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Abstract 

We have proved a version of Lieb's inequality for continuous modulated shearlet transform on locally compact 

Abelian (LCA) groups. An alternative proof for the inequality has also been provided using Riesz-Thorin 

interpolation theorem. 

Keywords:Lieb’s Inequality, Fourier transform, Gabor transform,Shearlet transform,Wavelet transform, 

Continuous modulated shearlet transform. 

 

1. Introduction 

Lieb’s uncertainty inequality, also known as the Lieb’s bound or the Lieb inequality, is a fundamental result in 

quantum mechanics that establishes a fundamental limit on the uncertainty of certain pairs of observables. It was 

first derived by Elliott Lieb in 1973. 

In quantum mechanics, the uncertainty principle, as formulated by Werner Heisenberg, states that the more 

precisely we try to measure certain pairs of complementary observables, such as position and momentum, the 

more uncertain their values become. However, Lieb’s uncertainty inequality goes beyond thestandard 

Heisenberg uncertainty principle by providing a quantitative bound on the uncertainty relation between certain 

observables. 

Gröchenig in 1998 proved the following version of Lieb’s inequality for short-time Fourier transform on locally 

compact abelian groups (see [3, Theorem 6.3.1]). 

Theorem 1.1: For𝑓, 𝜓 ∈  𝐿2 𝐺 ,where𝜓is a window function and2 ≤ 𝑞 ≤ ∞, 

 𝐺𝜓𝑓 𝐿𝑞 𝐺×𝐺  
≤   𝜓 𝐿2 𝐺  𝑓 𝐿2 𝐺 . 

Lieb’s inequality has also been established for continuous quaternion wavelet transform in [7] and for 

continuous spherical Gabor transform in [2]. 

In section 2, we recall continuous modulated Shearlet transform and some of its results. Section 3 contains the 

formulation of main results of the paper including a version of Lieb's inequality. 

2. Continuous Modulated Shearlet Transform 

Consider 𝐺  to be a second countable, unimodular locally compact group of type I.Let 𝜇𝐺  be the left Haar 

measure on 𝐺 and 𝜇𝐺  be the Plancherel measure on the dual space 𝐺 . For 𝑓 ∈ 𝐿1 𝐺 , the Fourier transform 𝑓  is 

defined as the operator 
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𝑓  𝜋 =  𝑓 𝑥  𝜋 𝑥 ∗ 𝑑𝜇𝐺 𝑥 
𝐺

. 

The continuous modulated shearlet transform has been introduced in [1]. We briefly recall the notations. Let 𝐻 

be a second countable, locally compact Abelian group with Haar measure 𝜇𝐻 . The group of automorphisms of 𝐻 

be denoted by Aut 𝐻 . Let 𝜇𝐿  be the left Haar measure on a locally compact group 𝐿.Suppose that 𝜆 ∶ 𝐿 →

 Aut  𝐻  be a homomorphism 𝑙 ↦ 𝜆𝑙  satisfying the property that the mapping from 𝐿 × 𝐻  onto 𝐻  given 

by 𝑙, ℎ ↦ 𝜆𝑙 ℎ  iscontinuous. The group 𝐷 = 𝐿 ×𝜆 𝐻, which is the semi-direct product of 𝐿 and 𝐻, is a locally 

compact group with the group operation 

 𝑙, ℎ  𝑙′, ℎ′ = (𝑙𝑙′, ℎ𝜆𝑙(ℎ′)). 

By [4, (15.29)], the left Haar measure on 𝐷is given by 

𝑑𝜇𝐷 𝑙, ℎ = 𝛿𝜆 𝑙  𝑑𝜇𝐿 𝑙  𝑑𝜇𝐻 ℎ , 

Here, 𝛿𝜆  is a positive-continuous homomorphism on 𝐿satisfying 

𝑑𝜇𝐻 ℎ = 𝛿𝜆 𝑙  𝑑𝜇𝐻 𝜆𝑙 ℎ  . 

Also, the left Haar measure on the locally compact group 𝒮 = 𝐷 × 𝐺is given by 

𝑑𝜇𝒮 𝑙, ℎ, 𝑥 = 𝛿𝜆 𝑙  𝑑𝜇𝐿 𝑙  𝑑𝜇𝐻 ℎ  𝑑𝜇𝐺 𝑥 . 

For each 𝜓 ∈ 𝐿2 𝐻 × 𝐺 and  𝑙, ℎ, 𝑥 ∈ 𝒮, we define𝒰 𝑙,ℎ ,𝑥 
𝜓

∶ 𝐻 × 𝐺 →  ℂ by 

𝒰 𝑙,ℎ ,𝑥 
𝜓  𝑘, 𝑦 = 𝛿𝜆

1/2 𝑙  𝜓 𝜆𝑙−1 ℎ−1𝑘 , 𝑥−1𝑦  

for all  𝑘, 𝑦 ∈ 𝐻 × 𝐺.  

From [1, Proposition 2.2], it is clear that𝒰 𝑙,ℎ ,𝑥 
𝜓

∈ 𝐿2 𝐻 × 𝐺  and 

 𝒰 𝑙,ℎ,𝑥 
𝜓  

𝐿2(𝐻×𝐺)
=  𝜓 𝐿2(𝐻×𝐺).     (2.1) 

 

Definition 2.1: A function 𝜓 ∈ 𝐿2 𝐻 × 𝐺  is calledadmissible if 

𝐶𝜓 =   ℱ𝐻𝜓  𝜂 ∘ 𝜆𝑙 , 𝑥  
2
𝑑𝜇𝐿×𝐺 𝑙, 𝑥 

𝐿×𝐺 

< ∞, 

which is independent of almost every 𝜂 ∈ 𝐻 . Here ℱ𝐻  denotes the Fourier transform on 𝐻 and  

𝜓  𝑘, 𝑦 = 𝜓 𝑘−1, 𝑦−1                . 

Let 𝐶𝑐 𝐻 × 𝐺  denote the set of all continuous, complex-valued functions on 𝐻 × 𝐺having compact supports. 

Definition 2.2: Let 𝑓 ∈ 𝐶𝑐 𝐻 × 𝐺  andsuppose𝜓 ∈ 𝐿2 𝐻 × 𝐺  be admissible. Then, the measurable field of 

operators on 𝒮 × 𝐺 defined by 

ℳ𝒮𝜓𝑓 𝑙, ℎ, 𝑥, 𝜋 =  𝑓 𝑘, 𝑦 𝒰 𝑙,ℎ ,𝑥 
𝜓  𝑘, 𝑦 

                
 𝜋 𝑦 ∗ 𝑑𝜇𝐻×𝐺 𝑘, 𝑦 

𝐻×𝐺

 

is called continuous modulated shearlet transform(CMST) of 𝑓with respect to 𝜓. 

By [1, Proposition 2.11], we have the following: 

Proposition 2.3: Let 𝜓 ∈ 𝐿2 𝐻 × 𝐺  be an admissible function. Then, the linear operator  

ℳ𝒮𝜓 ∶ 𝐶𝑐 𝐻 × 𝐺 → ℋ2 𝒮 × 𝐺   

given by 𝑓 ↦ℳ𝒮𝜓𝑓 satisfies 
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 ℳ𝒮𝜓𝑓 ℋ2 𝒮×𝐺  
= 𝐶𝜓

1/2 𝑓 𝐿2(𝐻×𝐺). 

The above equality shows that ℳ𝒮𝜓 ∶ 𝐶𝑐 𝐻 × 𝐺 → ℋ2 𝒮 × 𝐺   defined by 𝑓 ↦ℳ𝒮𝜓𝑓 is a multiple of an 

isometry. So, we can extend ℳ𝒮𝜓uniquely to a bounded linear operator from 𝐿2 𝐻 × 𝐺  into a closed subspace 

𝑁 of ℋ2 𝒮 × 𝐺   which we still denote by ℳ𝒮𝜓  and this extension satisfies 

 ℳ𝒮𝜓𝑓 ℋ2 𝒮×𝐺  
= 𝐶𝜓

1/2 𝑓 𝐿2(𝐻×𝐺), 

for each 𝑓 ∈ 𝐿2 𝐻 × 𝐺 . 

Throughout this paper, we consider 𝐺 to be an Abelian group. In that case ℳ𝒮𝜓𝑓 ∈ 𝐿
2 𝒮 × 𝐺   and it satisfies 

 ℳ𝒮𝜓𝑓 𝐿2 𝒮×𝐺  
= 𝐶𝜓

1/2 𝑓 𝐿2(𝐻×𝐺).   (2.2) 

Gabor transform, wavelet transform and shearlet transform may be obtained from CMST, for details see [1, 

Section 4]. 

3. Main Results 

Before proving the main results, we shall first state Riesz-Thorin interpolation theorem. For more details, one 

may refer to [6, Page 52]. 

Theorem 3.1 (Riesz-Thorin interpolation theorem): Let 1 ≤ 𝑝0 , 𝑝1, 𝑞0, 𝑞1 ≤ ∞ and 𝑇  be a bounded linear 

operator from 𝐿𝑝0 𝑋, 𝐴, 𝜇 to 𝐿𝑞0 𝑌, 𝐵, 𝜈  with norm 𝑀0andfrom 𝐿𝑝1 𝑋, 𝐴, 𝜇 to 𝐿𝑞1 𝑌, 𝐵, 𝜈  with norm 𝑀1. Then 

𝑇 is bounded operator from 𝐿𝑝𝜃 𝑋, 𝐴, 𝜇 to 𝐿𝑞𝜃  𝑌, 𝐵, 𝜈  with norm 𝑀𝜃  such that 

𝑀𝜃 ≤ 𝑀0
1−𝜃𝑀1

𝜃  

with 

1

𝑝𝜃
=

1 − 𝜃

𝑝0
+
𝜃

𝑝1
,   

1

𝑞𝜃
=

1 − 𝜃

𝑞0
+
𝜃

𝑞1
,   𝜃 ∈  0,1 . 

 

We shall now prove the first main result of the paper. 

Theorem 3.2: Let 𝑓 ∈ 𝐿2 𝐻 × 𝐺  and 𝜓 ∈ 𝐿2 𝐻 × 𝐺  be admissible function. For 2 ≤ 𝑞 < ∞, 

 ℳ𝒮𝜓𝑓 𝐿𝑞  𝒮×𝐺  
≤ 𝐶

𝜓

1

𝑞  𝜓 
𝐿2 𝐻×𝐺 

1− 
2

𝑞  𝑓 𝐿2(𝐻×𝐺). 

Proof: ℳ𝒮𝜓  is bounded from 𝐿2 𝐻 × 𝐺  to 𝐿2 𝒮 × 𝐺   such that 

 ℳ𝒮𝜓𝑓 𝐿2 𝒮×𝐺  
= 𝐶𝜓

1/2 𝑓 𝐿2(𝐻×𝐺) 

and 

 ℳ𝒮𝜓𝑓 𝑙, ℎ, 𝑥, 𝛾  ≤  𝜓 𝐿2(𝐻×𝐺) 𝑓 𝐿2(𝐻×𝐺) 

for each  𝑙, ℎ, 𝑥, 𝛾 ∈ 𝒮 × 𝐺 . 

It implies that ℳ𝒮𝜓  is bounded from 𝐿2 𝐻 × 𝐺  to 𝐿∞ 𝒮 × 𝐺   such that 

 ℳ𝒮𝜓𝑓 𝐿∞ 𝒮×𝐺  
≤  𝜓 𝐿2 𝐻×𝐺  𝑓 𝐿2 𝐻×𝐺 . 

Applying Theorem 3.1 for 𝑝0 = 2, 𝑞0 = 2, 𝑝1 = 2, 𝑞1 = ∞, 𝑝𝜃 = 2 and 𝑞𝜃 = 𝑞, we obtain 𝜃 = 1 −
2

𝑞
 and ℳ𝒮𝜓  

as a bounded operator from 𝐿2 𝐻 × 𝐺  to 𝐿𝑞 𝒮 × 𝐺   such that 
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 ℳ𝒮𝜓𝑓 𝐿𝑞 𝒮×𝐺  
≤ 𝐶

𝜓

1

𝑞  𝜓 
𝐿2 𝐻×𝐺 

1− 
2

𝑞  𝑓 𝐿2(𝐻×𝐺).    

Corollary 3.3: Let𝑓,𝜓 ∈ 𝐿2 𝐻  with 𝜓 an admissible function. For 2 ≤ 𝑞 ≤ ∞, 

 𝒲𝜓𝑓 𝐿𝑞  𝐿×𝜆𝐻 
≤ 𝐶

𝜓

1

𝑞  𝜓 
𝐿2 𝐻 

1− 
2

𝑞  𝑓 𝐿2(𝐻). 

Theorem 3.4 (Lieb's Inequality): Let 𝑓1 , 𝑓2 , 𝜓1 , 𝜓2 ∈ 𝐿
2 𝐻 × 𝐺 with 𝜓1, 𝜓2 as admissible functions. For 

1 ≤ 𝑝 ≤ ∞, the function 

 𝑙, ℎ, 𝑥, 𝛾 ↦  ℳ𝒮𝜓1
𝑓1 𝑙, ℎ, 𝑥, 𝛾  ℳ𝒮𝜓2

𝑓2 𝑙, ℎ, 𝑥, 𝛾  

belongs to 𝐿𝑝 𝒮 × 𝐺   and  

 ℳ𝒮𝜓1
𝑓1   ℳ𝒮𝜓2

𝑓2 𝐿𝑝  𝒮×𝐺  
≤ 𝐶

𝜓1

1

2𝑝𝐶
𝜓2

1

2𝑝  𝜓1 𝐿2 𝐻×𝐺 

1− 
1

𝑝  𝜓2 𝐿2 𝐻×𝐺 

1− 
1

𝑝  𝑓1 𝐿2 𝐻×𝐺  𝑓2 𝐿2 𝐻×𝐺 .(3.1) 

 

Proof: Using Cauchy-Schwarz inequality and equation (2.2), we have 

   ℳ𝒮𝜓1
𝑓1  ℳ𝒮𝜓2

𝑓2  𝑙, ℎ, 𝑥, 𝛾   𝑑𝜎(𝑙, ℎ, 𝑥, 𝛾)
𝒮×𝐺 

 

=   ℳ𝒮𝜓1
𝑓1 𝑙, ℎ, 𝑥, 𝛾   ℳ𝒮𝜓2

𝑓2 𝑙, ℎ, 𝑥, 𝛾   𝑑𝜎(𝑙, ℎ, 𝑥, 𝛾)
𝒮×𝐺 

 

≤    ℳ𝒮𝜓1
𝑓1 𝑙, ℎ, 𝑥, 𝛾  

2
 𝑑𝜎 𝑙, ℎ, 𝑥, 𝛾 

𝒮×𝐺 
 

1/2

   ℳ𝒮𝜓2
𝑓2 𝑙, ℎ, 𝑥, 𝛾  

2
 𝑑𝜎 𝑙, ℎ, 𝑥, 𝛾 

𝒮×𝐺 
 

1/2

 

=  ℳ𝒮𝜓1
𝑓1 𝐿2 𝒮×𝐺  

 ℳ𝒮𝜓2
𝑓2 𝐿2 𝒮×𝐺  

 

= 𝐶𝜓1

1/2
𝐶𝜓2

1/2 𝑓1 𝐿2 𝐻×𝐺  𝑓2 𝐿2 𝐻×𝐺 .                 

(3.2) 

Therefore ℳ𝒮𝜓1
𝑓1  ℳ𝒮𝜓2

𝑓2 ∈ 𝐿
1 𝒮 × 𝐺   and 

 ℳ𝒮𝜓1
𝑓1   ℳ𝒮𝜓2

𝑓2 𝐿1 𝒮×𝐺  
≤ 𝐶

𝜓1

1

2 𝐶
𝜓2

1

2  𝑓1 𝐿2 𝐻×𝐺  𝑓2 𝐿2 𝐻×𝐺 . 

Again using Cauchy-Schwarz inequality and equation (2.1), we have 

 ℳ𝒮𝜓1
𝑓1 𝑙, ℎ, 𝑥, 𝛾   

≤   𝑓1 𝑘, 𝑦 𝒰 𝑙,ℎ,𝑥 
𝜓1  𝑘, 𝑦 

                
 𝛾 𝑦−1   𝑑𝜇𝐻×𝐺 𝑘, 𝑦 

𝐻×𝐺

 

≤    𝑓1 𝑘, 𝑦  2 𝑑𝜇𝐻×𝐺 𝑘, 𝑦 
𝐻×𝐺

 

1/2

   𝒰 𝑙,ℎ,𝑥 
𝜓1  𝑘, 𝑦  

2

 𝑑𝜇𝐻×𝐺 𝑘, 𝑦 
𝐻×𝐺

 

1/2

 

=  𝑓1 𝐿2 𝐻×𝐺  𝒰 𝑙,ℎ ,𝑥 
𝜓1  

𝐿2 𝐻×𝐺 
 

=  𝑓1 𝐿2 𝐻×𝐺  𝜓1 𝐿2 𝐻×𝐺 . 

Similarly, ℳ𝒮𝜓2
𝑓2 𝑙, ℎ, 𝑥, 𝛾  ≤  𝑓2 𝐿2 𝐻×𝐺  𝜓2 𝐿2 𝐻×𝐺 . So 

  ℳ𝒮𝜓1
𝑓1  ℳ𝒮𝜓2

𝑓2  𝑙, ℎ, 𝑥, 𝛾  ≤  𝑓1 𝐿2 𝐻×𝐺  𝜓1 𝐿2 𝐻×𝐺  𝑓2 𝐿2 𝐻×𝐺  𝜓2 𝐿2 𝐻×𝐺 . 

Therefore ℳ𝒮𝜓1
𝑓1  ℳ𝒮𝜓2

𝑓2 ∈  𝐿∞ 𝒮 × 𝐺   and 
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 ℳ𝒮𝜓1
𝑓1   ℳ𝒮𝜓2

𝑓2 𝐿∞ 𝒮×𝐺  
≤  𝑓1 𝐿2 𝐻×𝐺  𝜓1 𝐿2 𝐻×𝐺  𝑓2 𝐿2 𝐻×𝐺  𝜓2 𝐿2 𝐻×𝐺 .          (3.3) 

Thus (3.1) holds for 𝑝 = ∞. Now for 1 ≤ 𝑝 < ∞, we can write using (3.2) and (3.3) 

   ℳ𝒮𝜓1
𝑓1  ℳ𝒮𝜓2

𝑓2  𝑙, ℎ, 𝑥, 𝛾  
𝑝

 𝑑𝜎(𝑙, ℎ, 𝑥, 𝛾)
𝒮×𝐺 

 

=    ℳ𝒮𝜓1
𝑓1   ℳ𝒮𝜓2

𝑓2  𝑙, ℎ, 𝑥, 𝛾  
𝑝−1

  ℳ𝒮𝜓1
𝑓1  ℳ𝒮𝜓2

𝑓2  𝑙, ℎ, 𝑥, 𝛾   𝑑𝜎(𝑙, ℎ, 𝑥, 𝛾)
𝒮×𝐺 

 

≤  ℳ𝒮𝜓1
𝑓1  ℳ𝒮𝜓2

𝑓2 𝐿∞ 𝒮×𝐺  

𝑝−1
   ℳ𝒮𝜓1

𝑓1  ℳ𝒮𝜓2
𝑓2  𝑙, ℎ, 𝑥, 𝛾   𝑑𝜎(𝑙, ℎ, 𝑥, 𝛾)

𝒮×𝐺 
 

= 𝐶𝜓1

1/2
𝐶𝜓2

1/2 𝜓1 𝐿2 𝐻×𝐺 

𝑝−1  𝜓2 𝐿2 𝐻×𝐺 

𝑝−1  𝑓1 𝐿2 𝐻×𝐺 

𝑝  𝑓2 𝐿2 𝐻×𝐺 

𝑝
. 

So ℳ𝒮𝜓1
𝑓1   ℳ𝒮𝜓2

𝑓2 ∈ 𝐿
𝑝 𝒮 × 𝐺   and 

 ℳ𝒮𝜓1
𝑓1   ℳ𝒮𝜓2

𝑓2 𝐿𝑝  𝒮×𝐺  
≤ 𝐶

𝜓1

1

2𝑝𝐶
𝜓2

1

2𝑝  𝜓1 𝐿2 𝐻×𝐺 

𝑝−1

𝑝  𝜓2 𝐿2 𝐻×𝐺 

𝑝−1

𝑝  𝑓1 𝐿2 𝐻×𝐺  𝑓2 𝐿2 𝐻×𝐺 .  

Remark 3.5: The above theorem provides an alternative proof for Theorem 3.2 as follows: 

Considering 𝑓1 = 𝑓2 = 𝑓 and 𝜓1 = 𝜓2 = 𝜓 in Theorem 3.4, we have 

   ℳ𝒮𝜓𝑓 𝑙, ℎ, 𝑥, 𝛾  
2𝑝

 𝑑𝜎 𝑙, ℎ, 𝑥, 𝛾 
𝒮×𝐺 

 

1/𝑝

≤ 𝐶
𝜓

1

𝑝  𝜓 
𝐿2 𝐻×𝐺 

2 𝑝−1 

𝑝  𝑓 𝐿2 𝐻×𝐺 
2 . 

 

For 2 ≤ 𝑞 ≤ ∞, we substitute 𝑝 =
𝑞

2
 with 1 ≤ 𝑝 ≤ ∞ to obtain 

   ℳ𝒮𝜓𝑓 𝑙, ℎ, 𝑥, 𝛾  
𝑞

 𝑑𝜎 𝑙, ℎ, 𝑥, 𝛾 
𝒮×𝐺 

 

2/𝑞

≤ 𝐶
𝜓

2

𝑞  𝜓 
𝐿2 𝐻×𝐺 

2 𝑞−2 

𝑞  𝑓 𝐿2 𝐻×𝐺 
2 . 

Hence 

 ℳ𝒮𝜓𝑓 𝐿𝑞 𝒮×𝐺  
≤ 𝐶

𝜓

1

𝑞  𝜓 
𝐿2 𝐻×𝐺 

1− 
2

𝑞  𝑓 𝐿2 𝐻×𝐺 .     

 

Remark 3.6: Using Theorem 3.2, one may deduce Lieb’s inequality for Gabor transform, wavelet transform and 

shearlet transform on locallay compact Abelian groups. 
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