
Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4094

A Comprehensive Study On Some Fundamental

Problems In Graph Theory Using PYTHON

[1]Dr. A.Venkatesan, [2]Dr. S. Muthukumaran,
[3]Dr.A. Victoria Anand Mary,[4]Dr. C. Christy

[1]Assistant Professor, PG and Research Department of Mathematics,
[2]Assistant Professor, PG and Research Department of Computer Science

St. Joseph’s College of Arts & Science (Autonomous), Cuddalore-607001.

E-mail: [1]suresh11venkat@gmail.com[2]muthu.svk06@gmail.com
[3]victoria.mary1106@gmail.com [4]vincentchristy4@gmail.com

Abstract: In this paper some fundamental problems in graph theory such as finding the shortest path,

Hamiltonian path, minimum weight of the spanning tree and determining whether a given graph is Eulerian

are obtained by Python.

Keywords: Eulerian Circuit - Hamiltonian path - Dijkstra’s Algorithm - Prim’s Algorithm - Minimum

Spanning Tree.

1. Introduction:

In this paper we assume a graph G is finite, undirected and connected. Graph theory is a branch of

mathematics that deals with the study of graphs and networks. A graph G consists of a pair (V(G), X(G)) where

V(G) is a non-empty finite set whose elements are called points or vertices and X(G) is a set of unordered pair

of distinct elements of V(G). The elements of X(G) are called lines or edges of the graph G[6]. Python is a high-

level programming language that is used for a wide range of applications. It was first released in 1991 by Guido

van Rossum and has since become one of the most popular programming languagesin the world. The Shortest

Path, Hamiltonian Path, Minimum weight of the Spanning Tree and determining whether a given graph is

Eulerian are some of the most well-studied topics in graph theory and computer science.Here we discuss these

fundamental problems in graph theory using Python.

2. Preliminaries:

2.1 Definitions: ([7])

A walkW, connecting vertices u and v in a graph G is a finite alternating sequence of verticesand edges

in the form 𝑢 = 𝑢0, 𝑒1, 𝑢1, 𝑒2, 𝑢2, 𝑒3, 𝑢3, 𝑒4, 𝑢4, 𝑒5, 𝑢5, …,𝑢n-1, 𝑒n, 𝑢n = 𝑣. The walk W is called closed walk is u =

v. In a walk, an edge or a vertex may repeat.

The number of edges in a walk is called its length. A walk is called a trial if all edges in it are distinct and a trial

is called a circuit if it is closed.

A walk W is called a path if all vertices in it are distinct. A path is called a cycle if it is closed. Obviously, all

edges in a path are also distinct and only first and last vertices are repeated.

2.2 Definition: ([7])

A graph G is called weightedgraph if each edge e in G is assigned a definite non-negative real number

denoted by (𝑒), called weight of e. The non-negative real number may be length, cost, time, distance, fuel etc.

2.3 Definition: ([3])

A circuit in a connected graph G is called Eulerian circuit if it contains all the edges of graph and the

graph is called Eulerian graph if such a Eulerian circuit exists in G.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4095

2.4 Definition: ([3])

A path in a connected graph G is called Hamiltonian path if it contains all vertices in G (not necessarily

all edges) and the graph is called Hamiltonian graph if such Hamiltonian path exists in G.

2.5 Definition: ([4])

A tree is a simple graph G such that there is a unique simple nondirected path between each pair of

vertices of G.

2.6 Definition: ([4])

A subgraph H of a graph G is called a spanning tree of G if H is a tree and contains all the vertices of

G.

3. Python Programs For Some Fundamental Problems Of Graph Theory:

3.1 Python Program To Check Whether The Given Graph Is Eulerian:

from collections import defaultdict

def add_edge(adj_list, node1, node2):

 adj_list[node1].append(node2)

 adj_list[node2].append(node1)

def DFS(adj_list, visited_nodes, start_node):

 visited_nodes[start_node] = True

 for neighbor in adj_list[start_node]:

 if not visited_nodes[neighbor] and len(adj_list[neighbor])>0:

DFS(adj_list, visited_nodes, neighbor)

def check_eulerian_circuit(adj_list):

 start_vertex = next(iter(adj_list))

visited = defaultdict(lambda: False)

DFS(adj_list, visited, start_vertex)

for i in visited.keys():

 if not visited[i] and len(adj_list[i])>0:

 return False

 odd_nodes = [v for v in adj_list.keys() if len(adj_list[v])%2!=0]

 return len(odd_nodes) == 0 or len(odd_nodes) == 2

adj_list = defaultdict(list)

add_edge(adj_list, 0, 1)

add_edge(adj_list, 0, 4)

add_edge(adj_list, 1, 2)

add_edge(adj_list, 2, 3)

add_edge(adj_list, 3, 4)

add_edge(adj_list, 0, 5)

add_edge(adj_list, 1, 6)

add_edge(adj_list, 2, 7)

add_edge(adj_list, 3, 7)

add_edge(adj_list, 4, 6)

add_edge(adj_list, 5, 6)

add_edge(adj_list, 6, 7)

if check_eulerian_circuit(adj_list):

print("The graph is Eulerian.")

else:

print("The graph is not Eulerian.")

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4096

Output:

The graph is not Eulerian.

Manual Output:

The graph G is not Eulerian because, the vertices 0 and 7 are of odd degree.

3.2 Python Program To Find The Shortest Path

import heapq

def shortest_path(graph, start_node):

 distance = {vertex: float(‘inf’) for vertex in graph}

 distance[start_node] = 0

 heap = [(0, start_node)]

 while heap:

 (dist, cur) = heapq.heappop(heap)

 if dist > distance[cur]:

 continue

for nbr, weight in graph[cur].items():

 tentative_distance = dist + weight

 if tentative_distance < distance[nbr]:

 distance[nbr] = tentative_distance

heapq.heappush(heap, (tentative_distance, nbr))

 return distance

graph = {

 'A': {'B': 4, 'H': 5},

 'B': {'A': 4, 'C': 6, 'H': 11},

 'C': {'B': 6, 'D': 7, 'F': 4, 'I': 2},

 'D': {'C': 7, 'E': 9, 'F': 12},

 'E': {'D': 9, 'F': 10},

 'F': {'C': 4, 'D': 12, 'E': 10, 'G': 2},

 'G': {'F': 2, 'H': 1, 'I': 8},

 'H': {'A': 5, 'B': 11, 'G': 1, 'I': 7},

 'I': {'C': 2, 'G': 8, 'H': 7}

}

start_vertex = 'A'

distances = shortest_path(graph, start_vertex)

for vertex in distances:

print(" The Shortest Distance from the vertex", start_vertex, "to the vertex", vertex, "is", distances[vertex])

 4

 5 6
7

3

 2

 0

 1

 G

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4097

Output:

The Shortest Distance from the vertex A to the vertex A is 0

 The Shortest Distance from the vertex A to the vertex B is 4

The Shortest Distance from the vertex A to the vertex C is 10

 The Shortest Distance from the vertex A to the vertex D is 17

 The Shortest Distance from the vertex A to the vertex E is 18

 The Shortest Distance from the vertex A to the vertex F is 8

 The Shortest Distance from the vertex A to the vertex G is 6

 The Shortest Distance from the vertex A to the vertex H is 5

 The Shortest Distance from the vertex A to the vertex I is 12

Manual Output:

The shortest distance between A to A is 0.

The shortest distance between A to B is 4.

The shortest distance between A to C is 10.

The shortest distance between A to D is 17.

The shortest distance between A to E is 18.

The shortest distance between A to F is 8.

The shortest distance between A to G is 6.

The shortest distance between A to H is 5.

The shortest distance between A to I is 12.

3.3 Python Program To Find The Hamiltonian Path:

def hamilton_path(graph):

 path = []

for start_vertex in graph.keys():

 visited = set([start_vertex])

path.append(start_vertex)

if explore(graph, visited, path):

 return path

path.pop()

 return []

def explore(graph, visited, path):

 if len(path) == len(graph):

 return True

 current_vertex = path[-1]

4

8

2
I

 7

 11

H 1 G 2 F

10

E

9

D 7
C

 6
B

 4

A

 5

12

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4098

 for nbr in graph[current_vertex]:

 if nbr not in visited:

 visited.add(nbr)

path.append(nbr)

if explore(graph, visited, path):

 return True

visited.remove(nbr)

path.pop()

 return False

graph = {

 'A': {'B': 1, 'C': 1, 'G':1},

 'B': {'A': 1, 'C': 1, 'G':1},

 'C': {'A': 1, 'B': 1, 'D': 1, 'E':1, 'F':1},

 'D': {'C': 1, 'E': 1, 'F':1},

 'E': {'C': 1, 'D': 1, 'F': 1},

 'F': {'C': 1, 'D': 1, 'E':1},

 'G': {'A': 1, 'B': 1, 'F': 1}

}

path = hamilton_path(graph)

if path:

print("Hamiltonian path:", " -> ".join(path))

else:

print("No Hamiltonian path exists for the graph.")

Output:

Hamiltonian path: A -> B -> G -> F -> C -> D -> E

Manual Output:

The Hamiltonian path of the above graph is A -> B -> G -> F -> C -> D -> E

 A

B

C

E

D

 F G

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4099

3.4 Python Program To Find The Minimum Weight Of The Spanning Tree:

import heapq

def prim(graph):

visited = set()

 edges = [(0, None, 'A')]

 min_spanning_tree_weight = 0

 while edges:

weight, node1, node2 = heapq.heappop(edges)

 if node2 not in visited:

 visited.add(node2)

 min_spanning_tree_weight += weight

for nbr, weight in graph[node2].items():

 if nbr not in visited:

heapq.heappush(edges, (weight, node2, nbr))

 return min_spanning_tree_weight

graph = {

 'A': {'B': 4, 'H': 5},

 'B': {'A': 4, 'C': 6, 'H': 11},

 'C': {'B': 6, 'D': 7, 'F': 4, 'I': 2},

 'D': {'C': 7, 'E': 9, 'F': 12},

 'E': {'D': 9, 'F': 10},

 'F': {'C': 4, 'D': 12, 'E': 10, 'G': 2},

 'G': {'F': 2, 'H': 1, 'I': 8},

 'H': {'A': 5, 'B': 11, 'G': 1, 'I': 7},

 'I': {'C': 2, 'G': 8, 'H': 7}

}

min_spanning_tree_weight = prim(graph)

print("Minimum weight of the spanning tree:", min_spanning_tree_weight)

Output:

Minimum weight of the spanning tree: 34

B

 A C

E

D

 F G

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4100

Manual Output:

The Minimum weight of spanning tree of the above graph is 34.

4. Conclusion:

In this paper we have used Python program codes to determine some fundamental problems in Graph

Theory such as finding the shortest path, Hamiltonian path, minimum weight of the spanning tree and

determining whether the given graph is Eulerian.

References:

[1] Afsana Khan, AfridaAnzumAesha, JuthiSarker, “A New Algorithmic approach to Finding Minimum

Spanning Tree”, https://www.researchgate.net/publication/328389207

[2] Ashish Kumar, “A study on Euler Graph and its Applications”, International Journal of Mathematics

Trends and Technology, Vol.43(1), 2017.

[3] H.B.Maharjan, and L.N. Sharma, “An Introduction to Graph Theory”, PaluwaPrakashan, Kathmandu

Nepal, 2008.

[4] Joe L. Matt, Abraham Kandel, Theodore P. Baker, “Discrete Mathematics for Computer Scientists and

Mathematicians”, Prentice-Hall of India Pvt. Ltd, 2008.

[5] Ram Lakhan Sah, “Dijkstra’s Algorithm for determining shortest path”, Journal of Emerging

Technologies and Innovative Research, Vol.7(4), 2020.

[6] S. Arumugam, S. Ramachandran, “Invitation to Graph Theory”, Scitech Publications (India) Pvt. Ltd.,

2001.

 5

H 1
G

 2
F

I

2
4

E

9

D 7 C B

 4

A

4

8

2
I

 7

 11

H
 1 G 2 F

10

E

9

D 7
C

 6
B

 4

A

 5

12

https://www.researchgate.net/publication/328389207

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 3 (2023)
__

4101

[7] S.M. Maskey, “First Course in Graph Theory”, RatnaPustakBhandar, Kathmandu, Nepal, 2008.

