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Abstract This research paper presents a comprehensive analysis of southwest monsoon rainfall data in flood-
prone regions of Karnataka State, employing suitable statistical techniques and data distribution modeling. The
detailed analysis of the dataset helped in understanding rainfall patterns, which is essential in identifying flood
risks in Karnataka.The analysis includes the computation of descriptive statistics, exploration of data stationarity
and the application of distribution models to characterize rainfall patterns. Maximum likelihood estimator has
been used to estimate the parameters involved in the data distribution modelling. Further, hypothesis tests were
conducted to assess the goodness-of-fit of these distribution models. These models are found to be suitable for
the dataset in comparison with the Gaussian models.
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1. Introduction:

Rainfall plays a vital role in the hydrological cycle, but accurately predicting rainfall events at specific locations
is challenging due to the intricate processes involved, from convection to cloud formation and precipitation. In
India more than 80% of the country's total rainfall occurs during the summer monsoon season which is from
June - September.

Rainfall data as time series does not follow a regular pattern which can be shown as non-Gaussian.Most of the
studies in the literature assumed rainfall distribution to be Gaussian for the sake of predictions. However, it is
essential to acknowledge the non-Gaussian nature of these data, considering various factors affecting the data
such as mean, variance, skewness, kurtosis and stationarity. This requires extensive data analysis using suitable
techniques.

When dealing with non-Gaussian time series data, it is preferable to define the data in terms of key moments
and the power spectral density function. Gaussian processes are commonly used for this purpose, and
transformations of Gaussian processes can serve as a non-Gaussian modeling approach.
NavneetKumar,BernhardTischbein, MirzaKaleem Begdiscussed a study on rainfall and temperature trends in
India's Upper Kharun Catchment. It employs various trend detection methods and introduces a new approach.
Rainfall data from 1961 to 2011 showed no significant trends except for an increase in peak monthly rainfall.
Temperature data displayed no significant trends, but slight increases in specific months were observed. The
study provides valuable insights into local climate dynamics, aiding climate change adaptation and resource
management decisions in the region. The study's approach, which combines both parametric and non-parametric
tests, including the innovative Gaussian-linear trend detection test, contributes to a more nuanced understanding
of climate dynamics in the region. These insights are crucial for informed decision-making, especially in the
context of climate change adaptation and resource management.
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In the study of Prediction of heavy rainfall days over a peninsular Indian station using the machine learning, the
authors Kandula V Subrahmanyam ,Cramsenthiland et al emphasize the significance of predicting heavy rainfall
events for effective weather-dependent activities management. They highlight the limitations of traditional
Numerical Weather Prediction models and propose the use of machine learning, specifically Gaussian Process
Regression (GPR), for predicting heavy and light rainfall days. The study uses 116 years of daily rainfall data
from Sriharikota, India, for model training. The GPR model's performance is assessed and compared with other
machine learning models such as K-nearest neighbor, random forest, and decision trees. The GPR model
exhibits promising results, particularly for heavy rainfall predictions, with low errors (root mean square error =
0.161; mean absolute error = 0.126; mean squared error = 0.026). Furthermore, the GPR model is extended to
predict the spatial distribution of monthly rainfall across India. The study suggests that the GPR model could be
a valuable tool for predicting heavy rainfall events at specific locations. The authors acknowledge the support
from the Indian Space Research Organisation (ISRO) and the use of historical rainfall data from the India
Meteorological Department (IMD) for their research.

The study of Best-Fit Probability Models for Maximum Monthly Rainfall in Bangladesh Using Gaussian
Distributions, the authors MdAshrafulAlam, Craig Farnham and Kazuo Emura focuses on analyzing extreme
precipitation data from 35 weather stations in Bangladesh using various statistical distributions, including
Gaussian (normal) distributions and s of multiple Gaussian distributions. The researchers employed maximum
likelihood estimation for parameter estimation and used graphical and numerical criteria to determine the best-
fit distribution for each station.

The study found that Gaussian (normal) distributions (N) were the best-fit model for 51% of the weather stations
of two Gaussian distributions (N2) and three Gaussian distributions (N3) provided the best-fit results for 20%
and 14% of the stations, respectively.Five-component Gaussian distribution (N5) was the best-fit for 11% of the
stations.The research calculated rainfall heights corresponding to different return periods (10-year, 25-year, 50-
year, and 100-year) for each location using the selected distributions.The results have practical implications for
policymakers, as they can use this data to plan initiatives aimed at mitigating the impacts of extreme rainfall
events, such as floods and landslides, in different regions of Bangladesh.

Overall, this study provides valuable insights into the statistical modeling of extreme precipitation events and
their potential consequences, offering a useful tool for risk assessment and disaster management in Bangladesh.

C.A. Glasbey and I.M. Nevison, presented a novel approach to model hourly rainfall data by applying a
monotonic transformation to achieve normality. The transformed data create a latent Gaussian variable, allowing
for autocorrelation modeling. The study validates the model's performance against real data and traditional point
process models, demonstrating its flexibility and potential for disaggregation. This innovative approach has
applications in rainfall simulation, forecasting, and fine-resolution data generation. The model's suitability for
fitting the Edinburgh rainfall data is comparable to that of well-established point process models.

Niharika Mishra and Ajay Kushwaha, emphasizes the importance of rainfall prediction for water resource
management and the challenges posed by dynamic weather patterns. The paper draws upon meteorological data
collected by the Department of Agricultural Meteorology at Indira Gandhi Agricultural University, Raipur
(C.G)), as the basis for their research. It discusses the application of machine learning, specifically Gaussian
Process Regression, to enhance accuracy. Utilizing meteorological data, the study achieves an impressive 95.4%
accuracy in rainfall prediction, confirming the practical promise of the proposed model.

Zhengzheng Li, Yan Zhang and Scott E. Giangrande - A study focused on developing a Gaussian rainfall-rate
estimator (GMRE) for polar metric radar-based rainfall-rate estimation. The study follows a general framework
based on the Gaussian model () and Bayes least squares estimation for weather radar parameter estimations. It
highlights the advantages of GMRE, its application across various rain regimes and regions, and its flexibility in
incorporating or excluding polar metric radar variables as inputs. GMRE offers several advantages, including
its minimum variance unbiased estimation property, adaptability to various conditions, and flexibility in radar
variable inputs. The study's evaluation demonstrates GMRE's superior performance over existing techniques,
particularly for specific datasets. Future research avenues include combining radar measurements and
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addressing attenuation issues. GMRE's potential for global applications suggests its significance in advancing
accurate rainfall-rate estimation.

PradeebaneVaittinadaAyar, Juliette Blanchet, Emmanuel Paquet and David Penot studied the aims to create a
high-resolution spatial rainfall model using station data for hydrological applications, focusing on the Ardéche
catchment in southern France. The model combines an autoregressive meta-Gaussian process to account for
spatio-temporal dependencies with weather pattern sub-sampling to differentiate rainfall intensity classes. It's
designed for mountainous catchments and aims to provide fine-scale precipitation data. The model's novelty lies
in this combination. The four-step estimation process involves marginal distribution characterization, parameter
mapping, temporal correlation determination, and spatial covariance function establishment. Model evaluation
against observations shows strong performance in replicating rainfall statistics with minimal discrepancies. T his
model offers promise for accurate hydrological modeling in complex terrain.

K'ufre-Mfon E. Ekerete, and et al, focused on understanding and modeling the drop size distribution of rainfall,
which is crucial for applications like predicting and mitigating satellite signal attenuation in the millimetre band.
Several statistical distributions, including exponential, gamma, and lognormal, have been proposed to model
rainfall rates. However, empirical observations have sometimes revealed bimodal distributions. This paper
examines how well gamma and lognormal distributions fit empirical rainfall data. In conclusion, this study
addresses the challenge of accurately modeling rainfall drop size distributions and their impact on satellite signal
attenuation. It highlights the limitations of standard models and introduces alternative models based on Gaussian
Models as a step toward improved fitting and a deeper understanding of rainfall distribution patterns.

Moonhyuk Kwon, Hyun-Han Kwon and Dawei Han, introduced a multivariate stochastic soil moisture (SM)
estimation approach utilizing a Gaussian- nonstationary hidden Markov model (GM-NHMM) to spatially
disaggregate AMSR2 SM data across multiple locations in South Korea's Yongdam dam watershed. In this
modeling framework, rainfall and air temperature are included as additional predictors. The GM-NHMM model
consists of six states, with three predictors representing an unobserved state linked to SM. The key findings such
as rainfall is found to significantly contribute to overall predictability in the GM-NHMM model. It plays a
crucial role in estimating local SM not captured by the AMSR2 data. Larger-Scale Dynamics: The AMSR2 data,
which captures larger scale dynamic features, aids in identifying regional spatial patterns of SM. It complements
the local information provided by weather variables (rainfall and temperature). Comparison with Ordinary
Regression Model (OLR): The study compares the efficiency of the GM-NHMM model with that of an ordinary
regression model (OLR) using the same predictors. The GM-NHMM exhibits a substantially higher mean
correlation coefficient (about 0.78) compared to the OLR (about 0.49). Preservation of Spatial Coherence: The
GM-NHMM not only provides a more accurate representation of observed SM but also maintains spatial
coherence across all stations reasonably well.

In summary, this study presents a stochastic SM estimation model based on a GM-NHMM to spatially
disaggregate AMSR2 SM data across multiple locations. It incorporates rainfall and air temperature as
predictors and demonstrates the significance of these variables in improving SM predictability. The GM-
NHMM model outperforms the OLR model, offering a better representation of observed SM and preserving
spatial coherence effectively.

Amjad Hussein and Safaa K. Kadhem, investigated spatial variation in maximum monthly rainfall in Ireland
from 2018 to 2020. Also, study calculates return periods for 50 and 100 years for each station using prediction
intervals derived from the posterior predictive distribution of the selected models. This information aids in
understanding long-term rainfall rates and planning for mitigating high rainfall risks.It uses Bayesian normal
models to identify the best-fitting model for 25 weather stations. Model selection criteria and graphical plots
confirm that some stations exhibit greater heterogeneity (three components) while others are more homogeneous
(two components). The study also calculates return periods for extreme rainfall events. While effective in
revealing data heterogeneity, the method does not consider hidden trends in rainfall rates, which may be
explored in future research using hidden Markov models.

S. Ly, C. Charles, and A. Degré, focused on spatial interpolation of daily rainfall data in a hilly region in
Belgium, comparing geo-statistical and deterministic methods. The research utilizes 30 years of daily rainfall
data from 70 rain gauges in the catchment area, which includes river networks. Key findings and methods
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include Variogram Modeling, Incorporating Elevation, Interpolation Methods. Several interpolation algorithms,
including geostatistical methods (Ordinary Kriging, Universal Kriging, Kriging with an External Drift) and
deterministic methods (Inverse Distance Weighting), are compared.

The study uses seven validation rain gauges and cross-validation to assess the performance of these algorithms
under different densities of rain gauges. Gaussian model is often the best fit among the semi-variogram models.
Interpolation with geostatistical and Inverse Distance Weighting (IDW) algorithms outperforms Thiessen
polygon interpolation. Ordinary Kriging (ORK) and IDW are considered the best methods, providing the
smallest Root Mean Square Error (RMSE) values in most cases. The choice of interpolation method is crucial
when there are very few neighborhood sample points. This research underscores the importance of spatial
interpolation in hydrological modeling and demonstrates the effectiveness of geo-statistical methods like
Ordinary Kriging and IDW for daily rainfall data in hilly landscapes. Additionally, it provides recommendations
for selecting the most suitable interpolation method based on the density of available rain gauge data.

Kumudha H R and Dr. Kokila Ramesh have conducted a study on Indian monsoon rainfall, which presents a
detailed review of various models used for modeling and forecasting. Additionally, Kokila Ramesh and lyengar
(2017) introduced an innovative approach employing an ANN model, integrating intra-seasonal and inter-annual
variability using the backpropagation algorithm. This novel methodology aimed to model and estimate total
precipitation during India's monsoon season. The model features a straightforward architecture comprising 10
input nodes, including 2 nodes each for PRM (Pre-Retreat Monsoon), NEM (Northeast Monsoon), and 6 nodes
for SWM (Southwest Monsoon), alongside hidden layers housing five neurons and an output layer.
Demonstrating a capability to explain about 94% of the observed inter-annual variability in SWM rainfall data,
this model's performance was showcased across four informative subsets spanning the years 1901-2000.

Authors Kumudha H R and Kokila Ramesh have conducted a study on the rainfall data examined in this study at
the considered temporal scale demonstrating a highly unstructured pattern. To address this nonlinear and
unstructured relationship in the time series, an Artificial Neural Network (ANN) model was employed. This
network architecture comprises 15 input nodes representing data from 3 seasons, 5 hidden neurons capturing the
intricate nonlinear relationships between current and past seasonal rainfall, and 3 output nodes predicting
rainfall for pre-monsoon, monsoon, and post-monsoon seasons. Utilizing 50 years of training data encompassing
all three seasons, namely pre-monsoon, monsoon, and post-monsoon, this model harnesses inter-annual and
inter-seasonal variability to forecast rainfall across all seasons. The constructed network accounts for 85-95% of
the observed seasonal rainfall variance.

The collective review of diverse research articles on rainfall patterns reveals several noticeable research gaps in
understanding climate dynamics and predicting extreme weather events. Firstly, the absence of exploration into
non-linear trends within rainfall and temperature data limits the complete understanding of climate behavior.
These non-linear patterns could hold critical information influencing long-term climate projections and
necessitate further investigation. Additionally, while some studies examine into rainfall trends, there's a
noticeable insufficient of focus on extreme weather events, particularly in predicting and managing their impacts
effectively. Understanding and forecasting such extreme events are essential for designing risk mitigation
strategies and adapting to climate change.

Furthermore, while Gaussian models are prevalent in some analysis, the lack of exploration or comparison with
other statistical distributions might obstruct the discovery of more accurate models. Introducing Gaussian and
Gamma models might address some of these gaps by offering alternative approach to model rainfall.

2. DATA:

This paper focuses on modeling flood-prone regions in Karnataka as mentioned in Table 1. These flood prone
regions of Karnataka are highlighted in Karnataka map as shown in Figure 1. The study has been restricted to
Southwest Monsoon (SWM) rainfall as it contributes 80% of the annual rainfall. The yearly data of SWM
rainfall for the period of 51 years (1960- 2010) has been considered for the detailed statistical analysis and
modelling. The data has been collected from the website of Indian Institute of Tropical Management (11ITM)
(http://www.tropmet.res.in) and the Karnataka State Natural Disaster Monitoring Centre (KSNDMC)
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(https://www.ksndmc.org).The descriptive statistics such as Long term average (LTA), long term deviation
(LTD), skewness and kurtosis are tabulated in Table 1.

Table 1: Basic Statistics of SWM Rainfall Data from 11TM (1960-2010)

Sub division

LTA LTD Skewness

(mgin cm) (incm)

Kurtosis

Dakshina Kannada

162.78 28.90 0.61

3.52

Udupi

107.58 17.34 0.14

2.73

Uttara Kannada

272.13 36.00 0.36

3.57

Chikkamagalur

102.74 19.58 0.55

3.57

Hassan

49.31 11.59 0.02

2.32

Kodagu

63.61 15.17 0.91

4.26

Shivamoga

99.70 2431 0.48

3.13

Figure 1: The flood prone regions of Karnataka
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3. DATA ANALYSIS:

To understand the relation between the regions, a heatmap has been plotted and is shown in Figure 2.
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This map also gives the relation measure which is known as correlation coefficient for the regions. Since the
correlation coefficient is high between the regions for the given sample size, the model developed for one region
is relatively suitable to the other flood prone regions.

The heatmap indicates the strength of relationships between different regions in terms of rainfall. Strong
positive correlations suggest similar rainfall patterns, while weak correlations imply dissimilar patterns.
Dakshina Kannada and Udupi show strong positive correlations with multiple regions, while Chikkamagalur
and Hassan exhibit strong correlations with most other regions. Overall, this information helps to understand
how rainfall in these regions is interrelated.

Figure 2: Heatmap - To understand the relation between the regions.

Dakshina Kannada vs Shivamoga Udupi vs Shivamoga Uttara Kannada vs Shivamoga

[ 04 04
n
02 02 0z
[ | | r
g o0 | g o g 0o | & |
1 |
& & &
] || |
[ ] |
04 04 04
04 02 o0 02 0a 04 02 00 0z 02 00 02
Dakshina Kannada udupi Uttara Kannada
Chikkamagalur vs Shivamoga Hassan vs Shivamoga Xodagu vs Shivamog
. 04
02 02
n
3 3 B
w - m
H a
0.2 02 |
| |
04 ] -04

-06 -04 02 00 02 04

¥odagu

Rainfall, considered as a random variable with positive valuesdenoted as R;, where i ranges from 1,2 ... 51 for
the above mentioned regions are normalized using their respectiveLTA (mg),
R;
z,=1log (,5)®)
The basic statistics such as mean (m,), standard deviation(c,), skewness (S,) and kurtosis (k,) for the
normalized data are tabulated in Table 2.

The histogram helps in understanding the distribution pattern of the dataset. The Gaussian distribution
ischaracterized by a bell-shaped curve, often representing continuous data and is useful for modeling. By
analysing the histogram (Figure 3), it is identified that the distribution characteristics of the southwest monsoon
data in the flood prone regions of Karnataka. The histogram displays a bimodal pattern, suggesting the presence
of two distinct peaks in the data distribution. This bimodal behavior aligns with the characteristics of a Gaussian
curve. Introducing Gaussian and Gamma distribution models could enhance the ability to model more
accurately. These models could potentially provide a better fit to the observed data, understanding the nature of
monsoon patterns in the region. Integrating these models could lead to a more precise fit to observed data,
providing a deeper comprehension of monsoon behavior in the considered regions.
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Table 2: Basic Statistics of SWM Rainfall Normalized Data

Sub division LTA LTD Skewness Kurtosis ADF
(m,) ©,) Statistics
Dakshina Kannada -0.02 0.18 0.06 3.08 -1.90
Udupi -0.01 0.16 -0.24 2.58 -5.38
Uttara Kannada -0.01 0.13 -0.11 3.36 -5.00
Chikkamagalur -0.02 0.19 -0.09 3.32 -3.67
Hassan -0.03 0.25 -0.44 2.49 -5.86
Kodagu -0.03 0.23 0.12 3.29 -6.76
Shivamoga -0.03 0.25 -0.15 2.73 -4.12

Figure 3: Relative frequency histogram offlood prone regions of Karnataka

Description a) Dakshina Kannada, b) Udupi, ¢) Uttara Kannada, d) Chikkamagalur, e) Hassan, f) Kodagu and g)
Shivamoga
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The Augmented Dickey Fuller (ADF ) test statistic is used to assess whether the time series data is stationary or
non-stationary. In this case, the ADF statistic is highly negative, indicating strong evidence against the presence
of a unit root (i.e., non-stationary) in the data. The more negative the ADF statistic, the stronger the evidence
against non-stationary.
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ADF Statistic = 2
Statistic standrad error(Z;) @

The p-value is approximately close to zero. The p-value represents the probability of observing the ADF statistic
under the null hypothesis that the data has a unit root (i.e., it is non-stationary). In this case, the extremely low p-
value indicates very strong evidence against the null hypothesis. Since the p-value is much smaller than a typical
significance level (e.g., 0.05), you would typically reject the null hypothesis, suggesting that the data is
stationary. The critical values are thresholds used for comparison with the ADF statistic. These critical values
depend on the desired level of significance (e.g., 1%, 5%, or 10%). In your result, the ADF statistic is
significantly lower than all of the critical values, further supporting the conclusion that the data is likely
stationary. In summary, based on the ADF test result it is provided that, the ADF statistic is highly negative,
indicating strong evidence against non-stationary. The extremely low p-value (close to zero) indicates very
strong evidence against the null hypothesis of non-stationary. The ADF statistic is significantly lower than the
critical values at various significance levels, reinforcing the conclusion that the data is likely stationary. Overall,
the statistical tests and measures indicate that while there are some deviations from a perfectly Gaussian
distribution (e.g., slight skewness and kurtosis different from 3), these deviations are shown non-Gaussian of the
data also the figure 1 shows that the data has bimodal. Therefore a Gaussian and Gamma model have been
introduced.

4, DESCRIPTION OF THE GAUSSIAN AND GAMMA MODEL.:

In the previous section the data for the study has shown to be non-Gaussian through ADF test hence there is a
need to model the data using non-Gaussian structure. The work by Kokila and lyengar explains that a Gaussian
mixture model was necessary for core monsoons and subdivisions regions of India. This situation can be
effectively addressed by modeling it as a function of a Gaussian and Gamma Model. An illustrative example is
the modeling of the rainfall process, which often demonstrates such characteristics. Therefore, in this paper, an
attempt has been undertaken to represent Indian monsoon rainfall for the flood prone regions of Karnataka as a
function derived from a Gaussian and Gamma Distribution Model.

Initially, the proposal involves suggesting a combination of two Gaussian random variables, denoted as xand y,
with a certain proportion o for the transformed data z. The subsequent equation offers an illustration of how
these Gaussian random variables x andy, which are independently and identically distributed, are blended using
the proportion w;.

Letz = ux + (1 — wy 3)
Suchthat m,, = um, + (1 — wm, and 67 = u?c? + (1 — w?c} (4)

In the context of a Bernoulli random variable, it's common to describe it in terms of a probability mass function
(PMF) rather than a probability density function (PDF). The PMF of a Bernoulli random variable is typically
used to specify the probabilities of discrete outcomes.

A Bernoulli random variable, denoted as u, has two possible outcomes: 0 and 1, with probabilities p and 1 — p,
respectively.

p(w) = wd(lu — 1)+ (1 — w)s(u — 0) (5
The conditional density function of z given u is as follows

2
e[ (z—p)

flx:p,0%) = a\}ﬁ " 207 land
ap) = 2 P
f y a’ﬁ - BT (a) ()
Consider,
_ @=w)? a-1,~"/g
— Wi o2 _w)i ¢ 7
b = el S a e )
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Here the parameters p,o%,0and B are found using maximum likelihnood (MLH) estimator method . The
parameters u,o%, o.and B are the moments of the Gaussian and gamma random variables x and y respectively.
The MLH function L of the above equation is given by

n

L(M, O-Z'arﬁ) = l—l[wl * f:qaussian (X!/l, 02) + (1 - Wi) * f:gamma (y a’:ﬂ)] (8)

i=1

Instead of maximizing this product, which can be quite laborious, often take advantage of the fact that the
logarithm is a monotonically increasing function. Consequently, maximizing the log-likelihood is considered
equivalent and is a more convenient approach.

loglL(, 0%, 0, )] = ) loglp(zilu 0%, 2. B)] ©
i=1

By taking partial differentiations of the above equation (9) with respect to the parameters, one at a time, and
setting them equal to zero, then derive the parameter expressions. The parameters values are tabulate in Table 3.

5. GAUSSIAN AND GAMMA MODEL ON RAINFALL DATA

Table 3: The parameter values of equation (7) for flood prone regions of Karnataka

Region w UR o a B
Dakshina

Kannada 0.3 -0.02 0.15 1055.04 5.6
Udupi 0.6 -0.01 0.10 403.8 331

Uttara Kannada

0.48 -0.00 0.12 573.74 -3.19
Chikkamagalur 0.35 -0.02 0.17 978.34 -5.91
Hassan 0.45 -0.02 0.14 313.44 -4.45
Kodagu 0.37 -0.03 0.21 376.11 -4.46
Shivamoga 0.41 -0.03 0.18 489.21 -5.44

Equation (7) has been confirmed to meet all the criteria for being a valid probability density function. This
model is then applied to the original data using the transformation described in equation (10). The resulting
probability density function for R can be expressed as follows:

[ (o8 (2)-+) 0]
I (o)™
p(R) = Eia\/z%e + (1- wi)W R>0 (10)

I
I
| |

Figure 4 displays a comparison between the actual data and that of the Gaussian Mixture distribution model and
Figure 5displays a comparison between the actual data and that of the Gaussian and Gamma distribution model.
It is visually evident that, the Gaussian and Gamma distribution closely adheres to a probability density function
as defined in equation (10). Table 4 displays the first four moments of the Gaussian and Gamma modelwhich
are then compared with the moments of the actual data.
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In the event that assume the data follows a Gaussian and Gamma distribution, the skewness and kurtosis of the
data should ideally be 0 and 3. Hence, this model is deemed appropriate for the utilized dataset.Given that both
models yielded favourable results, signifying skewness close to 0 and kurtosis around 3, the Gaussian and
gamma models stand as potential considerations for subsequent analyses.

Table 4: Comparison between the actual data moments with the model data moments

Actual Data Moments Model Data Moments
Hq Oq Hm Om

Region (in cm) (incm) S K, (incm) (incm) Sm K.,

Dakshina Kannada 162.78 28.9 0.61 | 352 160.35 28.18 031 |322
Udupi 107.58 17.34 0.14 | 2.73 106.19 16.94 0.14 | 2.83
Uttara Kannada 272.13 36.01 0.36 3.57 270.69 35.58 0.31 3.57
Chikkamagalur 102.74 19.58 055 | 357 100.94 19.05 0.02 | 3.57
Hassan 49.31 11.59 0.02 | 232 47.91 11.15 0.10 | 2.92
Kodagu 63.61 15.17 091 | 4.26 61.94 14.62 090 | 3.26
Shivamoga 99.70 24.31 0.48 | 3.13 96.83 23.38 0.48 | 3.13

Figure 4:Comparison between the actual data and the model data using Gaussian Mixture Model
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Figure 5:Comparison between the actual data and the model data using Gaussian and Gamma Model
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Chikkamagalur - SWM - Histogram with G ian and Distributions
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Discussion And Conclusion:

In this research, a comprehensive analysis of a dataset using statistical methods and distribution modeling is
conducted. The objective was to gain insights into the underlying data structure and assess the goodness-of-fit of
specific probability distributions. It is began by calculating fundamental statistics, including the mean, standard
deviation, skewness, and kurtosis, which provided key information about the data's central tendency, dispersion,
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and shape. To facilitate the analysis, data normalization techniques were employed, particularly taking the
logarithm of the data relative to its mean. This step not only aided in making the data conform more closely to a
normal distribution but also enabled us to perform the Augmented Dickey-Fuller test for stationary. The results
of this test were crucial in determining whether the data exhibited temporal patterns.

Furthermore,distribution modeling techniques were employed including a Gaussian Model and gamma
distribution, to characterize the data's probability distribution. The model allowed us to represent the data as a
combination of multiple Gaussian distributions, while the gamma distribution was chosen to model the
skewness often observed in positive-valued datasets. Visualizations were created to provide a clear
representation of the probability density functions of these models and compare them to observed data.
Hypothesis testing, including the Chi-Square and Anderson-Darling tests, was performed to assess the
goodness-of-fit of these models and determine if the data followed a specific distribution. The findings
contribute valuable insights into the statistical properties of the dataset and lay the groundwork for further
analysis and modeling.

The research conducted by Kokila Ramesh and R N lyengar examines a non-Gaussian model for Indian
monsoon rainfall. Their initial work focused on employing a Gaussian Mixture Model to study Indian monsoon
rainfall. The authors used the Gaussian Mixture Model before is known to be really good at understanding
complicated data patterns. In this paper, the authors expanded the study by introducing and utilizing Gaussian
and Gamma distribution models to explore and analyzethe rainfall patterns specifically in areas like Dakshina
Kannada, Udupi, Uttara Kannada, Chikkamagalur, Hassan, Kodagu, and Shivamoga.

However, in this study, the introduction and exploration of the Gamma distribution model alongside the
Gaussian model. Through the analysis, both models showcase promising results, emphasizing the suitability and
effectiveness of these models help us figure out and understand the complex details of how rainfall pattern
behaves during the monsoon season. By demonstrating that both models exhibit favorable outcomes in
analyzing the southwest monsoon rainfall patterns.

In conclusion, the Gaussian and Gamma distribution models in the study of southwest monsoon rainfall patterns
provide a valuable contribution to the field. The successful application of these models underscores their
potential as reliable tools for meteorological analysis. This study suggests that the Gaussian and Gamma
distribution models can complement the existing Gaussian Mixture Model, offering an enhanced understanding
of rainfall variability and aiding in more accurate predictions and assessments. Continued research in this
direction could lead to benefitting forecasts and climate studies.
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