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Abstract: The objective of this research is to extend the applicability of Picard's iterative existence and 

uniqueness theorem in solving non-linear Caputo fractional differential equations of higher order that involve a 

forcing function satisfying the usual Lipchitz's condition. To demonstrate the effectiveness of our approach, we 

have presented numerical examples of order α (where 1 < α < 2 and 2 < α < 3) along with the application of the 

fractional damped duffing oscillator. The solutions obtained through Picard's iterative method are accompanied 

by graphical representations and some solutions compared with ADM solutions using graphs. 

Keywords: Non-linear Factional Differential Equations, Approximate solution, Picard’s Iterative method, 

Forcing Function, Fractional Duffing oscillator, MATLAB. 

 

1. Introduction 

Differential Equations are a valuable tool in solving real-world problems involving both linear and non-linear 

systems. Depending on the nature of the phenomenon, we may need to employ either linear or non-linear 

differential equations. However, the majority of scientific problems and phenomena occur in a non-linear form. 

While only a small subset of these problems can be solved analytically, many can be addressed through 

approximate analytical methods or numerical techniques, such as linearization, decomposition, or homotopy 

methods [14]. 

As science and technology continue to advance, many phenomena cannot be adequately described by classical 

differential equations. For instance, various physical processes exhibit memory and hereditary properties that are 

not captured by local differential operators. Therefore, new tools, such as fractional differential equations with 

nonlocal operators, are necessary to represent these nonlocal phenomena accurately. However, most fractional 

differential equations do not possess exact solutions, and hence analytical and numerical methods have become 

increasingly important for solving them [4]. In recent years, several efficient methods have been developed for 

solving fractional differential equations, including the Adomian decomposition method[12], variational iteration 

method, homotopy perturbation method[5] [7], Haar wavelet operational method[3], neural networks[15]. For 

some nonlinear fractional differential equations, an exact analytical solution is not possible, and numerical 

methods like Picard's method [8], Taylor series method [10], and Lagrange's polynomial method [1] are 

employed to obtain approximate solutions. Numerical methods typically produce more accurate results than 

approximate analytic methods. 

Recently, numerous techniques have emerged to generate numerical solutions for various types of fractional 

differential equations. For example, Jafari &Daftardar-Gejjib proposed a method for solving nonlinear fractional 

differential equations using Adomain Decomposition Method [9]. In this approach, an approximate solution for 

a non-linear fractional differential equation is obtained and compared with its exact solution. 
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Athassawat Kammanee has developed a method for generating numerical solutions for fractional differential 

equations with variable coefficients using Taylor basis functions [10]. This method is computationally 

straightforward and offers a structured approach to obtaining numerical approximations. 

Aisha F. Fareed, Mourad S. Semary, and Hany N. Hassan have developed an approximate solution for fractional 

order Riccati equations using controlled Picard's method with Atangana-Baleanu fractional derivative [2]. This 

method is versatile in that it can be applied to a wide range of integer and fractional order differential equations, 

including non-linear ones. The approach employs an additional auxiliary parameter that enhances convergence, 

making it a highly effective method. 

In their paper, Rainey Lyons and et.al. Present an extension of Picard's Iterative Existence and Uniqueness 

Theorem to Caputo fractional differential equations with non-homogeneous terms that meet the typical 

Lipschitz's condition [13]. 

Ejikeme, C. L.and et.al. Proposed a solution to the nonlinear Duffing oscillator with fractional derivatives using 

the Homotopy Analysis Method (HAM). Their research provides an analytical solution to the fractional-order 

Duffing oscillator with graphical representation [6]. 

This research presents a solution to a non-linear fractional differential equation with a non-homogeneous term 

that includes a forcing function using Picard's iterative method. The method is demonstrated through several 

numerical examples, and the solution to a non-linear fractional Duffing oscillator is also presented graphically. 

 

2. Preliminaries  

This section aims to establish a clear understanding of the fractional calculus used in the paper, as there are 

several definitions of fractional derivatives and integrals. The Caputo derivative and Riemann-Liouville integral 

are both commonly used, but the paper specifically focuses on the Riemann-Liouville fractional integral [11]. 

Definition 1 The Caputo’s fractional derivative of order α is defined as 

𝐷𝛼𝑢 𝑡 =
1

Γ(𝑛−𝛼)
 

𝑢  𝑛 (𝑠)

(𝑡−𝑠)𝛼+1−𝑛 𝑑𝑠 , 0 ≤ 𝑛 − 1 < 𝛼 ≤ 𝑛
𝑡

0
,     𝑛 ∈ 𝑁 

where α is the order of the derivative and n is the smallest integer which is greater than α. 

Definition 2 The Riemann-Liouville fractional integral operator of order α, 𝐼𝛼  is given by 

𝐼𝛼𝑢 𝑡 =  

1

Γ𝛼
  𝑡 − 𝑠 𝛼−1𝑢 𝑠 𝑑𝑠 ,   𝛼

𝑡

0

> 0

𝑢 𝑡 , 𝛼 = 0

  

An important property of the Riemann-Liouville fractional integral that it is a linear operator 

𝐼𝛼 𝜆𝑓 𝑡 + 𝑔 𝑡  =  𝜆𝐼𝛼𝑓 𝑡 + 𝐼𝛼𝑔(𝑡) 

where λ is a constant. Moreover, a well-known Riemann-Liouville fractional integral formula regards its effects 

on powers of the integrand 

𝐼𝛼𝑡𝑛 =
Γ𝑛 + 1

Γ𝑛 + 1 + 𝛼
𝑡𝑛+𝛼  , 𝑓𝑜𝑟  𝑛 > −1 

Furthermore, Caputo’s fractional derivative of order α is  

𝐷𝛼𝑢 𝑡 = 𝐼𝑛−𝛼  
𝑑𝑛𝑢(𝑡)

𝑑𝑡𝑛
  

where 𝛼 ∈ 𝑹and 𝑛 − 1 < 𝛼 ≤ 𝑛 with𝑛 ∈ 𝑵. The relation between the Caputo fractional derivative and 

Riemann-Liouville integral operator is that they are almost inverses, except for integration constants,  

𝐷𝛼(𝐼𝛼𝑢(𝑡)) = 𝑢(𝑡) 

𝐼𝛼(𝐷𝛼𝑢(𝑡)) = 𝑢(𝑡) −  ukn−1
k=0 (0)

tk

k!
      for 𝑡 > 0 



Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 04 (2023) 

__________________________________________________________________________________ 

6036 

𝐼𝛼(𝑒𝑘𝑡 ) =
𝑒𝑘𝑡

𝑘𝛼 , Where k is a constant. 

3. Existence of Picard’s Iteration Method for System of FDE:  

In this research, Picard's method was used to solve a system of fractional differential equations with initial 

conditions. The method was applied to a non-homogeneous term of the FDEs, with an attempt to satisfy the 

Lipschitz condition. It should be noted that in a previous study [13], Picard's method was developed for Caputo 

fractional differential equations with initial conditions, but for the case where the nonlinear term satisfies a time-

independent Lipschitz condition. 

Consider the Caputo fractional initial value problem  

 
𝐷∝𝑦 = 𝑓 𝑥, 𝑦 

𝑦 𝑥0 = 𝑦0

                                                                                          (1) 

where 0 < α < 1, and 𝑓 𝑥, 𝑦 ∈ 𝐶  𝑥0, 𝑥0 + 𝑥 × 𝑅, 𝑅 . The integral representation of (1) is given by  

𝑦 𝑥 =
1

Γ𝛼
  𝑥 − 𝑡 𝛼−1𝑓(𝑡, 𝑦 𝑡 )𝑑𝑡

𝑡

0
                                                           (2) 

For example, 

𝐷
3

2𝑦 𝑥 = 𝑓 𝑥, 𝑦, 𝑦 ′       𝑦 𝑥0 = 𝑦0 ,𝑦′ 𝑥0 = 𝑦′
0
                                      (3) 

We take     𝑦 ′ = 𝑦1, then 𝐷
1

2(𝑦1) = 𝑓 𝑥, 𝑦, 𝑦 ′   

So, we have a system of two equation, one is of fractional order α (0< α< 1) and other is of order one, 

𝑦 ′ = 𝑦1                                                (3.1) 

𝐷
1

2(𝑦1) = 𝑓(𝑥, 𝑦, 𝑦 ′)                           (3.2) 

Lipschitz condition: A vector valued function 𝑓  defined for (𝑥, 𝑦  ) in some set S. 

We say that 𝑓  satisfies Lipchitz condition on S, if there exist a constant k > 0 such that  

 𝑓  𝑥, 𝑦  − 𝑓  𝑥, 𝑧   ≤ 𝑘 𝑦 − 𝑧  ∀ 𝑥, 𝑦  ,  𝑥, 𝑧  ∈ S  

The constant k is called Lipschitz constant for 𝑓  on S. 

Let us consider a nonlinear non homogeneous equation. 

Consider the system of two equations 

𝑦1
′ = 𝑎𝑦1 + 𝑏𝑦2 

𝐷𝛼 (𝑦2) = 𝑐𝑦1 + 𝑑𝑦2 

Applying Lipschitz condition, 

 𝑓  𝑥, 𝑦  − 𝑓  𝑥, 𝑧   ≤ 𝑘 (𝑎𝑦1 + 𝑏𝑦2, 𝑐𝑦1 + 𝑑𝑦2) − (𝑎𝑧1 + 𝑏𝑧2 , 𝑐𝑧1 + 𝑑𝑧2)  

≤ 𝑘 (𝑎𝑦1 − 𝑎𝑧1 + 𝑏𝑦2 − 𝑏𝑧2, 𝑐𝑦1 − 𝑐𝑧1 + 𝑐𝑦2 − 𝑑𝑧2  

≤ 𝑘[ 𝑎(𝑦1 − 𝑧1) +  𝑏(𝑦2 − 𝑧2) +  𝑐(𝑦1 − 𝑧1) +  𝑑(𝑦2 − 𝑧2)  

≤ 𝑘 (𝑎 + 𝑐)(𝑦1 − 𝑧1) + (𝑏 + 𝑑)(𝑦2 − 𝑧2)  

≤ 𝑘  𝑎 +  𝑐  , ( 𝑏 +  𝑑   ) 𝑦1, 𝑦2 − 𝑧1 , 𝑧2  

≤ 𝑘  𝑎 +  𝑐  , ( 𝑏 +  𝑑   ) 𝑦 − 𝑧   

Lipschitz constant 𝑘:  𝑓  𝑥, 𝑦  = (𝑎𝑦1 + 𝑏𝑦2 , 𝑐𝑦1 + 𝑑𝑦2) 

𝜕𝑓 

𝜕𝑦1
=  𝑎, 𝑐 ,  

𝜕𝑓 

𝜕𝑦1
   =   (𝑎, 𝑐) =   𝑎 +  𝑐  

𝜕𝑓 

𝜕𝑦
=  𝑏, 𝑑 ,  

𝜕𝑓 

𝜕𝑦
   =   (𝑏, 𝑑 =   𝑏 +  𝑑  

Lipschitz constant 𝑘 𝑖𝑠 max( 𝑎 +  𝑐 ,  𝑏 +  𝑑 ) 

Therefore 𝑓  satisfies Lipschitz condition with constant k 

 

Numerical Solutions: 

Example 1: Consider Non linear fractional differential equation. 

    𝐷
5

2𝑦 =
1

4
𝑦4 + 𝑥, y (0) = 0, 𝑦 ′ 0 = 0 ,𝑦′′ 0 = 0                                                           (4) 

Equation can be written as 
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𝑑
1
2

  𝑑𝑥
1
2

(
𝑑2𝑦

𝑑𝑥2  )  =
1

4
𝑦4 + 𝑥     =>

𝑑
1
2𝑧

  𝑑𝑥
1
2

 =
1

4
𝑦4 + 𝑥(4.1) 

𝑑2𝑦

𝑑𝑥2 = 𝑧=>
𝑑𝑦

𝑑𝑥
= 𝑡   (4.2) 

𝑑𝑡

𝑑𝑥
= 𝑧(4.3) 

On solving (4.1), (4.2) and (4.3) using Picard’s Iterative method, we get y 

𝑦(𝑥) =
14!

4Γ(
9

2
)4Γ

35

2

𝑥
33

2 +
𝑥

7
2

Γ
9

2

…….. 

On solving (4.1), (4.2) and (4.3) using ADM method, we get y [17] 

𝑦(𝑥) =
16𝑥

7
2

105√π
+

274877906944 𝑥
33
2

2009196669692953125 𝜋
3
2

+…………… 

 

 

Figure 1(A): shows graphical representation of 

solution IVP (4) using Picard’s Iterative method 

using MATLAB 

 
 

Figure 1(B): shows graphical representation of solution 

IVP (4) using ADM method[17] 

 

Figures 1(A) and 1(B) show comparison between ADM and Picard’s Method for solution ofNon-Linear Non 

homogeneous FDE with fractional order 𝛼(2 < 𝛼 < 3) and forcing term x. These graphs conclude that error of 

Picard’s solution (Numerical) by comparing with ADM Solution (Semi analytic) is negligible. 

Example2:  𝐷
3

2𝑦 =
1

2
𝑦2 + 𝑥2 , 𝑦 0 = 0,  𝑦 ′ 0 = 1                                          (5)                                                           

Equation can be written as   

𝑑
1

2

𝑑𝑥
1

2

(
𝑑𝑦

𝑑𝑥
 )  =

1

2
𝑦2 + 𝑥2 

𝑑𝑦

𝑑𝑥
= 𝑧                                                                                                                   (5.1) 

𝑑1/2𝑧

𝑑𝑥1/2  =
1

2
𝑦2 + 𝑥2                                                                                                (5.2) 

      On solving (5.1) and (5.2) using Picard’s Iterative method, we get y 
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𝑦(𝑥) =
2 .7!

17

2
Γ(

9

2
)2Γ

17

2

𝑥
17

2 +
2𝑥

7
2

7

2
Γ

7

2

………. 

Using ADM method equation (5) gives solution as follows [17] 

𝑦(𝑥) =
32𝑥

7
2

105√𝜋
 +

1048576 𝑥
17
2

1206079875 √𝜋
+………….. 

 

 

Figure 2(A): shows graphical representation of 

solution of IVP (5) using Picard’s Iterative method 

using MATLAB 

 

Figure 2(B):  shows graphical representation of 

solution of IVP (5) using ADM method[17] 

 

Figures 2(A) and 2(B) show comparison between ADM and Picard’s Method for solution of Non-Linear Non 

homogeneous FDE with order 𝛼(1 < 𝛼 < 2) and forcing term x
2
. These graphs conclude that error of Picard’s 

solution (Numerical) by comparing with ADM Solution (Semi analytic) is also negligible. 

Example 3: Consider Multi term Non linear Fractional differential equation.                             

𝐷
3

2𝑦 𝑥 + 𝐷𝑦 𝑥 = 2𝑦2 + 𝑥,        𝑦 0 = 0,  𝑦 ′ 0 = 1                                                   (6) 

Equation can be written as   

𝑑
1
2

𝑑𝑥
1
2

(
𝑑𝑦

𝑑𝑥
 ) +

 𝑑𝑦

𝑑𝑥
= 2𝑦2 + 𝑥 

 

𝑑𝑦

𝑑𝑥
= 𝑧                                                                                                                                (6.1) 

𝑑1/2𝑧

𝑑𝑥1/2  + 𝑧 = 2𝑦2 + 𝑥                                                                                                         (6.2) 

On solving (6.1) and (6.2) simultaneous equations using Picard’s Iterative method, we get y 

𝑦 𝑥 =
2

Γ  
7

2
 

2

Γ
15

2

𝑥
13

2 +
𝑥

5

2

Γ
7

2

−
𝑥3

6
+

𝑥
7

2

Γ
9

2

… …. 
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Figure 3: Shows graphical representation of approximate solution IVP (6) using Picard’s Iterative 

method using MATLAB. 

Figure 3 show approximate solution of Non linear Non homogeneous multi term FDE of order 𝛼(1 < 𝛼 < 2).  

In ADM method, ADM polynomial is difficult to calculate for multi term FDE, so Picard’s Method gives 

approximate numerical solution and easy to implement. 

Application: Consider Fractional Nonlinear duffing Oscillator 

𝐷
3

2𝑢 𝑡 + 𝛿𝐷
1

2𝑢 𝑡 + 𝜌𝑢 + 𝜇𝑢3 = 𝜆𝑠𝑖𝑛𝜔𝑡                                                                (7) 

𝑢 0 =
2

Γ
1

2

 , 𝐷
1

2𝑢 0 = 1 , 𝜆 = 20 , 𝜌 = 1 , 𝜇 = 2 , 𝜔 =
𝜋

2
, 𝛿 = 1 

Equation can be written as 

𝑑
1
2𝑢

𝑑𝑡
1
2

  = z                                                                                                                        (7.1)    

𝑑𝑧

𝑑𝑡
= 20𝑠𝑖𝑛𝜔𝑡 − 𝑢 − 2𝑢3 − 𝑧                                                                                    (7.2)           

After solving (7.1) and (7.2) using Picard’s Iterative method, we get  

𝑢 𝑡 =  
2

Γ
1

2

+
𝑡

1
2

Γ
3

2

+
20𝑡

1
2

𝜔
1
2Γ

3

2

−
20𝑤

3
2𝑡

5
2

Γ
7

2

+
20𝜔

7
2𝑡

9
2

Γ
11

2

−
𝑡

3
2

Γ
5

2

  (1+
2

Γ
1

2

+
16

Γ 
1

2
 

3) + …. 

Table 1: Numerical values shows oscillating behavior of displacement u(t) at different values of time(t). 

t u(t) t u(t) t u(t) t u(t) t u(t) 

0 1.13  0.6 8.12 1.2 -1.48 1.8 -11.20 2.4 0.59 

0.1 5.80 0.7 7.25 1.3 -3.73 1.9 -12.00 2.5 8.06 

0.2 7.41 0.8 6.04 1.4 -5.97 2.0 -12.96 2.6 17.69 

0.3 8.31 0.9 4.50 1.5 -8.21 2.1 -11.46 2.7 24.87 

0.4 8.68 1.0 2.70 1.6 -9.32 2.2 -8.93 2.8 38.9 

0.5 8.60 1.1 0.69 1.7 -10.81 2.3 -4.98 2.9 50.12 
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Figure 4: Shows Graph of fractional duffing oscillator [6] for h = 0.1, 𝝎 =
𝝅

𝟐
, 𝝀 = 𝟐𝟎 , 𝝆 = 𝟏 , 𝝁 = 𝟐 

, 𝜹 = 𝟏 using MATLAB. 

 

Table 1 shows values of displacement against time in Fractional duffing oscillator. Values show oscillating 

behavior with time. And figure 4 also presents oscillating behavior in graph .so Picard’s Method works 

efficiently for this type of application of Non-linear higher order FDE with forcing term.  

Conclusion:  

This research proposes a method to solve non-linear fractional differential equations of order α (1<α<2) and 

(2<α<3) which includes a forcing function as a non-homogeneous term, using Picard's Iteration Method. The 

presented technique is easy to implement and applicable to non-linear problems of fractional order. Several 

numerical problems are solved using the proposed method, and graphical representations are obtained for each 

numerical example and some solutions compared with solution of ADM Method using graphs. The approach is 

simpler than other semi-analytic methods, as there is no need to calculate Adomian polynomials or general 

Lagrange multipliers. Additionally, an application of the fractional non-linear differential equation with a 

forcing function, namely the fractional non-linear Duffing oscillator, is presented and solved using the proposed 

method. This work can be extended to solve non-linear systems of FDEs for related problems. 

Refrences 

[1] Acharya, F., Bhesaniya, K., and Panchal, J., (2022) Numerical Solution of COVID -19 model of Fractional 

order showing impact of Immunity Booster.Bull. Env. Pharmacol. Life Sci., Vol 11[2]:69-79. 

[2] Aisha F.,FareedMourad S.,SemaryHanyN.,Hassan, (2021)An approximate solution of fractional order 

Riccati equations based on controlled Picard’s method with Atangana–Baleanu fractional 

derivative.Alexandria Engineering Journal , Vol 61, Issue 5:3673-3678. 

[3] Chandel, R.S., Singh, A. and Chouhan, D., (2017) Numerical Solution of Fractional Order Differential 

Equations Using Haar Wavelet Operational Matrix. Palestine Journal of Mathematics, vol 6: 515-3523. 

[4] Daraghmeh, A., Qatanani, N. and Saadeh, A. (2020) Numerical Solution of Fractional Differential 

Equations.AppliedMathematics, vol 11: 1100-1115.  

[5] Das, S. and Gupta, P.K., (2011) Homotopy Analysis Method for Solving Fractional Hyperbolic Partial 

Differential Equations. International Journal of Computer Mathematics, Vol 88:578-588.  

https://www.sciencedirect.com/science/article/pii/S1110016821006141#!
https://www.sciencedirect.com/science/article/pii/S1110016821006141#!
https://www.sciencedirect.com/science/article/pii/S1110016821006141#!
https://www.sciencedirect.com/science/article/pii/S1110016821006141#!
https://www.sciencedirect.com/journal/alexandria-engineering-journal/vol/61/issue/5


Tuijin Jishu/Journal of Propulsion Technology 

ISSN: 1001-4055 

Vol. 44 No. 04 (2023) 

__________________________________________________________________________________ 

6041 

[6] Ejikeme, C. L., Oyesanya, M.O., Agbebaku, D. F.1, and Okofu, M. B., (2018) Solution to nonlinear 

Duffing Oscillator with fractional derivatives using Homotopy Analysis Method (HAM). Global Journal of 

Pure and Applied Mathematics, ISSN 0973-1768 Volume 14:1363–1388 

[7] Elsaid, A., (2011) Homotopy Analysis Method for Solving a Class of Fractional Partial Differential 

Equations. Communications in Nonlinear Science and Numerical Simulation, vol 16:3655-3664. 

[8] Ilejimi D.O, 2Okai J.O and Raheem R.L. (2019) On the Numerical Solution of Picard Iteration Method for 

Fractional Integro - Differential Equation. International Journal of Scientific and Research Publications, 

Volume 9, Issue 3: p8757. 

[9] Jafari, H., &Daftardar-Gejji, V. (2006) Solving a system of nonlinear fractional differential equations 

using Adomian decomposition. Journal of Computational and Applied Mathematics, vol 196(2): 644–651.  

[10] Kammanee, A., (2021)Numerical Solutions of Fractional Differential Equations with Variable Coefficients 

by Taylor Basis Function. Kyungpook Mathematical Journal, doi.org/10.5666/KMJ.2021.61.2.383. 

[11] Kaewnimit, K.; Wannalookkhee, F.; Nonlaopon, K.; Orankitjaroen, S., (2021) The Solutions of Some 

Riemann–Liouville Fractional Integral Equations. Fractal Fract. Vol 5: 5040154.  

[12] Li, W., & Pang, Y. (2020) Application of Adomian decomposition method to nonlinear systems. Advances 

in Difference Equations, doi:10.1186/s13662-020-2529-y. 

[13] Lyons R., Vatsala S.A., chiquet R.A., (2017) Picard’s Iterative Method for Caputo Fractional Differential 

Equations with Numerical Results, MDPI (Mathematics). 

[14] Odibat, Z., Momani, S. and Xu, H. (2010) A Reliable Algorithm of Homotopy Analysis Method for Solving 

Nonlinear Fractional Differential Equations. Applied Mathematical Modelling, vol 34: 593-600.  

[15] Qu, H.D. and Liu, X. (2015) A Numerical Method for Solving Fractional Differential Equations by Using 

Neural Network. Advances in Mathematical Physics, Article ID: 439526.  

[16] UlAbdeen, Z., & Rehman, M. ur. (2019) A numerical method for solving fractional differential equations. 

Engineering Computations. doi:10.1108/ec-07-2018-0302. 

[17] Ali, E., Ziada, A., (2021), Solution of Nonlinear Fractional Differential Equations Using Adomain 

Decomposition Method. International Journal of Systems Science and Applied Mathematics. Vol. 6:  111-

119. doi: 10.11648/j.ijssam.20210604.11 

 

 


