden trends in rainfall rates, which may be 

explored in future research using hidden Markov  models. 

 S. Ly, C. Charles, and A. Degré, focused on spatial interpolation of daily rainfall data in a hilly region in 

Belgium, comparing geo-statistical and deterministic methods. The research utilizes 30 years of daily rainfall 

data from 70 rain gauges in the catchment area, which includes river networks. Key findings and methods 
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include Variogram Modeling, Incorporating Elevation, Interpolation Methods. Several interpolation algorithms, 

including geostatistical methods (Ordinary Kriging, Universal Kriging, Kriging with an External Drift) and 

deterministic methods (Inverse Distance Weighting), are compared. 

The study uses seven validation rain gauges and cross-validation to assess the performance of these algorithms 

under different densities of rain gauges. Gaussian model is often the best fit among the semi-variogram models. 

Interpolation with geostatistical and Inverse Distance Weighting (IDW) algorithms outperforms Thiessen 

polygon interpolation. Ordinary Kriging (ORK) and IDW are considered the best methods, providing the 

smallest Root Mean Square Error (RMSE) values in most cases. The choice of interpolation method is crucial 

when there are very few neighborhood sample points. This research underscores the importance of spatial 

interpolation in hydrological modeling and demonstrates the effectiveness of geo-statistical methods like 

Ordinary Kriging and IDW for daily rainfall data in hilly landscapes. Additionally, it provides recommendations 

for selecting the most suitable interpolation method based on the density of available rain gauge data. 

Kumudha H R and Dr. Kokila Ramesh have conducted a study on Indian monsoon rainfall, which presents a 

detailed review of various models used for modeling and forecasting. Additionally, Kokila Ramesh and Iyengar 

(2017) introduced an innovative approach employing an ANN model, integrating intra-seasonal and inter-annual 

variability using the backpropagation algorithm. This novel methodology aimed to model and estimate total 

precipitation during India's monsoon season. The model features a straightforward architecture comprising 10 

input nodes, including 2 nodes each for PRM (Pre-Retreat Monsoon), NEM (Northeast Monsoon), and 6 nodes 

for SWM (Southwest Monsoon), alongside hidden layers housing five neurons and an output layer. 

Demonstrating a capability to explain about 94% of the observed inter-annual variability in SWM rainfall data, 

this model's performance was showcased across four informative subsets spanning the years 1901-2000. 

Authors Kumudha H R and Kokila Ramesh have conducted a study on the rainfall data examined in this study at 

the considered temporal scale demonstrating a highly unstructured pattern. To address this nonlinear and 

unstructured relationship in the time series, an Artificial Neural Network (ANN) model was employed. This 

network architecture comprises 15 input nodes representing data from 3 seasons, 5 hidden neurons capturing the 

intricate nonlinear relationships between current and past seasonal rainfall, and 3 output nodes predicting 

rainfall for pre-monsoon, monsoon, and post-monsoon seasons. Utilizing 50 years of training data encompassing 

all three seasons, namely pre-monsoon, monsoon, and post-monsoon, this model harnesses inter-annual and 

inter-seasonal variability to forecast rainfall across all seasons. The constructed network accounts for 85-95% of 

the observed seasonal rainfall variance. 

The collective review of diverse research articles on rainfall patterns reveals several noticeable research gaps in 

understanding climate dynamics and predicting extreme weather events. Firstly, the absence of exploration into 

non-linear trends within rainfall and temperature data limits the complete understanding of climate behavior. 

These non-linear patterns could hold critical information influencing long-term climate projections and 

necessitate further investigation. Additionally, while some studies examine into rainfall trends, there's a 

noticeable insufficient of focus on extreme weather events, particularly in predicting and managing their impacts 

effectively. Understanding and forecasting such extreme events are essential for designing risk mitigation 

strategies and adapting to climate change. 

Furthermore, while Gaussian models are prevalent in some analysis, the lack of exploration or comparison with 

other statistical distributions might obstruct the discovery of more accurate models. Introducing Gaussian and 

Gamma models might address some of these gaps by offering alternative approach to model rainfall. 

2. DATA: 

This paper focuses on modeling flood-prone regions in Karnataka as mentioned in Table 1. These flood prone 

regions of Karnataka are highlighted in Karnataka map as shown in Figure 1. The study has been restricted to 

Southwest Monsoon (SWM) rainfall as it contributes 80% of the annual rainfall. The yearly data of SWM 

rainfall for the period of 51 years (1960- 2010) has been considered for the detailed statistical analysis and 

modelling. The data has been collected from the website of Indian Institute of Tropical Management (IITM) 

(http://www.tropmet.res.in) and the Karnataka State Natural Disaster Monitoring Centre (KSNDMC) 

http://www.tropmet.res.in/
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(https://www.ksndmc.org).The descriptive statistics such as Long term average (LTA), long term deviation 

(LTD), skewness and kurtosis are tabulated in Table 1. 

Table 1: Basic Statistics of SWM Rainfall Data from IITM (1960-2010) 

Sub division LTA 

(𝑚𝑅in cm) 

LTD 

(in cm) 

Skewness Kurtosis 

Dakshina Kannada 162.78 28.90 0.61 3.52 

Udupi  107.58 17.34 0.14 2.73 

Uttara Kannada 272.13 36.00 0.36 3.57 

Chikkamagalur  102.74 19.58 0.55 3.57 

Hassan  49.31 11.59 0.02 2.32 

Kodagu  63.61 15.17 0.91 4.26 

Shivamoga  99.70 24.31 0.48 3.13 

 

Figure 1: The flood prone regions of Karnataka 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. DATA ANALYSIS: 

To understand the relation between the regions, a heatmap has been plotted and is shown in Figure 2.  

 

https://www.ksndmc.org/
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This map also gives the relation measure which is known as correlation coefficient for the regions. Since the 

correlation coefficient is high between the regions for the given sample size, the model developed for one region 

is relatively suitable to the other flood prone regions. 

The heatmap indicates the strength of relationships between different regions in terms of rainfall. Strong 

positive correlations suggest similar rainfall patterns, while weak correlations imply dissimilar patterns. 

Dakshina Kannada and Udupi show strong positive correlations with multiple regions, while Chikkamagalur 

and Hassan exhibit strong correlations with most other regions. Overall, this information helps to understand 

how rainfall in these regions is interrelated.  

Figure 2: Heatmap - To understand the relation between the regions.

 

Rainfall, considered as a random variable with positive valuesdenoted as 𝑅𝑖 , where i ranges from 1 , 2 … 51 for 

the above mentioned regions are normalized using their respectiveLTA (𝑚𝑅), 

        𝑍𝑖 = 𝑙𝑜𝑔  
𝑅𝑖

𝑚𝑅
 (1)     

The basic statistics such as mean (mz), standard deviation σz , skewness (Sz) and kurtosis (kz) for the 

normalized data are tabulated in Table 2.  

The histogram helps in understanding the distribution pattern of the dataset. The Gaussian distribution 

ischaracterized by a bell-shaped curve, often representing continuous data and is useful for modeling. By 

analysing the histogram (Figure 3), it is identified that the distribution characteristics of the southwest monsoon 

data in the flood prone regions of Karnataka. The histogram displays a bimodal pattern, suggesting the presence 

of two distinct peaks in the data distribution. This bimodal behavior aligns with the characteristics of a Gaussian 

curve. Introducing Gaussian and Gamma distribution models could enhance the ability to model more 

accurately. These models could potentially provide a better fit to the observed data, understanding the nature of 

monsoon patterns in the region. Integrating these models could lead to a more precise fit to observed data, 

providing a deeper comprehension of monsoon behavior in the considered regions. 
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Table 2: Basic Statistics of SWM Rainfall Normalized Data 

Sub division LTA 

(𝑚𝑧) 

LTD 

 𝜎𝑧  

Skewness Kurtosis ADF 

Statistics 

Dakshina Kannada -0.02 0.18 0.06 3.08 -1.90 

Udupi  -0.01 0.16 -0.24 2.58 -5.38 

Uttara Kannada -0.01 0.13 -0.11 3.36 -5.00 

Chikkamagalur  -0.02 0.19 -0.09 3.32 -3.67 

Hassan  -0.03 0.25 -0.44 2.49 -5.86 

Kodagu  -0.03 0.23 0.12 3.29 -6.76 

Shivamoga  -0.03 0.25 -0.15 2.73 -4.12 

 

Figure 3:  Relative frequency histogram offlood prone regions of Karnataka 

Description a) Dakshina Kannada, b) Udupi, c) Uttara Kannada, d) Chikkamagalur, e) Hassan, f) Kodagu and g) 

Shivamoga 

 

The Augmented  Dickey Fuller (ADF ) test statistic is used to assess whether the time series data is stationary or 

non-stationary. In this case, the ADF statistic is highly negative, indicating strong evidence against the presence 

of a unit root (i.e., non-stationary) in the data. The more negative the ADF statistic, the stronger the evidence 

against non-stationary. 
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 𝐴𝐷𝐹 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 =
𝑍𝑖 − 1

𝑠𝑡𝑎𝑛𝑑𝑟𝑎𝑑 𝑒𝑟𝑟𝑜𝑟(𝑍𝑖)
      (2) 

The p-value is approximately close to zero. The p-value represents the probability of observing the ADF statistic 

under the null hypothesis that the data has a unit root (i.e., it is non-stationary). In this case, the extremely low p-

value indicates very strong evidence against the null hypothesis. Since the p-value is much smaller than a typical 

significance level (e.g., 0.05), you would typically reject the null hypothesis, suggesting that the data is 

stationary. The critical values are thresholds used for comparison with the ADF statistic. These critical values 

depend on the desired level of significance (e.g., 1%, 5%, or 10%). In your result, the ADF statistic is 

significantly lower than all of the critical values, further supporting the conclusion that the data is likely 

stationary. In summary, based on the ADF test result it is provided that, the ADF statist ic is highly negative, 

indicating strong evidence against non-stationary. The extremely low p-value (close to zero) indicates very 

strong evidence against the null hypothesis of non-stationary. The ADF statistic is significantly lower than the 

critical values at various significance levels, reinforcing the conclusion that the data is likely stationary. Overall, 

the statistical tests and measures indicate that while there are some deviations from a perfectly Gaussian 

distribution (e.g., slight skewness and kurtosis different from 3), these deviations are shown non-Gaussian of the 

data also the figure 1 shows that the data has bimodal. Therefore a Gaussian and Gamma model have been 

introduced. 

4. DESCRIPTION OF THE GAUSSIAN AND GAMMA MODEL: 

In the previous section the data for the study has shown to be non-Gaussian through ADF test hence there is a 

need to model the data using non-Gaussian structure. The work by Kokila and Iyengar explains that a Gaussian 

mixture model was necessary for core monsoons and subdivisions regions of India. This situation can be 

effectively addressed by modeling it as a function of a Gaussian and Gamma Model. An illustrative example is 

the modeling of the rainfall process, which often demonstrates such characteristics. Therefore, in this paper, an 

attempt has been undertaken to represent Indian monsoon rainfall for the flood prone regions of Karnataka as a 

function derived from a Gaussian and Gamma Distribution Model. 

Initially, the proposal involves suggesting a combination of two Gaussian random variables, denoted as xand y, 

with a certain proportion α for the transformed data z. The subsequent equation offers an illustration of how 

these Gaussian random variables x andy, which are independently and identically distributed, are blended using 

the proportion wi. 

Let 𝑧 =  𝑢𝑥 +   1 −  𝑢 𝑦                                                                                                                            3  

Such that 𝑚𝑧|𝑢  =  𝑢𝑚𝑥  +  1 −  𝑢 𝑚𝑦  and 𝜎𝑧
2   =  𝑢2𝜎𝑥

2  +  1 −  𝑢 2𝜎𝑦
2 (4) 

In the context of a Bernoulli random variable, it's common to describe it in terms of a probability mass function 

(PMF) rather than a probability density function (PDF). The PMF of a Bernoulli random variable is typically 

used to specify the probabilities of discrete outcomes. 

A Bernoulli random variable, denoted as u, has two possible outcomes: 0 and 1, with probabilities  𝑝 and 1 − 𝑝, 

respectively. 

𝑝 𝑢 =  𝑤𝛿 𝑢 −  1 +   1 −  𝑤 𝛿 𝑢 −  0                                                                                      (5) 

The conditional density function of z given u is as follows  

𝑓 𝑥: 𝜇, 𝜎2 =   
1

𝜎  2𝜋
𝑒
 −  

 𝑧−𝜇  2

2𝜎2  
and 

                                                         𝑓 𝑦: 𝛼, 𝛽 =  
𝑧𝛼−1𝑒

−𝑥 𝛽 

𝛽𝛼Γ(𝛼)
(6)  

Consider,  

𝑝 𝑧 =
𝑤 𝑖

𝜎  2𝜋
𝑒
 −  

 𝑧−𝜇  2

2𝜎2  
+   1 − 𝑤𝑖 

𝑧𝛼−1𝑒
−𝑥

𝛽 

𝛽𝛼Γ(𝛼)
(7) 
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Here the parameters μ, σ2 , α and β are found using maximum likelihood (MLH) estimator method . The 

parameters μ, σ2, α and β are the moments of the Gaussian and gamma random variables x and y respectively. 

The MLH function L of the above equation is given by 

𝐿 𝜇, 𝜎2 , 𝛼, 𝛽 =   [𝑤𝑖 ∗ 𝑓𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑥: 𝜇, 𝜎2)

𝑛

𝑖=1

+  1 − 𝑤𝑖 ∗ 𝑓𝑔𝑎𝑚𝑚𝑎 (𝑦: 𝛼, 𝛽)]                  (8)  

Instead of maximizing this product, which can be quite laborious, often take advantage of the fact that the 

logarithm is a monotonically increasing function. Consequently, maximizing the log-likelihood is considered 

equivalent and is a more convenient approach. 

                                     log 𝐿 𝜇, 𝜎2, 𝛼, 𝛽  =   log 𝑝 𝑧𝑖  𝜇, 𝜎2 , 𝛼, 𝛽  

𝑛

𝑖=1

                                  (9) 

By taking partial differentiations of the above equation (9) with respect to the parameters, one at a time, and 

setting them equal to zero, then derive the parameter expressions. The parameters values are tabulate in Table 3. 

5. GAUSSIAN AND GAMMA MODEL ON RAINFALL DATA 

Table 3: The parameter values of equation (7) for flood prone regions of Karnataka 

Region 𝑤 𝜇𝑅  𝜎 𝛼 𝛽 

Dakshina 

Kannada 

 

0.3 

 

-0.02 

 

0.15 

 

1055.04 

 

-5.6 

Udupi  0.6 -0.01 0.10 403.8 -3.31 

Uttara Kannada  

0.48 

 

-0.00 

 

0.12 

 

573.74 

 

-3.19 

Chikkamagalur  0.35 -0.02 0.17 978.34 -5.91 

Hassan  0.45 -0.02 0.14 313.44 -4.45 

Kodagu  0.37 -0.03 0.21 376.11 -4.46 

Shivamoga  0.41 -0.03 0.18 489.21 -5.44 

 

Equation (7) has been confirmed to meet all the criteria for being a valid probability density function. This 

model is then applied to the original data using the transformation described in equation (10). The resulting 

probability density function for R can be expressed as follows: 

𝑝 𝑅 =
1

𝑅

 
 
 
 
 

𝑤 𝑖

𝜎 2𝜋
𝑒

 −  
 log  

𝑅
𝜇 𝑅

 −𝜇  
2

2𝜎2  

+   1 − 𝑤𝑖 
 𝑙𝑜𝑔  

𝑅

𝜇 𝑅
  

𝛼−1
𝑒
−𝑥 𝛽 

𝛽𝛼𝛤 𝛼 

 
 
 
 
 

    R>0                                    (10) 

 

Figure 4 displays a comparison between the actual data and that of the Gaussian Mixture distribution model and 

Figure 5displays a comparison between the actual data and that of the Gaussian and Gamma distribution model. 

It is visually evident that, the Gaussian and Gamma distribution closely adheres to a probability density function 

as defined in equation (10). Table 4 displays the first four moments of the Gaussian and Gamma modelwhich 

are then compared with the moments of the actual data.  
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In the event that assume the data follows a Gaussian and Gamma distribution, the skewness and kurtosis of the 

data should ideally be 0 and 3. Hence, this model is deemed appropriate for the utilized dataset.Given that both 

models yielded favourable results, signifying skewness close to 0 and kurtosis around 3, the Gaussian and 

gamma models stand as potential considerations for subsequent analyses. 

Table 4: Comparison between the actual data moments with the model data moments 

Region 

Actual Data Moments Model Data Moments 

𝝁𝒂 

(in cm)  

 𝝈𝒂 

(in cm)  𝑺𝒂 𝑲𝒂  

𝝁𝒎 

(in cm)  

 𝝈𝒎 

(in cm)  𝑺𝒎 𝑲𝒎  

Dakshina Kannada  162.78 28.9 0.61  3.52  160.35  28.18  0.31  3.22  

Udupi   107.58  17.34  0.14  2.73  106.19  16.94  0.14  2.83 

Uttara Kannada  272.13  36.01 0.36   3.57 270.69   35.58 0.31   3.57 

Chikkamagalur   102.74  19.58  0.55  3.57  100.94  19.05  0.02  3.57 

Hassan   49.31  11.59  0.02  2.32  47.91  11.15  0.10  2.92 

Kodagu   63.61  15.17  0.91  4.26  61.94  14.62  0.90  3.26 

Shivamoga   99.70 24.31   0.48  3.13  96.83 23.38   0.48 3.13  

 

Figure 4:Comparison between the actual data and the model data using Gaussian Mixture Model 
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Figure 5:Comparison between the actual data and the model data using Gaussian and Gamma Model 
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6. Discussion And Conclusion: 

In this research, a comprehensive analysis of a dataset using statistical methods and distribution modeling is 

conducted. The objective was to gain insights into the underlying data structure and assess the goodness-of-fit of 

specific probability distributions. It is began by calculating fundamental statistics, including the mean, standard 

deviation, skewness, and kurtosis, which provided key information about the data's central tendency, dispersion, 
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and shape. To facilitate the analysis, data normalization techniques were employed, particularly taking the 

logarithm of the data relative to its mean. This step not only aided in making the data conform more closely to a 

normal distribution but also enabled us to perform the Augmented Dickey-Fuller test for stationary. The results 

of this test were crucial in determining whether the data exhibited temporal patterns. 

Furthermore,distribution modeling techniques were employed including a Gaussian Model and gamma 

distribution, to characterize the data's probability distribution. The model allowed us to represent the data as a 

combination of multiple Gaussian distributions, while the gamma distribution was chosen to model the 

skewness often observed in positive-valued datasets. Visualizations were created to provide a clear 

representation of the probability density functions of these models and compare them to observed data. 

Hypothesis testing, including the Chi-Square and Anderson-Darling tests, was performed to assess the 

goodness-of-fit of these models and determine if the data followed a specific distribution. The findings 

contribute valuable insights into the statistical properties of the dataset and lay the groundwork for further 

analysis and modeling. 

The research conducted by Kokila Ramesh and R N Iyengar examines a non-Gaussian model for Indian 

monsoon rainfall. Their initial work focused on employing a Gaussian Mixture Model to study Indian monsoon 

rainfall. The authors used the Gaussian Mixture Model before is known to be really good at understanding 

complicated data patterns. In this paper, the authors expanded the study by introducing and utilizing Gaussian 

and Gamma distribution models to explore and analyzethe rainfall patterns specifically in areas like Dakshina 

Kannada, Udupi, Uttara Kannada, Chikkamagalur, Hassan, Kodagu, and Shivamoga. 

However, in this study, the introduction and exploration of the Gamma distribution model alongside the 

Gaussian model. Through the analysis, both models showcase promising results, emphasizing the suitability and 

effectiveness of these models help us figure out and understand the complex details of how rainfall pattern 

behaves during the monsoon season. By demonstrating that both models exhibit favorable outcomes in 

analyzing the southwest monsoon rainfall patterns. 

In conclusion, the Gaussian and Gamma distribution models in the study of southwest monsoon rainfall patterns 

provide a valuable contribution to the field. The successful application of these models underscores their 

potential as reliable tools for meteorological analysis. This study suggests that the Gaussian and Gamma 

distribution models can complement the existing Gaussian Mixture Model, offering an enhanced understanding 

of rainfall variability and aiding in more accurate predictions and assessments. Continued research in this 

direction could lead to benefitting forecasts and climate studies. 
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