
Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

286

SVMVC: A Refinement to classical MVC for enhancing the Performance

of web applications

Rajneesh Chaturvedi

Sr. Assistant Professor, CS & IT Dept., IIS (Deemed to be University) Jaipur (India)

Prof. Swati V. Chande

Professor and Head of Computer Science department, International school & informatics

& Management, Jaipur (India)

Dr. Amita Sharma

Assistant Professor (Selection Grade), IIS (Deemed to be University) Jaipur (India)

Abstract:- Web application architectures are established design patterns employed to structure

the design of web applications. Typically, web application architecture is divided into distinct

layers and components, each catering to various quality enhancement requirements. These

design patterns are crucial for creating web applications that are scalable, maintainable, and

well-organized. Among the most renowned and widely used design patterns for web

applications is the Model-View-Controller (MVC) pattern. The MVC architecture's inherent

attributes, such as reusability, testability, scalability, and separation of concerns, have played a

pivotal role in its widespread adoption.

As performance stands out as a prominent quality indicator for web applications, this paper

introduces a novel refinement to the MVC architecture, with a primary focus on enhancing the

performance of web applications.

Keywords: MVC, Web application architecture, Performance, Simulation environment,

Response time, Throughput.

1. Introduction

The Internet and its applications have evolved rapidly in the last few years. It is capable of

providing different kinds of services through dynamic web applications. Web applications have

become more interactive and flexible to address different areas related to the needs of the

society and business. Enterprise solutions have become too complex in terms of fulfilment of

different kinds of customers requirements. Banking, e-commerce, communication (mails,

chat), stock trading, social networking are the areas where web applications are providing

services to a large number of users. In order to provide solutions for such complex problems,

web applications have become too lengthy, complex, distributed and divided into different

layers and components.[1]

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

287

Web application design is based on an architectural framework design so as to improve

functioning of the web applications and perform better partitioning of different components or

parts of application according to the architecture of that framework.[2][3] Effective

architecture is necessary for structured development and increased maintainability. There are

different views of architecture which can be relevant to the understanding of web application

structure.[3]

● Physical view :It provides physical abstraction of client – server architecture; 2 tier , 3

tier , N tier architecture

● Logical view: It provides a high level of abstraction of different parts of application.

 The Framework design pattern represents a logical view of application.

Logical views can be generated in the design and implementation phases of application

development. The main objective behind this is to decompose the system into groups/layers of

different components to achieve various kinds of decompositions.[3][4] This decomposition

may further be used for fulfilling various web software development purposes. MVC design

pattern is a majorly accepted design pattern in the industry for application development.

2. MVC –Model View Controller

MVC was conceived as a general solution to the problem of users controlling a large and

complex data set. The hardest part was to hit upon good names for the different architectural

components. MVC has three components Model, View and Controller for different kinds of

tasks.[6]

Model: A model represents an application’s data and contains the logic for accessing and

manipulating that data. Any data that is part of the persistent state of the application should

reside in the model objects. Model services are accessed by the controller for either querying

or generating a change in the model state. The model notifies the view when change of state

occurs in the model.

View: The view is responsible for rendering the state of the model. The presentation semantics

are encapsulated within the view therefore, model data can be adapted for different kinds of

clients. The view modifies itself when a change in the model is communicated to the view. A

view forwards the user's input to the controller.

Controller: The controller is responsible for interpreting and translating the user input into

actions to be performed by the model. The controller is responsible for selecting the next view

based on user input and the outcome of model operations.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

288

Figure 1: MVC Architecture framework [6]

It is concerned with making adaptations to the MVC pattern in order to develop

applications in a modular way and make layers fulfil their roles independently of the other

layers. The primary benefit of the MVC design pattern is a clear separation of concerns and

the resulting modularity. The design isolates user interface presentation from user input

handling, and isolates both of these from application state and transaction processing.

This makes it possible to modify or replace one component without needing to modify or even

understand the others. It also facilitates extensibility by making it possible to add

a view/controller pair for a new interface medium, or to add new functionality to the model

independently of the other components.

3. Performance Parameters:

1. Response Time: Response time is the time taken by the web server to respond to a request.

This includes the time taken to process the request, generate the response, and send it back to

the client.[5]

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

289

2. Latency: Latency is the time taken for a request to travel from the client to the server and

back again. This includes network latency, server processing time, and client processing

time.[5]

3. Throughput: Throughput is the number of requests that can be processed by the server per

unit of time. It is often measured in requests per second (RPS).[5][9]

4. Concurrent Users: Concurrent users refer to the number of users accessing the application

at the same time. This is important because the performance of the application can degrade as

the number of concurrent user’s increases. [9]

5. Error Rate: Error rate is the number of errors encountered by the application during a given

period of time. This includes server errors, client errors, and network errors [11].

4. Proposed Refinement in MVC:

4.1 Background

As the web application size and number of requests increases, the response time may be

negatively affected. Furthermore, if a large application is reloaded onto the server, response

time can increase. In order to address this issue, an improvement/refinement in MVC

architecture has been proposed, which separates the validation from the model component [10].

Validations are a critical part of any web application where user data must be collected and

verified in relation to the business logic [11].

While designing web applications we may use two kinds of validation techniques: client-side

and server-side.

a) Client-side validation is used to initially validate data at the client-side typically done using

scripting languages.

b) Server-side validation is used to validate data received from the client-side using server-

side programming language. Server-side validation is a necessary component of the business

logic layer of web application architecture.

In this paper we propose a refinement of the MVC architecture that enables the application to

be loaded in segments or only the necessary part of the application to be loaded.

4.2 Server side Validation Model View Controller (SVMVC):

The Server-Side Model View Controller (SVMVC) is a more sophisticated version of the

classical Model View Controller (MVC) that focuses on improving the performance of the

"Model" layer in the MVC framework. The model layer is responsible for handling the business

logic and application layer of a web application. It contains all the server-side components

necessary to process all client-side requests.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

290

Since the model layer has various components for server-side processing, it can be further

refined according to their different functions. SVMVC is a refinement of the model layer that

introduces server-side validation as a new component. The validation component manages all

server-side validation processing before redirecting the requests to other components in the

model layer. Figure 2 provides an overview of SVMVC's fundamental architecture. This

refinement reduces application latency, enhancing the performance of web applications. The

proposed refinement was tested for performance on a developed web application, and the

results confirmed its effectiveness.

 Figure 2: SVMVC Model (Refined)

5. Results Discussion and comparative analysis of MVC and SVMVC performance:

5.1 Experimental setup

The objective of this experiment was to study the behavior of classical MVC and the proposed

SVMVC architecture. In order to meet this objective two web applications (web application-1

and web application-2) were designed. Following hardware and software used to develop web

application and performance testing:

Hardware: Core i5, 4 GB DDR4

Software : Java Spring , Eclipse , Jmeter2.0

The first experiment was carried out in a simulated environment utilising the performance

testing tool Jmeter for Web Application1, developed using classical MVC.

The second experiment was carried out in a simulated environment utilising the performance

testing tool Jmeter for Web Application2, developed using the proposed SVMVC architecture.

Both the experiments concentrate on the performance analysis using several performance

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

291

metrics, such as response time, throughput, average elapsed time, error percentage, and

network throughput (KB/sec).

The experiments were centered on load generation for Web Application 1 and Web Application

2, taking ramp up count as 0 for concurrent users. In order to notice the unique outcomes for

each group of concurrent users in the range (100-1000) with a difference of 100, loop count

has been set to 1 for all trials in both experiments. In a simulation environment, the parameter

Ramp up represents the overall ramp up time utilised for user thread creation.

The list of experiments are:

● Experiment1 : Performance analysis of business layer of Web Application-1 based on

MVC architecture at Ramp up=0

● Experiment2: Performance analysis of business layer of Web Application-2 based on

SVMVC architecture at Ramp up=0

5.2 Experiment1 Results & Inference:

Table 1 and table 2 show the results obtained from the experiment 1 performed on web

application-1.

Table 1: Performance analysis of business layer of Web Application1 based on MVC

architecture at Ramp up=0

Ramp up=0

User

s

Throughp

ut (s)

Execution

Time(sec.

)

Average

Respons

e Time

(ms)

Min.

Respons

e Time

(ms)

Max.

Respons

e Time

(ms)

Erro

r %

Network

Throughput

(KB/sec)

100 102 2 391 7 965 0 327.9

200 101.2 2 842 153 1493 20 306.2

300 101.7 2 717 6 1992 27.67 300.4

400 110.5 3 1099 20 2083 68.75 284

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

292

500 103.6 2 1045 9 2771 58 276.1

600 122 2 1024 12 2098 87.67 291.8

700 127.9 3 1153 22 2698 49.14 349

800 134.5 3 1304 17 2501 87.12 322.2

900 148.6 2 9

89

6 2359 80.89 364.9

1000 128.8 2 1026 4 2263 58.30 342.9

 Table 2: Average Performance Analysis in Experiment 1

Avg.User

s Avg.

Through

put (s)

Avg.

Executio

n

Time(ms

)

Avg.

Respons

e Time

(ms)

Avg.

Min.

Respons

e Time

Avg.

Max.

Respons

e Time

(ms)

Avg.

Error

%

Avg.

Network

Throughp

ut

(KB/sec)

(ms)

550 118.08 2.3 959 25.6 2122.3 53.754 316.54

Inference: Due to Ramp up = 0 time, concurrent threads are created simultaneously, wherein

Jmeter adds each concurrent thread in accordance with its own policy. According to the results,

throughput gradually increases as the number of concurrent users rises from 100 to 1000.

Network throughput (data downloaded from the server) is subsequently increased or decreased

depending on the error percentage; when errors were caused by the generation of requests,

network throughput decreased because fewer bytes were downloaded for valid requests. Given

that the business layer components are now loading and running, the average response time

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

293

turns out to be 2122.3ms for Ramp up=0.

 5.3 Experiment2 Results & Inference:

Table 3 and table 4 show the results obtained from the experiment 2 performed on web

application-2.

Table 3: Performance analysis of business layer of Web Application1 based on SVMVC

architecture at Ramp up=0

Ramp up=0

User

s

Throughp

ut (s)

Execution

Time(sec.

)

Average

Respons

e Time

(ms)

Min.

Respons

e Time

(ms)

Max.

Respons

e Time

(ms)

Erro

r %

Network

Throughput

(KB/sec)

100 102.9 2 213 6 564 0 547

200 112.5 3 493 23 1199 12.50 555.3

300 121.5 2 314 5 1006 1 642.3

400 117.7 2 718 4 2082 36.5 494.8

500 124.8 2 911 9 1528 85.20 340.3

600 148.3 2 687 4 2064 27.67 663.5

700 152.3 2 906 6 2261 64.29 512.1

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

294

800 154.9 2 471 7 1706 23.25 714.3

900 148.1 2 1134 4 2695 71.56 465.1

1000 178.7 2 810 3 1587 75 542.5

 Table 4: Average Performance analysis of Experiment 2

Avg.Us

ers

Avg.

Throughp

ut (s)

Avg.

Execution

Time(ms)

Avg.

Respons

e Time

(ms)

Avg.

Min.

Respons

e Time

Avg.

Max.

Respons

e Time

(ms)

Avg.

Erro

r %

Avg.

Network

Throughput

(KB/sec)

(ms)

550 136.17 2.1 665.7 7.1 1669.2

39.6

97 547.72

 Inference: Due to Ramp up = 0 time, concurrent threads are created simultaneously, wherein

Jmeter adds each concurrent thread in accordance with its own policy. According to the results,

throughput gradually increases as the number of concurrent users rises from 100 to 1000.

Network throughput (data downloaded from the server) is subsequently increased or decreased

depending on the error percentage; when errors were caused by the generation of requests,

network throughput decreased because fewer bytes were downloaded for valid requests.

5.6 Comparative Analysis of MVC and proposed SVMVC

Since the response time and throughput act as the base indicators for evaluating the

performance of the web application, hence we evaluated our web application1 (based on MVC)

and web application2 (based on SVMVC) using the Jmeter tool. The ramp up was set as 0 for

100,200,300,400,500,600,700,800,900 and 1000 concurrent users. As depicted in the following

figures the response time and throughput are improving with increase in the number of

concurrent users in case of SVMVC.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

295

Figure 3: Comparative Analysis of MVC & SVMVC in terms of Response Time

The chart depicting response time analysis above clearly illustrates that in nearly every

scenario, the refined SVMVC model outperforms the traditional MVC model when applied to

web applications. In simpler terms, we can conclude that web applications based on SVMVC

exhibit faster response times in comparison to websites built using the MVC model.

Figure 4: Comparative Analysis of MVC & SVMVC in terms of Throughput

The chart above demonstrates that SVMVC-based web applications have significantly higher

throughput compared to MVC-based web applications. In other words, SVMVC-based web

applications are more adept at accommodating a larger number of client requests when

compared to MVC-based applications.

Tuijin Jishu/Journal of Propulsion Technology

ISSN: 1001-4055

Vol. 44 No. 5 (2023)

__

296

6. Conclusion and future work:

The experiments indicate that the proposed modifications to the MVC framework result in a

substantial enhancement in response time and throughput. Consequently, it is reasonable to

assert that the suggested SVMVC framework can be effectively employed to augment the

performance and functionality of web applications. Future research endeavors can

concentrate on further refining the application layer and other components within the MVC

framework.

7. References

1. Subraya BM, Subrahmanya SV. Object driven performance testing of Web applications. InProceedings First

Asia-Pacific Conference on Quality Software 2000 Oct 30 (pp. 17-26). IEEE.

2. Zhu K, Fu J, Li Y. Research the performance testing and performance improvement strategy in web

application. In2010 2nd international Conference on Education Technology and Computer 2010 Jun 22 (Vol.

2, pp. V2-328). IEEE.

3. Leff A, Rayfield JT. Web-application development using the model/view/controller design pattern.

InProceedings fifth ieee international enterprise distributed object computing conference 2001 Sep 4 (pp.

118-127). IEEE.

4. Schwabe D, Rossi G. The object-oriented hypermedia design model. Communications of the ACM. 1995

Aug 1;38(8):45-6.

5. Huang SQ, Zhang HM. Research on improved MVC design pattern based on struts and XSL. In2008

International Symposium on Information Science and Engineering 2008 Dec 20 (Vol. 1, pp. 451-455). IEEE.
6. Thung PL, Ng CJ, Thung SJ, Sulaiman S. Improving a web application using design patterns: A case study.

In2010 International Symposium on Information Technology 2010 Jun 15 (Vol. 1, pp. 1-6). IEEE.

7. Aljamea M, Alkandari M. MMVMi: A validation model for MVC and MVVM design patterns in iOS

applications. IAENG Int. J. Comput. Sci. 2018 Aug 1;45(3):377-89.

8. Kumar V, Chopra V, Makkar RS, Panesar JS. DESIGN & IMPLEMEN-TATION OF JMETER

FRAMEWORK FOR PERFORMANCE COMPARISON IN PHP & PYTHON WEB APPLICATIONS.

InInternational Interdisciplinary Conference on Science Technology Engineering Management Pharmacy

and Humanities 2017 Apr 22.

9. Meier J, Farre C, Bansode P, Barber S, Rea D. Performance testing guidance for web applications: patterns

& practices. Microsoft press; 2007 Nov 21.

10. Meier J, Farre C, Bansode P, Barber S, Rea D. Performance testing guidance for web applications: patterns

& practices. Microsoft press; 2007 Nov 21.

11. Madupu, S. V. N., & Kumar, Kiran. (2020). An Examination of Applications Using the

MVC Architecture. International Journal of Innovative Research in Computer and

Communication Engineering, 8, 558-566.

https://doi.org/10.15680/IJIRCCE.2020.0803065.

12. Agnihotri J, Phalnikar R. Development of performance testing suite using apache jmeter. InIntelligent

Computing and Information and Communication: Proceedings of 2nd International Conference, ICICC 2017

2018 (pp. 317-326). Springer Singapore.

