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Abstract:- In this study, we explore a queuing system with a single server that facilitates the arrival of 

Encouraged consumers while limiting server control. For first-time users, the server in this configuration 

provides three distinct service types (one by one service, bulk service with an accessible collection, and non-

accessible collection). To calculate the predicted number of customers waiting in queue, the likelihood of a 

steady state, and a system of difference differential equation, the Laplace transform is used. The tabular format 

is used to display the numerical findings. 
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1. Introduction 

 A.Sridhar and S.Senthilkumar (2022)   [6]  talk about three distinct service categories that may be handled by 

single server queue. Queueing system analysis with several vacations and motivated customers (2022). They 

looked at a queueing model with a limited server capacity and encouraged customers on numerous vacation 

days. In this work, we analyze the effects of encouraging client arrival in a queueing system with a single batch 

of services, where some customers have access to those services while others do not, and where the mean 

service rate for those with access and those without access also varies. It is assumed that customers come as per 

the Poisson process with λ  1 + ς   parameter, where ς is the variable that corresponds to the desired arrival rate. 

The server may process requests individually, in batches, with or without the ability to see the groups as they are 

processed. In the system, if the number of users is equal to or less than control limit,𝑐1., then the FCFS rule 

applies, and server provides a single user at a time, with service time distributed exponentially having mean 

service rate𝜇𝑆 . If the queue length is greater than,𝑐1., server serves the entire queue in a single batch, and new 

customers are ready to participate the batch until its size decreases below,𝑐2., at which point service time is 

exponentially distributed with a 𝜇𝐴  mean service rate . However, if the queue length is equal to or greater 

than,𝑐2., then server serves the entire queue in a single batch without letting new customers join it with mean 

service rate𝜇𝑁 . 

   The server performs an inspection of the system after each service completion epoch and classifies the system 

size (𝛽) into 3 groups: 1  0 ≤ 𝛽 ≤ 𝑐1,  2 𝑐1 +  1 ≤ 𝛽 ≤ 𝑐2 − 1 and  3 𝛽 ≥ 𝑐2. 

     An accessible batch is one in which the server processes requests from a batch of users in sequence and 

accepts additional users into that batch while it is processing those requests, up until the point where either the 

batch size reaches the maximum allowed value or the service ends, whichever comes first (AB). Finally, Non-

accessible batches are those in which the server has already taken all the service units and does not permit new 

users to join (NAB) with condition𝛽 ≥ 𝑐2, 

The steady state probabilities of the system size were determined by Baburaj and Manoharan (1999) [1] for both 

single as well as bulk queuing systems. To access the batches when the service is in process. Sivasamy (1990) 

[2]  considers the idea of accessibility. In this study, we analyze the dynamic behavior of a single queueing 

system providing both accessible and non-accessible batches of services at three distinct service rates and 

encouraging consumers to arrive at any time. In Section 2, we do an analysis of the model, the predicted queue 
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length is derived in Section 3. Estimating the Busy Period is done in Section 4. Tables with numerical findings 

were shown in Section 5. After this, in Section 6, the conclusion is drawn. 

2. Analysis of the Model 

    Let us consider 𝑃 0, 𝛽, 𝑡  , 𝛽 = 0,1,2, … , 𝑐1 indicates that there are 𝛽 customers at time t in the system and 

server is providing a single service (or is idle when 𝛽 =0),    𝑃 1, 𝛽, 𝑡 , 𝛽 = 𝑐1 + 1 , 𝑐1 + 2 , … , 𝑐2 − 1 assess the 

probability further that server is occupied processing AB while serving 𝛽 users and 𝑃 2, 𝛽, 𝑡 , 𝛽 ≥ 0 is that 𝛽 

customers are waiting to be served (excluding those now being served) while the server is occupied with a NAB 

at time t. Here, we have a convenient way to express the system's state space:  𝑆 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3 , where 

𝑆1 =   0, 𝛽 , 𝛽 = 0,1,2, … , 𝑐1  , 𝑆2 = { 1, 𝛽 , 𝛽 = 𝑐1 + 1, 𝑐1 + 2, … , 𝑐2 − 1} and  𝑆3 = { 2, 𝛽 , 𝛽 ≥ 0 }. 

𝑷(𝒊, 𝒋, 𝒕),𝑷(𝒊, 𝒋, 𝒕) and 𝑷(𝒊, 𝒋, 𝒕) conform to the set of difference differential equations shown below. 

𝑑

𝑑𝑡
𝑃 0,0, 𝑡 = −λ  1 + ς 𝑃 0,0, 𝑡 + 𝜇𝑆𝑃 0,1, 𝑡 + 𝜇𝐴  𝑃 1, 𝛽, 𝑡 + 𝜇𝑁

𝑐2−1
𝛽=𝑐1+1 𝑃 2,0, 𝑡  (1) 

𝑑

𝑑𝑡
𝑃 0, 𝛽, 𝑡 = −   λ  1 + ς  + 𝜇𝑆 𝑃 0, 𝛽, 𝑡 + λ  1 + ς 𝑃 0, 𝛽 − 1, 𝑡 + +𝜇𝑆𝑃 0, 𝛽 + 1, 𝑡  

+𝜇𝑁𝑃 2, 𝛽, 𝑡 , 1 ≤ 𝛽 ≤ 𝑐1 − 1 (2)                                                                                   
𝑑

𝑑𝑡
𝑃 0, 𝑐1, 𝑡 =

−   λ  1 + ς  + 𝜇𝑆 𝑃 0, 𝑐1, 𝑡 + λ  1 + ς 𝑃 0, 𝑐1 − 1, 𝑡 + 𝜇𝑁𝑃 2, 𝑐1, 𝑡 (3) 

 

𝑑

𝑑𝑡
𝑃 1, 𝑐1 + 1, 𝑡 = −  λ  1 + ς  + 𝜇𝐴 𝑃 1, 𝑐1 + 1, 𝑡 + λ  1 + ς 𝑃 0, 𝑐1, 𝑡 + 𝜇𝑁𝑃 2, 𝑐1 + 1, 𝑡  

 

                                                                                                                                                           (4)                           

𝑑

𝑑𝑡
𝑃 1, 𝛽, 𝑡 = −   λ  1 + ς  + 𝜇𝐴 𝑃 1, 𝛽, 𝑡 + λ  1 + ς 𝑃 1, 𝛽 − 1, 𝑡 + 𝜇𝑁𝑃 2, 𝛽, 𝑡 ,  

𝑐1 + 2 ≤ 𝛽 ≤ 𝑐2 − 1                   (5) 

𝑑

𝑑𝑡
𝑃 2,0, 𝑡 = −   λ  1 + ς  + 𝜇𝑁 𝑃 2,0, 𝑡 + λ  1 + ς 𝑃 1, 𝑐2 − 1, 𝑡 + 𝜇𝑁  𝑃 2, 𝛽, 𝑡 

∞

𝛽=𝑐2

 

  (6)                              

𝑑

𝑑𝑡
𝑃 2, 𝛽, 𝑡 = −  λ  1 + ς  + 𝜇𝑁 𝑃 2, 𝛽, 𝑡 + λ  1 + ς 𝑃 2, 𝛽 − 1, 𝑡 , 𝛽 ≥ 1. (7)                                               

      Let 𝑃 𝑖, 𝛽, 𝑠 , 𝑖 = 0,1,2 be the Laplace transforms P 𝑖, 𝛽, 𝑡 , 𝑖 = 0,1,2 respectively. By applying the Laplace 

Transform with the initial condition P 0,0, 𝑡 = 1 and using Laplace finial value theorem, P 𝑖, 𝑗 =

lim𝑡→∞ P 𝑖, 𝑗, 𝑡 = lim𝑠→0 𝑠P 𝑖, 𝑗, 𝑠  to equations (1) through (7) and then supposing the steady state criteria are 

met, we get the following set of transition probabilities. 

λ  1 + ς ) 𝑃 0,0   =    𝜇𝑆𝑃 0,1 +𝜇𝐴  𝑃 1, 𝛽 + 𝜇𝑁
𝑐2−1
𝛽=𝑐1+1 𝑃 2,0 (8) 

 λ  1 + ς + 𝜇𝑆  𝑃 0, 𝛽 = λ  1 + ς 𝑃 0, 𝛽 − 1 + +𝜇𝑆𝑃 0, 𝛽 + 1 + 𝜇𝑁𝑃 2, 𝛽  

1 ≤ 𝛽 ≤ 𝑐1 − 1                         (9) 

 λ  1 + ς + 𝜇𝑆  𝑃 0, 𝑐1 = λ  1 + ς 𝑃 0, 𝑐1 − 1 + 𝜇𝑁𝑃 2, 𝑐1                                                     (10) 

 λ  1 + ς + 𝜇𝐴  𝑃 1, 𝑐1 + 1 = λ  1 + ς 𝑃 0, 𝑐1 + 𝜇𝑁𝑃 2, 𝑐1 + 1                                              (11) 

 λ  1 + ς + 𝜇𝐴 𝑃 1, 𝛽 = λ  1 + ς 𝑃 1, 𝛽 − 1 + 𝜇𝑁𝑃 2, 𝛽 , 𝑐1 + 2 ≤ 𝛽 ≤ 𝑐2 − 1   (12) 
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 λ  1 + ς + 𝜇𝑁 𝑃 2,0,  = λ  1 + ς 𝑃 1, 𝑐2 − 1 + 𝜇𝑁  𝑃 2, 𝛽 ∞
𝛽=𝑐2

  (13) 

 λ  1 + ς + 𝜇𝑁 𝑃 2, 𝛽 = λ  1 + ς 𝑃 2, 𝛽 − 1    ,  𝛽 ≥ 1.                                                             (14) 

Resolve (14) repeatedly we find, 

𝑃 2, 𝛽 = 𝑃 2,0 б1
𝛽

, Where б1 =
λ  1+ς 

 λ  1+ς +𝜇𝑁 
 

By solving (9), which is the difference equation in,𝑃 0, 𝛽 ,  we get 

𝑃 0, 𝛽 = 𝐹. ɇ𝛽 − 𝑃 2,0 
𝜇𝑁б1

𝛽

𝑊 𝑧 
 ,1 ≤ 𝛽 ≤ 𝑐1 − 1 

Where F is a constant, 𝑊 z = μ
S
z2 −  λ  1 + ς + μ

S
 𝑧 + λ  1 + ς  and  ɇ =

λ  1+ς 

μS
 . 

By putting this into (10), we obtain 

      P 0, 𝑐1 = 𝐹 б2ɇ𝑐1−1 − 𝑃 2,0 [
𝜇𝑁 б2б1

𝑐1−1

𝑊 𝑧 
− б3б1

𝑐1],  

 Where б2 =
λ  1+ς 

λ  1+ς +𝜇𝑆
 andб3 =

𝜇𝑁

λ  1+ς +𝜇𝑆
. 

From (11) 

𝑃 1, 𝑐1 + 1 = 𝐹б2б4ɇ𝑐1−1 − 𝑃 2,0,  .𝑈1 

Where б4 =
λ  1+ς 

λ  1+ς +𝜇𝐴
, б5 =

𝜇𝑁

λ  1+ς +𝜇𝐴
 and 𝑈1 =  

𝜇𝑁б2б4б1
𝑐1−1

𝑊 𝑧 
-(б1б4б5 + б3б4)б

1
𝑐1  

From (12) 

𝑃 1, 𝛽 = 𝐹б2б4
𝛽−𝑐1ɇ𝑐1−1 − 𝑃 2,0 {  [ 𝑈1б4

𝛽−𝑐1−1
− ( 𝛽 − 𝑐1 − 1)б5б1

𝛽
},   𝑐1 + 2 ≤ 𝛽 ≤ 𝑐2 − 1 

From (13) 

𝑃 2,0 = 𝐹. 𝑈2 

Where б6 =
𝜇𝑁

λ  1+ς +𝜇𝑁
  and  𝑈2 =

б1б2ɇ𝑐1−1б4
𝑐2−𝑐1−1

1+𝑈1б4
𝑐2−𝑐1−1

б1− 𝑐2−𝑐1−1 б5б1
𝑐2−

б1
𝑐2 б6

 1−б1 

 

From (8) 

𝑃 0,0 = 𝐹[1 −
𝑈2𝜇𝑆𝜇𝑁б1

𝑊 𝑧 λ  1 + ς 
+

𝜇𝐴

λ  1 + ς 
𝑈3 +

𝜇𝑁

λ  1 + ς 
𝑈2] 

Where         𝑈3 = б2б4ɇ𝑐1−1 − 𝑈1𝑈2 + ɇ𝑐1−1б2  
б4

2−б4
𝑐2−𝑐1

1−б4
 − 𝑈2  𝑈1

б4−б4
𝑐2−𝑐1−1

1−б4
 + 𝑇1 

− 𝑐1 + 1 
б1

𝑐1+2 − б1
𝑐2

1 − б1
 

and  𝑇1 =  𝛽. б1
𝛽

=  1 − б1 
−2𝑐2−1

𝛽=𝑐1+1  б1
𝑐1+2

− б1
𝑐2 +  1 − б1 

−1 𝑐1б
1
𝑐1+1 − (𝑐2 − 1)б1

𝑐2 . 

Consequently, we derive Laplace transformation for the transition probabilities, such as 

𝑃 0,0 = 𝐹[1 −
𝑈2𝜇𝑆𝜇𝑁б1

𝑊 𝑧 λ  1+ς 
+

𝜇𝐴

λ  1+ς 
𝑈3 +

𝜇𝑁

λ  1+ς 
𝑈2]  (15)   

𝑃 0, 𝛽 = 𝐹[ɇ𝛽 − 𝑈2
𝜇𝑁б1

𝛽

𝑊 𝑧 
 ],1 ≤ 𝛽 ≤ 𝑐1 − 1 (16) 

𝑃 0, 𝑐1 = 𝐹[ б
2
ɇ𝑐1−1 − 𝑈2[

𝜇𝑁б2б1
𝑐1−1

𝑊 𝑧 
− б3б1

𝑐1] ]                                                         (17) 
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𝑃 1, 𝑐1 + 1 = 𝐹[б2б4ɇ𝑐1−1 − 𝑈1𝑈2] (18) 

 𝑃 1, 𝛽 = 𝐹[б2б4
𝛽−𝑐1ɇ𝑐1−1 − 𝑈2{   𝑈1б4

𝛽−𝑐1−1
− ( 𝛽 − 𝑐1 − 1)б5б1

𝛽
}],   𝑐1 + 2 ≤ 𝛽 ≤ 𝑐2 − 1 

(19) 

𝑃 2, 𝛽 = 𝐹𝑈2б1
𝛽

, 𝛽 ≥ 0 (20) 

Then using the normalizing condition 

 𝑃 0, 𝛽 +

𝑐1

𝛽=0

 𝑃 1, 𝛽 +  𝑃 2, 𝛽 = 1

𝛽≥0

𝑐2−1

𝛽=𝑐1+1

 

We get  

𝐹 = {1 −
𝑈2𝜇𝑆𝜇𝑁б1

𝑊 𝑧 λ  1 + ς 
+

𝜇𝐴

λ  1 + ς 
𝑈3 +

𝜇𝑁

λ  1 + ς 
𝑈2 +

ɇ − ɇ𝑐1

1 − ɇ
− 𝑈2

𝜇𝑁 б1 − б1
𝑐1 

 1 − б1 
 

                       +ɇ𝑐1−1б2 − 𝑈2[
𝜇𝑁б1

𝑐1−1
б2

𝑊 𝑧 
− б3б1

𝑐1] + 𝑈3 +
𝑈2

1−б1
}−1  (21) 

3. Expected Queue Length 

   If there are m customers, and, 1 ≤ 𝛽 ≤ 𝑐1 .., then the queue size will be 𝛽 − 1    and the server will be 

providing just one service, with the probability being,𝑃𝐿 0, 𝛽 . The server is handling AB requests if the queue 

length is equal to or more than 𝑐1 𝑏𝑢𝑡 𝑙𝑒𝑠𝑠 𝑡ℎ𝑒𝑛 𝑐2 ( 𝑐1 + 1 ≤  𝛽 ≤ 𝑐 2 − 1 ), and the availability is 𝑃𝐿 1,𝛽 . 

The server is handling NAB requests if the queue size is equal to or more than,𝑐2(𝛽 ≥ 𝑐2), so the probability 

is,𝑃𝐿 2, 𝛽 . In other words, clients who are waiting for NAB service must wait till it is finished. 

.             ᶅ
ℚ

=   𝛽 − 1 𝑃 0, 𝛽 +  𝛽(2, 𝛽)𝛽≥1
𝑐1
𝛽=2  

Making use of the equations (16), (17),(20) and (21), we discover, 

ᶅ
ℚ

=

𝐹  ɇ2  1 − ɇ −2 1 − ɇ𝑐1−1 −  𝑐1 − 1 ɇ𝑐1−2 1 − ɇ −1 +  𝑐1 − 1 ɇ𝑐1−1б2 + 𝑈2[ 
б1

 1−б1 2 +  𝑐11  
𝜇𝑁б1

𝑐1−1
б2

𝑊 𝑧 
−

б3б1𝑐1−  𝜇𝑁б12𝑊𝑧1−б1−21−б1𝑐1−1− 𝑐1−1б1𝑐1−21−б1−1].(22)                                                                          

4.  Expected Busy Period 

This configuration only allows the server to rest when there are no clients using the service. Here ᴃ (busy 

period) and ᵻ (idle period) alternates and form a busy cycle. Let𝒴 t  denote the server’s state and 𝒳 t  signify 

the system’s state at t time. In this model the server becomes busy when a single unit arrives. 

    Hence Ę  ᵻ  =
1

λ  1+ς 
. 

From the theory of renewal process 𝑃 0,0 = lim𝑡→0 𝑃 {𝒴 t = 0, 𝒳 t = 0}  

=  
Ę[ᵻ]

Ę ᵻ + Ę[ᴃ]
 

         Therefore expected busy period   Ę ᴃ =
1−𝑃 0,0 

λ  1+ς 𝑃 0,0 
 

=  
1 − 𝐹[1 −

𝑈2𝜇𝑆𝜇𝑁б1

𝑊 𝑧 λ  1+ς 
+

𝜇𝐴

λ  1+ς 
𝑈3 +

𝜇𝑁

λ  1+ς 
𝑈2]

λ  1 + ς 𝐹[1 −
𝑈2𝜇𝑆𝜇𝑁б1

𝑊 𝑧 λ  1+ς 
+

𝜇𝐴

λ  1+ς 
𝑈3 +

𝜇𝑁

λ  1+ς 
𝑈2]
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5.   Numerical Illustrations  

Take the values of the variables as 𝜆 = 10, ς = 2, µ
𝑆

= 10, µ
𝐴

= 8, µ
𝑁

= 7, 𝑐1 = 5 and 𝑐2 = 20 for numeric 

operations. 

The numerical findings for evaluating steady-state probability using equations (15) to (20) are shown in Table 1. 

Table 1. Numerical results of steady state probabilities 

𝛽 𝑃(𝟎, 𝛽) 𝛽 𝑃(𝟏, 𝛽) 𝛽 𝑃(𝟐, 𝛽) 

0 0.1560 5 0.3083 0  3.9823e-05 

1 0.0152 6 0.2438 1 3.2289e-05 

2 0.0457 7 0.1921 2 2.6180e-05 

3 0.1370 8 0.1517 3 2.9657e-05 

4 0.4110 9 0.1198 4 1.7211e-05 

  10 0.0945 5 1.3955e-05 

  11 0.0746 6 1.1315e-05 

  12 0.0589 7 9.1741e-06 

  13 0.0465 8 7.4385e-06 

  14 0.0367 9 6.0312e-06 

  15 0.0290 10 4.8902e-06 

  16 0.0229 11 3.9650e-06 

  17 0.0181 12 3.2149e-06 

  18 0.0143 13 2.6067e-06 

  19 0.0113 14 2.1135e-06 

    15 1.7136e-06 

    …  … 

    … … 

    … … 

 

Therefore, expected queue length computed for various 𝑐1 and 𝑐2 values by using equation (22) are as follows. 

 

Table 2 

𝑐1  ↓ /𝑐2 → 14 15 16 17 18 19 

6 3.6103 3.6885 3.7424 3.7746 3.7878 3.7839 

7 4.2272 4.3649 4.4766 4.5651 4.6331 4.6833 

8 4.8160 5.0155 5.1839 5.3237 5.4381 5.5303 

9 5.3268 5.5972 5.8305 6.0284 6.1939 6.3306 

10 5.7290 6.0800 6.3890 6.6559 6.8827 7.0729 

Here it can be noted that expected queue length increases when both 𝑐1 and 𝑐2  increases. 
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Therefore expected queue length computed for various ς , µ
𝑆
, µ

𝐴
 and µ

𝑁
  values by using equation (22).  The 

result on both ς and µ
𝑆
   expounds in table 3, the output on 

both ς and µ
𝐴

   clarifies in table 4, the outturn on both ς and µ
𝑁

  exucidates in table 5.        

 

Table 3Effects on 𝛓 and µ𝑺 

𝜆 = 8 , µ
𝐴

= 8 , µ
𝑁

= 7 ,𝑐1 = 50 and 𝑐2 = 100 

ς ↓ /µ
𝑆

→ 10 11 12 13 14 15 

1 44.5473 16.1514 0.4372 0.0114 0.0004 0.00002 

2 46.8310 46.6519   46.4694 46.2776 46.0679 45.8267 

3 47.4642 47.3358 47.2090 47.0827 46.9555 46.8257 

4 47.8088 47.7111 47.6147 47.5192 47.4243 47.3294 

5 47.9853 47.9092 47.8340 47.7595 47.6855 47.6117 

 

Here it can be noted that the expected queue length decreases when µ
𝑆
 increases but queue length increases 

when 𝛓increases. 

Table 4 Effects on 𝛓 and µ𝑨 

𝜆 = 8, , µ
𝑆

= 10µ
𝑁

= 7,𝑐1 = 50 , and 𝑐2 = 100 

ς ↓ /µ
𝐴

→ 8 9 10 11 12 13 

2 46.8310 47.1373 47.4292 47.7077 47.9738 48.2282 

3 47.4642 47.7814 48.0870 48.3820 48.6669 48.9424 

4 47.8088 48.1190 48.4169 48.7055 48.9858 49.2586 

5 47.9853 48.2994 48.5891 48.8662 49.1347 49.3965 

6 48.0130 48.3700 48.6679 48.9396 49.1976  49.4473 

 

Here it can be noted that the expected queue length increases when both 𝛓and µ
𝐴

 increases. 

Table 5 Effects of on 𝛓 and µ𝑵 

𝜆 = 8 , µ
𝑆

= 10, µ
𝐴

= 8,𝑐1 = 50 , and 𝑐2 = 100 

ς ↓ /µ
𝑁

→ 7 8 9 10 11 12 

1 44.5473 44.0076 43.4989 43.0161 42.5552 42.1130 

2 46.8310 46.3767 45.9578 45.5705 45.2112 44.8770 

3 47.4642 47.0342 46.6323 46.2559 45.9026 45.5704 

4 47.8088 47.4176 47.0484 46.6993 46.3687 46.0553 

5 47.9853 47.6321 47.2962 46.9763 46.6714 46.3804 
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Here it can be noted that the expected queue length increases when 𝛓increases but queue length decreases µ
𝑁

 

increases.                        

Table6 Queue length with respect to service rates 

S.No. Queue Length(  ᶅ
ℚ

) Service rates condition 

1 47.5549 µ
𝑆

= µ
𝐴

= µ
𝑁

 

2 47.9416 µ
𝑆

> µ
𝐴

> µ
𝑁

 

3 47.4287 µ
𝑆

< µ
𝐴

< µ
𝑁

 

4 47.8827 µ
𝑆

= µ
𝐴

> µ
𝑁

 

5 47.6013 µ
𝑆

> µ
𝐴

= µ
𝑁

 

6 47.2773 µ
𝑆

= µ
𝑁

> µ
𝐴

 

7 47.6376 µ
𝑆

< µ
𝐴

= µ
𝑁

 

 

     From the table number 6, we conclude that  the queue length is decreases when single service rate and non-

accessible batch service rate are euqual each other but both are  greater than accessible batch service rate. 

6. Conclusions 

Further we can find customer spend time in the system and queue length, busy period of the server of the 

encouraged arrival of customersς, service rates 𝜇𝑆 , 𝜇𝐴  and 𝜇𝑁 , control limits 𝑐1 and 𝑐2. While the server is 

active, we can also notice that the customer spends considerable time waiting in the system's queues. Some 

numerical results demonstrating system actions for charging clients at various rates for the same service are 

shown. 
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