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Abstract: This research looks at the flow and heat conduction properties of a hybrid nanofluid formed by an 

exponentially stretched porous surface. Over the last decade, there has been a substantial increase in research on 

nanofluids. Despite several contradictions in the published results and a poor understanding of the heat 

transmission mechanism in nanofluids, this fluid has emerged as a viable heat transfer medium. It takes longer for 

the combination nanofluid to make heat than it does for ordinary nanofluid. It has also been shown through 

simulations that the mixed nanofluid has better temperature performance than the nanofluid. Using the similarity 

transformation approach, the governing equations of the issue are turned to similarity equations. To convert 

nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs), the Keller Box approach 

is used. This strategy for solving these ODEs has been shown to be quite successful. The effects of several 

targeted parameters on physical quantities are shown, and the comparison of findings for validation is also 

recorded. The study's findings are provided as graphs, demonstrating the strong influence of the targeted elements 

on both nanofluid and hybrid nanofluid. Because of the existence of hybrid nanofluid, the velocity and 

temperature profiles have improved. Variations in the amount of Copper (Cu) nanoparticles, in particular, cause 

dramatic variations in the velocity and temperature profiles of the hybrid nanofluid. Furthermore, a lower Prandtl 

number is shown to reduce temperature and thermal boundary layer thickness. The graphical representations also 

show how porosity affects temperature and velocity profiles. 

Keywords: Hybrid Nanofluid, Heat Transfer, Exponential surface, Keller Box Method, Velocity and 

Temperature Profiles. 

 

 

1. Introduction 

Nanoparticles in nanofluids have a wide range of sizes, from 1 to 100 nm, and they are expertly constructed 

as colloids with the base fluid. Newly developed customised nanofluids offer a wide range of benefits compared to 

conventional emulsions with solid and liquid mixtures for enhancing heat transmission. Let's explore some of these 

advantages below. They benefit from a larger surface area for heat transfer between the molecules of nanoparticles 

and base fluids, thanks to their small sizes. Nanoparticles have higher order dispersion stability thanks to their 

remarkable Brownian motion. If they both need to reach the same heat transfer intensity, they require less pumping 

power compared to pure liquid. They have minimal particle fouling compared to conventional slurries, which greatly 

enhances system miniaturisation. Due to variable particle concentrations, they have the potential to possess 

properties such as surface wettability and heat conductivity that can be customised to meet the specific needs of 

various applications. 

Advanced nanofluids are hybrid nanofluids, which sustain two or more nanoparticle kinds in the base fluid. 

In the majority of studies, it was found that employing hybrid nanofluids in a variety of application domains had a 

positive impact on the rate of heat transfer. To further advance heat transfer characteristics and reduce pumping 

power in forced convection applications, exciting opportunities for research and exploration lie ahead in the field of 

thermal fluids. The study on hybrid nanofluids as a heat transfer medium yielded some exciting and significant 

results, which are listed below. Hybrid nanofluids are currently being used to transfer heat in porous media, which 

opens up exciting opportunities for further research to better understand how various parameters can positively 

impact heat transfer rate. 
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Xuan and Roetzel[1] investigate the intriguing prospects of enhanced heat transmission and nanofluid 

correlation, as well as the positive effects of nanofluid transport properties and thermal dispersion. The extensive 

analysis of heat transmission in nanofluids by S.K. Das et al. [2] opened up promising avenues for future research in 

this field. Oztup and Abu-Nada[3] conducted an intriguing on natural convection study in nanofluids contained in 

partially heated rectangular enclosures. C.Y. Wang[4] discovered that comprehending stagnation flow down a 

decreasing sheet becomes more manageable when the two elements are in harmony. Hymavathi et al. [5] devised a 

quasilinearization technique to solve the heat transfer problem in viscoelastic MHD fluid flow. According to Wong 

and Leon[6], nanofluids have intriguing potential applications in both established and emerging technologies. 

Bochak et al.[7] examined the stagnation point flow of a nanofluid over an expanding/contracting sheet in its own 

plane. Bhattacharya and Layek[8] investigated how suction/blowing and thermal radiation enhance flow and heat 

transfer at the stagnation point of a stable boundary layer in a contracted porous sheet. Saidur et al.'s [9] intriguing 

compilation and analysis of a considerable body of literature on the applications and potential of nanofluids. Akbar 

et al. [10] conducted a statistical investigation of Williamson nanofluid in an asymmetric channel.  

Haddad et al. [11] avidly investigated various synthesis procedures documented by other researchers in an 

effort to identify a practicable method for manufacturing stable nanofluids. In Williamson nanofluids, Nadeem et al. 

[12] discovered the tremendous potential for heat conduction and flow. Recent research conducted by Sarkar et al. 

[13] examined a vast array of topics, including several properties of heat transmission and pressure drop 

characteristics, potential applications, and obstructions.  According to the research of Hayat and Nadeem[14], hybrid 

nanofluid has the thrilling potential to transmit heat at a faster rate than conventional nanofluid! Hymavathi et 

al.[15] presented a fascinating study on the heat transmission and fluid flow of a non-Newtonian Casson fluid over a 

thermal radiation-heated surface that grows exponentially. Waini et al. discovered the tremendous potential of 

investigating the dynamic flow and heat transmission in a hybrid nanofluid over a stretching/shrinking sheet. [16]. 

Angel and Gabriel led a spectacular investigation into the production of entropy in nanofluids and hybrid nanofluids. 

They had the opportunity to conduct research in numerous thermal systems, each with distinct boundary conditions 

and physical properties. [17]. We were fortunate to have the opportunity to investigate the intriguing domain of 

skewed MHD flow of hybrid nanofluid through a nonlinear stretched cylinder based on the ground-breaking models 

developed by Nadeem et al. [18].  Waqas et al. [19] evaluated the potential benefits of non-linear thermal radiations 

on nanoparticle suspensions traveling across a rotating disc in a water-based hybrid nanofluid. Wahid et al. [20] had 

great success simulating and researching the flow of a hybrid nanofluid along a curved surface that is expanding and 

contracting. There are now an abundance of enticing new research avenues to investigate. In a similar fashion, 

Kamran Ahmed et al. [21] computationally analysed Williamson nanofluid flow over an exponentially increasing 

surface, yielding crucial scientific knowledge. Hymavathi et al. [22] conducted a ground-breaking study on the 

prospective effect of magnetic fields on the movement of Williamson nanofluids through a porous, stretched surface.                                                     

With an exciting focus on the incredible potential of alumina and copper nanoparticles combined with 

water  in a porous stretched surface, this research aims to develop a numerical method that will empower us to 

analyse the phenomena of flow and heat transfer of these amazing hybrid nanofluids. This method is called the 

Keller Box Method and it is an incredibly powerful finite implicit method. The visualisation and comprehensive 

discussion of various critical parameters greatly enhance our understanding of their positive impact on physical 

quantities. 

 

2. Mathematical Formulation 

𝑢𝑥 +  𝑣𝑦 = 0                                                                        →    (1) 

u 𝑢𝑥 + v 𝑢𝑦 =  
𝜇ℎ𝑛𝑓

𝜌ℎ𝑛𝑓
𝑢𝑦𝑦 - 𝜗 

𝑢

𝑘1
                                     →    (2) 

u Tx + v Ty = 
𝐾ℎ𝑛𝑓

(𝜌𝐶𝑝)ℎ𝑛𝑓
 Tyy                                             →    (3) 
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Boundary conditions: 

Issue boundary criteria are as follows: 

u = U= U0 ex/L, v = 0, T = Tw  at y = 0  →       (4) 

u→0, T → T∞ ,as y → ∞                                                                         

 

where (u,v) represent the velocities of the hybrid nanofluid in the axes directions, which presents incredible 

opportunities for future exploration and enhanced understanding. Furthermore, ρhnf ,  μhnf , (ρCp)hnf  and khnf  

wonderfully represent the density, dynamic viscosity, heat capacity, and thermal conductivity of the hybrid 

nanofluid, respectively. Table 1[3] highlights the thrilling thermophysical parameters of the hybrid nanofluid, while 

Table 2[3] showcases the valuable correlations of the hybrid nanofluid.  Here, ϕ1 and ϕ2 represent the thrilling 

volume fractions of nanoparticles for alumina and copper, respectively, while Cp stands for the impressive specific 

heat capacity at uniform pressure. Furthermore, we have the amazing ρCp, ρ and k, which represent the outstanding 

heat capacity, density, and thermal conductivity. Let's not forget about the incredible s1, s2, and f which symbolise 

the extraordinary alumina nanoparticle, copper nanoparticle, and base fluid, respectively. 

 

3. Solution: 

For boundary conditions (4), we utilize the similarity transformations below to find similarity solutions for equations 

(1) - (3). 

Ƞ = √
U0

2𝑣𝐿
 ex/2l y, u = U0 ex/l fˈ(ƞ) 

v = −√
vU0

2𝐿
 ex/2l [f(ƞ) + fˈ(ƞ)]                                                                   →   (5)               

T =   T∞  + T0 ex/2l θ(ƞ)                                                                             

 

 

Table 1: The Thermophysical properties of fluid and nanoparticles 

Physical Properties Water(f) Alumina(Al2O3) (s1) Copper(Cu) (s2) 

Cp(J/Kg K) 4179 765 385 

𝜌(kg/m3) 997.1 3970 8933 

K(W/mK) 0.613 40 400 

 

Table 2: The Thermophysical properties of nanofluid and hybrid nanofluid: 

Properties Nanofluid Hybrid Nanofluid 

Density ρnf  = (1- ϕ1) ρf + ϕ1 ρs1 ρhnf = (1- ϕ2)[ (1- ϕ1)ρf + ϕ1 ρs1]+ ϕ2 ρs2 

Heat Capacity (ρCp)nf  = (1- ϕ1) (ρCp) f + ϕ1 (ρCp) s1 (ρCp)hnf  = (1- ϕ2)[ (1- ϕ1) (ρCp) f + ϕ1                   

(ρCp)s1] + ϕ2 (ρCp)s2 

Dynamic viscosity μnf  = 
𝜇𝑓

(1−∅1)2.5 𝜇hnf  = 
𝜇𝑓

(1−∅1)2.5(1−∅2)2.5 

Thermal 

Conductivity 
knf = 

𝑘𝑠1+2𝑘𝑓−2∅1(𝑘𝑓−𝑘𝑠1)

𝑘𝑠1+2𝑘𝑓+∅1(𝑘𝑓−𝑘𝑠1)
*(𝑘𝑓) khnf = 

𝑘𝑠2+2𝑘𝑛𝑓−2∅2(𝑘𝑛𝑓−𝑘𝑠2)

𝑘𝑠2+2𝑘𝑛𝑓+∅2(𝑘𝑛𝑓−𝑘𝑠2)
*(𝑘𝑛𝑓) 

 

The following non-linear ODEs result from substituting eq(5) into eqs(2) and (3). 

 f''' +((1 − ∅2)[ (1 − ∅1)  +  ∅1
 𝜌𝑠1

 𝜌𝑓
] + ∅2  

 𝜌𝑠2

 𝜌𝑓
 ) ((1 − ∅1)2.5(1 − ∅2)2.5) (ff'' – 2f'2 – Kf') =  0 

θ''+((1 −  ∅2) [ (1 −  ∅1) +  ∅1
 (𝜌𝐶𝑝)𝑠1

 (𝜌𝐶𝑝)𝑓
] + ∅2  

 (𝜌𝐶𝑝)𝑠2

(𝜌𝐶𝑝)𝑓
 ) (

(
∅1𝑘𝑠1+∅2𝑘𝑠2

∅1+∅2
)+2𝑘𝑓 − (∅1𝑘𝑠1+∅2𝑘𝑠2)+(∅1+∅2)𝑘𝑓

(
∅1𝑘𝑠1+∅2𝑘𝑠2

∅1+∅2
)+2𝑘𝑓 + 2(∅1𝑘𝑠1+∅2𝑘𝑠2)−2(∅1+∅2)𝑘𝑓

) 

                                                                                                       *Pr(fθ' - f'θ ) = 0 

                                        f''' + D1(ff'' – 2f'2 – Kf') =  0                   →   (6)                                                                                                                                
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                                        θ'' +  D2 Pr(fθ' - f'θ ) = 0                          →   (7) 

 

The corresponding transformed boundary conditions are as follows: 

f (0) = 0, f′(0) = 1, θ(0) = 1 as η = 0,  

f′(η) → 0, θ(η) → 0 as   η → ∞                                                      → (8) 

where K = porosity parameter = 
2𝜗𝑙

𝑘1𝑈0
 𝑒

−𝑥

𝑙  

            Pr = Prandtl number = 
 𝜗(𝜌𝐶𝑝)𝑛𝑓

𝑘𝑓
 

       D1 = (

𝜌ℎ𝑛𝑓

𝜌𝑓
𝜇ℎ𝑛𝑓

𝜇𝑓

)    = ((1 −  ∅2)[ (1 −  ∅1)  +  ∅1
 𝜌𝑠1

 𝜌𝑓
] +  ∅2  

 𝜌𝑠2

 𝜌𝑓
 ) ∗ ((1 − ∅1)2.5(1 − ∅2)2.5) 

       D2 = (

(𝜌𝐶𝑝)ℎ𝑛𝑓

(𝜌𝐶𝑝)𝑓

𝑘ℎ
)     

         
(𝜌𝐶𝑝)ℎ𝑛𝑓

(𝜌𝐶𝑝)𝑓
 = ((1 −  ∅2)[ (1 −  ∅1)  + ∅1

 (𝜌𝐶𝑝)𝑠1

 (𝜌𝐶𝑝)𝑓
] + ∅2  

 (𝜌𝐶𝑝)𝑠2

(𝜌𝐶𝑝)𝑓
 ), 

           𝑘ℎ = 
𝑘ℎ𝑛𝑓

𝑘𝑓
  = (

(
∅1𝑘𝑠1+∅2𝑘𝑠2

∅1+∅2
)+2𝑘𝑓 + 2(∅1𝑘𝑠1+∅2𝑘𝑠2)−2(∅1+∅2)𝑘𝑓

(
∅1𝑘𝑠1+∅2𝑘𝑠2

∅1+∅2
)+2𝑘𝑓 − (∅1𝑘𝑠1+∅2𝑘𝑠2)+(∅1+∅2)𝑘𝑓

)  

 

4.  Numerical Procedure   

Cebeci and Bradshaw successfully developed a method to effectively solve the equations using the given 

boundary conditions. The following duties are ready to be accomplished 

1. By using the modified equations, we are able to generate a first order equation. 

2. Central differences are a helpful tool for constructing difference equations. 

3. The exciting outcome is the creation of an algebraic equation, which is then skillfully linearized using 

Newton's technique and beautifully represented as a matrix vector. 

4. The block tridiagonal elimination method is a powerful tool for solving the linear system. 

Introduce 

                   f' = p 

                   p' = q 

                   θ' = t                                            

equation (6) ,(7) are reduced to   

⇒ q'  + D1 (fq – 2p2 – Kp)= 0 = 0            

⇒ t'  +  D2 Pr(ft - pθ ) = 0                        

Boundary conditions are expressed in terms of the variables of interest. 

f(0) = 0 , p(0) = 1, θ = 1 at ƞ = 0 

p(ƞ)→0, θ (ƞ)→0 as ƞ →∞                               

Now consider the segment ƞj-1, ƞj with ƞj-1/2 as the midpoint 

and ƞ0 = 0, ƞj  = ƞj-1 + hj, ƞJ = ƞ∞                                                                                                     

With j = 1, 2, 3,...., and the spacing denoted by hj. J represents a numerical sequence that denotes a set of 

coordinates.  

 

Using Central Differences 

                                                          f ' = 
fj−fj−1

h
 

                                      Average       f  =  
fj+fj−1

2
  = fj-1/2 



Tuijin Jishu/Journal of Propulsion Technology  
ISSN: 1001-4055   
Vol. 44 No. 3 (2023)  
___________________________________________________________________________________________ 

 

3678 
 

Since f ' = p ⇒ 
fj−fj−1

hj
 = 

pj+pj−1

2
  = pj-1/2                          →       (9) 

 For   p ' = q ⇒ 
pj−pj−1

hj
 = 

qj+qj−1

2
 = qj-1/2                       →       (10) 

         g' = t  ⇒ 
gj−gj−1

hj
 = 

hj+hj−1

2
 = tj-1/2                       →       (11)                                  

Now Consider the coupled equations 

 qj − qj−1 + 
ℎ𝑗𝐷1

4
 [fj + fj−1][qj + qj−1] - 

ℎ𝑗𝐷1

2
[pj + pj−1]2  - 

ℎ𝑗𝐾𝐷1

2
[pj + pj−1]     = 0    →      (12)       

tj − tj−1 + 
ℎ𝑗𝐷2𝑃𝑟

4
 [fj + fj−1][tj + tj−1] - 

ℎ𝑗𝐷2𝑃𝑟

4
[pj + pj−1] [gj + gj−1]  = 0              →      (13)       

 

Newton’s method: 

To Linearising the above Non-Linear system of equations (9) to (13) using, 

    introduce 

fj
(k+1)  = fj

(k)  +  ẟfj
(k) 

    pj
(k+1)  = pj

(k)  + ẟpj
(k) 

    qj
(k+1)  = qj

(k)  + ẟqj
(k)                                     →     (14) 

    gj
(k+1)  = g j

(k)  + ẟg j
(k) 

 tj
(k+1)  = tj

(k)  + ẟtj
(k) 

 

    substituting equations (14) in (9) to (13) 

    ẟfj  -  ẟfj-1 - 
hj

2
 (ẟpj  +  ẟpj-1)  =   (r1) j - ½                                   

 ẟpj  -  ẟpj-1 - 
hj

2
 (ẟqj  +  ẟqj-1)  =   (r2) j - ½  

 ẟg j  -  ẟg j-1 - 
hj

2
 (ẟtj  +  ẟtj-1)  =   (r3) j - ½                                                                    →     (15) 

    (a1)j ẟqj + (a2)j ẟqj-1+(a3)j ẟfj + (a4)j ẟfj-1 + (a5)j ẟpj +(a6)j ẟpj-1  = (r4) j - ½  

    (b1)j ẟtj + (b2)j ẟtj-1+(b3)j ẟfj + (b4)j ẟfj-1 + (b5)j ẟpj +(b6)j ẟpj-1  

                                                                + (b7)j ẟg j +(b8)j ẟg j-1   = (r5) j - ½                  

     Where      (a1)j   =   1 +  
ℎ𝑗𝐷1

4
(fj + fj−1) 

                      (a2)j    =   (a1)j – 2.0 

                   (a3)j    =   
ℎ𝑗𝐷1

4
(qj + qj−1) 

                   (a4)j    =   (a3)j 

                      (a5)j    =   −
ℎ𝑗𝐷1

2
(pj + pj−1) − 

ℎ𝑗𝐾𝐷1

2
 

                      (a6)j    =   (a5)j                                                                 →     (16) 

                      (b1)j   =   1 +  
ℎ𝑗𝐷2𝑃𝑟

4
 [fj + fj−1]] 

                  (b2)j    =   (b1)j - 2.0 

                  (b3)j    =  
ℎ𝑗𝐷2𝑃𝑟

4
 [tj + tj−1] 

                  (b4)j    =   (b3)j 

                     (b5)j    =   − 
ℎ𝑗𝐷2𝑃𝑟

4
 [gj + gj−1] 

                     (b6)j    =   (b5)j        

                 (b7)j    =   - 
ℎ𝑗𝐷2𝑃𝑟

4
[pj + pj−1]                                                     

                 (b8)j    =   (b7)j              

       and                              (r1)j  =   fj−1 - fj +  
hj

2
 (pj + pj−1) 

                                          (r2)j  =   pj−1 – pj +  
hj

2
 (qj + qj−1) 
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                                          (r3)j  =   gj−1 – gj +  
hj

2
 (tj + tj−1) 

         (r4)j  =   qj−1 - qj -  
ℎ𝑗𝐷1

4
 [fj + fj−1][qj + qj−1] +  

ℎ𝑗𝐷1

2
[pj + pj−1]2  +  

ℎ𝑗𝐾𝐷1

2
[pj + pj−1]                 

         (r5)j  =   tj−1 - tj - 
ℎ𝑗𝐷2𝑃𝑟

4
 [fj + fj−1][tj + tj−1] +  

ℎ𝑗𝐷2𝑃𝑟

4
[pj + pj−1] [gj + gj−1]  = 0      →   (17)      

 

      If we assume  j =  1,2,3….. 

         The system of equations becomes 

                                                                      [A1][δ1]+[C1][δ2]=[r1]                           

 

                                                                 [B2][δ1]+[A2][δ2]+[C2][δ3] = [r2]                               

 

                                                                    ….. 

 

                                                                  [BJ-1][δ1]+[AJ-1][δ2]+[CJ-1][δ3]=[rJ-1] 

                                                                       [BJ][δJ-1]+[AJ][δJ]= [rJ]                                               →   (18)                                                                 

 Where    A1      =























111312

111312

)(0)()(0

0)()(0)(

000

000

00100

bbb

aaa

dd

dd

        

AJ     = 























−

−

jjjj

jjj

bbbb

aaa

d

d

d

)(0)()()(

0)()(0)(

0010

0001

0010

1386

136

  ,  

                 BJ     = 





















 −

jj

jj

bb

aa

d

d

)(0)(00

0)()(00

0000

0000

00100

24

24

,     CJ     = 























000)()(

0000)(

00010

00001

0000

75

5

jj

j

bb

a

d

     

 

5. Results and Discussions 

This section thoroughly examines and discusses flow and heat transfer solutions to the present issue. The 

Keller Box technique, implemented in Matlab, greatly enhances numerical computation.  

Figures 1 and 2 beautifully showcase the velocity and temperature curves, highlighting the exciting range 

of values for ϕ1 and ϕ2. It's truly fascinating to explore the effects of K = 0.3 and Pr = 6.2 in these visual 

representations. The graph demonstrates that as volumetric concentration of copper nanoparticles increases, there is 

a positive correlation with the velocity of the hybrid nanofluid. Moreover, volumetric concentration of nanoparticles 

has an impact which is positive on both the temperature profiles of both fluids. 

Figures 3 and 4 beautifully illustrate the positive impacts of adjusting the porosity parameters. The velocity 

profiles for both the fluids show a decrease when the porosity parameter is adjusted. However, it's great to see that 

the nanoparticle volumetric concentration is kept constant at        ϕ1 = ϕ2= 0.1. The temperature profiles, on the other 

hand, show a different effect. Figure 5 beautifully showcases temperature distributions as a function of Prandtl 

number. As the Pr rises, temperature profiles of nanofluid and hybrid nanofluid both decrease. However, this change 

can lead to exciting opportunities for further exploration and potential improvements.  
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        Fig - 1                                                                                 Fig - 2 

  
Fig - 3                                                                                 Fig - 4 

 
Fig - 5 
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6. Conclusion 

We are anxiously exploring the fascinating work on the flow and heat transmission of the hybrid nanofluid 

past an exponentially extending surface! It is carefully analyzed and attractively demonstrated how the fractions ϕ1 

and ϕ2, the porosity parameter K, and the Prandtl number Pr affects the velocity and temperature profiles. 

➢ The velocity and temperature for both nanofluid and hybrid nanofluid exhibit a promising trend as the 

fraction of the nanoparticles increases.  

➢ Increasing values of the porosity parameter have a positive impact on the velocity         profiles, as they 

slightly improve them. Moreover, they greatly enhance the temperature profiles, leading to even better 

results.  

➢ The temperature shows a positive trend as the Pr increases. Rise in Pr values brings about a positive 

effect as it helps to decrease the thermal boundary layer thickness. 
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