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Abstract

This article explores the trajectory controllability of artificial satellites, taking into account the

gravitational force of Earth and the force resulting from Earth’s oblateness. Controllability in this

context is investigated by transforming the equations of motion into a cylindrical coordinate system

and leveraging the concept of Lipschitz continuity within the nonlinear terms, coupled with the

application of functional analysis.
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1 Introduction

Artificial satellites have assumed a vital role in modern society, serving essential functions in navi-

gation, communication, and Earth’s environmental monitoring [1, 2]. Extensive research efforts have

been dedicated to comprehending the intricate dynamics governing the motion of these satellites. Pre-

vious studies have employed a diverse range of methodologies, including analytical, semi-analytical,

and numerical approaches.

For instance, King-Hele [5] made significant strides in solving the two-body problem for satel-

lites, incorporating Earth’s oblateness into an analytical framework. Raj [3] introduced regularized

equations of motion using KS transformations [4], accounting for atmospheric drag effects. Sehnal

[6] delved into the perturbations caused by the upper terrestrial atmosphere, while Knowles et.al.

[7]unearthed the influence of geomagnetic storms on upper atmosphere density, thus affecting satellite

orbits.

Yan and Kapila [8] took a novel approach by developing dynamical equations of satellite motion

within a spherical rotating frame, exploring conditions for maintaining a fixed osculating plane of

motion. Khalil [9] contributed with analytical solutions incorporating atmospheric drag and Earth’s

oblateness up to the 4th order zonal harmonic, using Hamiltonian mechanics. Bezdvěk and Vokrouh-

lický [10] presented a semi-analytic theory accommodating the oblateness of Earth up to the 9th order

zonal harmonic, factoring in atmospheric drag with the TD88 empirical model, and validating their

predictions with real-world satellite data.

Furthermore, researchers like Hassan et. al. [11], Chen and Jing [12], and Lee et. al. [14] explored

perturbed satellite motion under the influence of Earth’s oblateness and atmospheric drag. The study
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of satellite formation flight with aerodynamic forces was conducted by Reid and Misra [13], while

Xu and Chen [15] derived analytical solutions based on Keplerian angular elements, accounting for

atmospheric drag effects. et. al. [16]. scrutinized the impact of Earth’s oblateness and atmospheric

drag on the Cosmos1484 satellite’s orbit. Using Lie transformations, Delhaise[17] derived an analytical

solution for the satellite’s motion by considering gravity and air drag Sharma et.al. [18, 19]investigated

satellite motion, considering variables like initial velocities, Earth’s oblateness, atmospheric drag, and

even predicting satellite re-entry times. Realizing the importance of maintaining satellites in their

designated orbits for prolonged periods, researchers like Hajovsky [20] employed atmospheric drag as

a control mechanism. B. Palancz [2, 21] pursued trajectory control through pole placement strategies.

Recent work by Lamba [22] addressed controllability, observability, and stability issues related to

artificial satellites using state space methods. However, it predominantly employed a two-dimensional

model, yielding four equations in polar form.

In the present study, we extend this research by considering the 3D motion of satellites, specifically

examining the influence of the J2 zonal harmonic in a Cartesian coordinate system. Our focus centers

on understanding the controllability of artificial satellite trajectories in this comprehensive context.

2 Prelieminaries

Definition 2.1. The evolution system is said to be completely controllable on the interval I if

for any x0, x1 ∈ X there exists a controller w(t) in control space U such that the state of system steers

initial state x0 at t = 0 to desire final state x1 at t = T0.

Definition 2.2. The evolution system is totally controllable on the interval I if it is completely

controllable over all its subintervals [tk, tk+1].

Let CT be the set of all functions y(·) defined over the interval I satisfying the initial state y(0) = x0
and final state y(T0) = x1. This set CT is called a set of all feasible trajectories. The controller obtained

from the concept of complete and total controllability for the linear system will be optimal but for the

semilinear or nonlinear system may not be optimal. To overcome this situation one has to design a

trajectory having optimum energy or cost and define a controller in such a way that the state of the

system steers along this trajectory. Finding the controller that steers the system on the prescribed

optimal trajectory from an initial state to the desired final state is called TC.

Definition 2.3 (TC). The evolution system is said to be trajectory controllable (T- Controllable)

if for any trajectory y ∈ CT , there exist L2 control function w ∈ U such that the state of the system

x(t) satisfy x(t) = y(t) almost everywhere over the interval I.

In TC one has to find the controller such that the system should steer from an arbitrary initial

state to a desired final state along a prescribed path or trajectory. Therefore, TC is strongest among

all the forms of controllability.

3 Motion of Artificial Satellite

The equations of motion of satellite under the effect of the oblateness of the earth is given by

¨⃗r = − µ

r3
r⃗ + a⃗O (3.1)
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where, µ = GM , G is the gravitational constant and M is the mass of the earth, and a⃗O is the

acceleration due to the oblateness of the earth, considering zonal harmonic J2.

The equations of motion in cylindrical coordinate systems are represented by Humi.

r̈ − rθ̇2 = −µr

[
1

(r2 + z2)
3
2

+
3R2J2(r

2 − 4z2)

2(r2 + z2)
7
2

]
rθ̈ + 2ṙθ̇ = 0 (3.2)

z̈ = −µz

[
1

(r2 + z2)
3
2

+
3R2J(3r

2 − 2z2)

2(r2 + z2)
7
2

]
.

Under the effect of zonal harmonic J2, the satellite will deviate from its desired orbit, hence its motion

becomes uncontrollable. Eventually, it will hit on Earth. Therefore, to make a satellite in orbit one

has to plant a trajectory controller in the system. The figure shows the trajectory of the motion of an

artificial satellite under the effect of the oblateness of the Earth. By considering

Figure 1: System without control

Data: r̄0 = (0,−5888.9727,−3400),v̄0 = (7, 0, 0), R = 6378.1363, a = |r̄0|, µ = G ∗M , J2 = 1082.63×
10−6, Time Span: 540000 sec.

X1 = r − σ,

X2 = ṙ,

X3 = σ (θ − ωt) , (3.3)

X4 = σ
(
θ̇ − ω

)
,

X5 = z,

X6 = ż.
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The system becomes:

dX1

dt
= X2,

dX2

dt
= (X1 + σ)

(
X4

σ
+ ω

)2

− µ (X1 + σ)

 1[
(X1 + σ)2 +X2

5

]3/2 +
3R2J2

[
(X1 + σ)2 − 4X2

5

]
2
[
(X1 + σ)2 +X5

]7/2
+ u1 (t) ,

dX3

dt
= X4, (3.4)

dX4

dt
= −

2X5σ
(
X4
σ + ω

)
(X1 + σ)

,

dX5

dt
= X6,

dX6

dt
= −µX5

 1[
(X1 + σ)2 +X2

5

]3/2 +
3R2J2

[
3 (X1 + σ)2 − 2X2

5

]
2
[
(X1 + σ)2 +X5

]7/2
 .

Plugging trajectory controller the system becomes:

dX1

dt
= X2 +W1(t),

dX2

dt
= (X1 + σ)

(
X4

σ
+ ω

)2

− µ (X1 + σ)

 1[
(X1 + σ)2 +X2

5

]3/2 +
3R2J2

[
(X1 + σ)2 − 4X2

5

]
2
[
(X1 + σ)2 +X5

]7/2
+W2(t),

dX3

dt
= X4 +W3(t), (3.5)

dX4

dt
= −

2X5σ
(
X4
σ + ω

)
(X1 + σ)

+W4(t),

dX5

dt
= X6 +W5(t),

dX6

dt
= −µX5

 1[
(X1 + σ)2 +X2

5

]3/2 +
3R2J2

[
3 (X1 + σ)2 − 2X2

5

]
2
[
(X1 + σ)2 +X5

]7/2
+W6(t).

4 Generaliztion of the Problem

The form of the equation (3.5) is
dx

dt
= f(t, x(t)) + w(t)

x(0) = x0

(4.1)

over the interval I. Here, for each t, the state of the system x(t) lies in the Banach space Rn,

f : I × Rn → Rn satisfying the conditions of the hypothesis and w(·) is trajectory controller for the

system (4.1). Let C(I,Rn) be the Banach space of continuous functions from I into Rn equipped with

the norm ∥x∥ = sup
t∈I

∥x(t)∥.
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The function x(t) is the mild solution of the evolution system (4.1) over the interval I if, x(t)

satisfies the integral equation

x(t) = x0 +

∫ t

0
[f(s, x(s)) + w(s)]ds (4.2)

Theorem 4.1. If the nonlinear function f : I × Rn → Rn is measurable with respect to the first

argument and continuous with respect to the second argument. Moreover, there exist a constant l :

R+ → R+ such that

∥f(t, x1)− f(t, x2)∥ ≤ l∥x1 − x2∥

for all x1, x2 ∈ Br(Rn), ∀r < r0 for some r0 and t ∈ I Satisfies then the system (4.1) is trajectory

controllable.

Proof. Let u(t) be any trajectory from CT and define feed-back control of the system as:

w(t) =
du(t)

dt
− f(t, u(t)) (4.3)

Putting feedback control w(t),

dx

dt
= f(t, x(t)) +

du(t)

dt
− f(t, u(t))

Taking z(t) = x(t)− u(t),
dz

dt
= f(t, x(t))− f(t, u(t))

z(0) = 0,
(4.4)

and mild solution of the equation (4.4) is

z(t) =

∫ t

0
f(s, x(s))− f(s, u(s))ds

Since,

||z(t)|| ≤
∫ t

0
||f(s, x(s))− f(s, u(s))||ds

≤ l

∫ t

0
||x(s)− u(s)||(Applying hypotheses of the theorem)

≤ lT0||z(t)||,

and the equation (I + lT0)||z(t)|| ≤ 0 has unique trivial solution ||z(t)|| = 0 for all t. Thus, z(t) = 0

almost everywhere. Hence the system is trajectory-controllable.
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5 Simulation of the Problem

In the system (3.5) the nonlinear function can be written as

f1 = X2,

f2 = (X1 + σ)

(
X4

σ
+ ω

)2

− µ (X1 + σ)

 1[
(X1 + σ)2 +X2

5

]3/2 +
3R2J2

[
(X1 + σ)2 − 4X2

5

]
2
[
(X1 + σ)2 +X5

]7/2
 ,

f3 = X4,

f4 = −
2X5σ

(
X4
σ + ω

)
(X1 + σ)

,

f5 = X6,

f6 = −µX5

 1[
(X1 + σ)2 +X2

5

]3/2 +
3R2J2

[
3 (X1 + σ)2 − 2X2

5

]
2
[
(X1 + σ)2 +X5

]7/2
 ,

This function f = [f1, f2, f3, f4, f5, f6] is continuous with respect to t and there exist a constant l > 0

such that ||f(t, x) − f(t, y)|| < l||x − y||. This is possible by choosing the center of the earth as the

frame of reference. Therefore, the system (3.5) is trajectory controllable, and the trajectory controller

for the system is defined as

w(t) =
du(t)

dt
− f(t, u(t))

for the prescribed trajectory u(t). For the trajectory ū =

(
7
√

a3

µ sin(
√

µ
a3
t), 7cos(

√
µ
a3
t),−

√
a3

µ tsin(
√

µ
a3
t)

)

Figure 2: Trajectory

6 Conclusion

the paper contributes to the understanding of satellite motion and offers a mathematical framework for

trajectory controllability, which is essential for maintaining satellites in their designated orbits. This

research has implications for satellite control strategies, ensuring their stable and precise movement

in space.
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