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Abstract: Bugs comes in high volume and documenting them properly in a specific format in the bug reports 

is difficult. Locating these bugs in correctly identified buggy files is a challenging task which needs to be 

automated. Numerous tools and techniques are proposed by researchers to support developers and testers to 

detect buggy files and automate the process of bug localization with greater accuracy. Recent research deal with 

the automation of Bug Localization process by using different techniques and tools. In this paper, we presented 

a comprehensive review of few papers in the domain of bug localization. This review helps us to know the 

benchmark datasets that are used in this process of bug localization, the major techniques that are worked upon, 

the findings and evaluation criteria and the architecture of various models and frameworks developed by 

researchers to automate the task of bug localization. This paper works on IR and DNN approaches and attempted 

to improve the previous results of DNNLOC successfully. The optimized version of the model improved the 

accuracy from 0.815 to 0.969 for enhanced rvsm and 0.83 to 0.971 for enhanced dnn. It is apparent that 

information retrieval approach and deep learning approach complement together in the domain of bug 

localization. 
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1. Introduction 

The activity of finding and locating bugs correctly is a difficult and time-exhausting task. Great deal of 

resources and time is wasted in managing this activity, especially if it is done manually and without using any 

tool.  Bugs comes in high volume and documenting them properly in a specific format in the bug reports is 

difficult. Locating these bugs in correctly identified buggy files is a challenging task which needs to be automated. 

Numerous tools and techniques are proposed by researchers to support developers and testers to detect buggy 

files. These bug localization tools and techniques evaluates the symptoms of a bug and generates ranked list of 

files on the basis of probability of occurrence of bug.  

For large and real time projects, developers need to explore and examine a huge amount of source files, 

find the buggy files from the symptoms given in bug reports. Automated tools are required to ease the manual 

process of finding and understanding the source of bug. There are various instances where users realize that the 

data received by them faces glitches due to the minor faults in the source code or files. This is where the bug 

problem initiates, which made us research about the issue in depth to see how bug problems are solved in the 

corporate world where the developer faces a lot of challenges to localize a bug in hundreds of files.  

Several approaches in the analyses and experiments to automate bug localization are proposed. Presently, 

advanced information retrieval techniques [4][7][8][11][12], machine learning techniques [6][11], deep learning 

techniques [2][3][5][13][14] have been used to ascertain relation of bug in source code files.  

 

2. Related Work 

We conducted a detailed survey on various research papers on Bug Localization. Table 1 demonstrates 

the detailed survey of each paper based on datasets used, techniques implemented, results in terms of accuracy, 

TopK, etc and architecture used by different authors. Also, we have gone through the existing techniques and tried 

to improve and enhance them. This paper also presents the implementation and enhancement of DNNLoC with 

improved results of automating bug localization process.  
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Table 1: Detailed survey of research papers on Bug Localization 

 

Paper Dataset Tool & 

Technique 

Results Architecture 

Network-

clustered 

multi-

modal bug 

localizatio

n [1] 

Dataset includes 

• Ant 

• AspectJ 

• Lang 

• Lucene 

• Math 

Rhino 

• Time. 

 

Joint 

optimization of 

BL error and 

cluster of bug 

reports and 

program 

components. 

network Lasso 

Regularization 

is applied for 

clustering. 

The results 

show that 

NetML exceeds 

the best-

performing 

baseline by   

31.82%, 

22.35%, 

19.72%, 

19.24%, in terms 

of the number of 

bugs effectively 

localized while 

inspecting the 

top 1, 5, and 10 

methods and 

Mean Average 

Precision 

(MAP) 

 

Improving 

Bug 

Localizatio

n with an 

Enhanced 

Convolutio

nal Neural 

Network 

[2] 

Dataset includes 

• AspectJ 

• Eclipse  

• JDT 

• SWT 

• Tomcat  

Enhanced CNN 

with bug-fixing 

experience,  new  

rTF-IDuF 

method and 

pretrained 

word2vec 

technique. 

DeepLocator 

attains 9.77% to 

26.65% greater 

measure than the 

conventional 

CNN and3.8% 

higher MAP 

than a state-of-

the-art method 

HyLoc use up 

less computation 

time. 

  

 

Deep 

Learning 

with 

Customize

d Abstract 

Syntax 

Tree for 

Bug 

Localizatio

n [3] 

Dataset includes 

• AspectJ 

• SWT 

• JDT 

• Tomcat 

combines tree 

based CNN with 

customized 

ASTs  

 

 

 

 

CAST 

attained higher 

MAP of 0.044 

MRR of 0.033 

than most 

excellent results 

of 4 existing 

state-of-art 

techniques 

(BugLocator, 

DNNLOC, 

DeepLocator 

and NP-CNN). 
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On the 

Relationshi

p Between 

the 

Vocabular

y of Bug 

Reports 

and Source 

Code [4] 

 

Dataset includes 

• ADempiere 

3.10  

• Art of Illusion 

2.4.1  

• JEdit 4.2 

• aTunes 1.10  

• Eclipse 2.0  

• Eclipse 3.5  

 

Text retrieval 

technique  

 

 

 

 

 

The report 

confirms that  

source code 

share various 

terms along with 

bug reports,  the 

number of 

shared terms is 

greater for 

patched classes 

than for rest of 

classes.  

 

 

 

  

 

On 

Usefulness 

of the 

Deep-

Learning-

Based Bug 

Localizatio

n Models 

to 

Practitione

rs [5] 

Dataset includes 

• AspectJ 

• Tomcat 

• SWT 

• Eclipse 

• JDT. 

 

Convolution 

Neural Network 

and Simple 

Logistic model 

to analyze their 

efficiency. 

Though deep 

learning models 

perform well 

than simple 

machine 

learning models, 

they meet the 

acceptance 

criteria placed 

by the 

practitioners 

partly. 

 

 

 

  

 

Bug 

Localizatio

n by 

Learning to 

Rank and 

Represent 

Bug 

Inducing 

Changes 

[6] 

Dataset A 

includes 

• Zxing 

• SWT 

• AspectJ 

• PDE 

• JDT 

• Tomcat 

 

Dataset B 

includes 

• AspectJ 

• Birt 

• JDT 

IR and CNN 

based technique 

is used. 

 

 

 

 

 

 

 

Dataset A, the 

end-to-end 

configuration 

goes up to a 21% 

improved MAP 

for the SWT 

project, while on 

average the 

differences are 

12% and 15% in 

for MAP and 

MRR 

Dataset B, 

results are 

consistent, also 

showing an 

average increase 

of more 

than10% for 

both metrics. 
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Improving 

bug 

localizatio

n using 

structured 

informatio

n retrieval 

[7] 

 

Dataset Includes 

• SWT 

• Eclipse 

• AspectJ 

• Zxing 

IR based on 

code constructs, 

such as class and 

method names. 

BLUiR matches 

or outperforms a 

current state-of-

the-art tool 

across 

applications 

considered, even 

when BLUiR 

does not use bug 

similarity data 

used by the other 

tool. 

 

 

Orca: 

Differentia

l Bug 

Localizatio

n in Large-

Scale 

Services 

[9] 

 

NA Uses differential 

code analysis 

and build 

provenance 

graph  

 

 

 

Appropriately 

localizes 77% of 

bugs Causes 4x 

reduction in the 

work done by 

the OCE. 

 

Leveraging 

textual 

properties 

of bug 

reports to 

localize 

relevant 

source files 

[12] 

Dataset Includes 

• AspectJ 

• SWT 

• Zxing 

IR, textual 

matching, stack 

trace analysis, 

and multi-label 

classification 

 

 

 

 

 

Rank 

appropriate 

source files for 

more than 52% 

of bugs by 

suggesting only 

one source file 

and 78% by 

recommending 

ten files.  

Also improves  

MRR and MAP 

values.  

 

Bug 

Localizatio

n with 

Combinati

on of Deep 

Learning 

and 

Informatio

n Retrieval 

[14] 

 

Dataset Includes 

• AspectJ 

• Birt 

• Eclipse 

UI 

• JDT 

• SWT 

• Tomcat. 

DNNwith rVSM DNNLOC 

achieves higher 

accuracy than 

the state-of-the-

art IR and 

machine 

learning 

techniques 
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Start 

Stop 

 

 

 

 
3. Model Descriptions 

Recent studies deal with the automation of Bug Localization process by using different techniques and 

tools. In [4][7][8][10][12], authors proposed advanced information retrieval technique to automate the process of 

Bug Localization. The results of studies implementing IR showcase that the power of this approach in finding the 

lexical similarity between bug reports and source code. Also, studies shows deep neural networks paired with IR 

approach gives good results on bug localization. The study we researched and implemented attains different 

features by using IR and other text processing approaches and then by using DNN on same dataset, the results are 

improved. 

In the study [14] of Lam et al., authors discussed bug localization model DNNLOC that uses dnn and 

rvsm to handle the lexical mismatch and text to similarity in the bug reports. We studied several recent research 

in the domain of bug localization and focused on the paper ‘Bug localisation with a combination of deep learning 

And Information retrieval’ for improvement. We find few research gaps and scope of improvement especially in 

terms of accuracy of the given model. We studied the impact and need of various parameters and techniques on 

accuracy used in the model of DNNLOC. We have optimized the model by enhancing the techniques used and 

attained accuracy from 0.808 to 0.971. We implemented with some enhancements rVSM and this model which 

results in increase in accuracy of the bug localization techniques. 

 

4. Dataset 

The dataset incorporates bug reports of six distinct project of AspectJ, Birt, Eclipse Platform UI, JDT, 

SWT and Tomcat. We used same dataset as used in the paper for comparisons with results of our implementation 

and the original work. Fig.1 shows a section of rows from the used dataset 

 

 

 

 

 

 

Fig 1: Section of bug report of dataset 

 

5. Experiment 

In Bug Localization process, a bug report is paired with each source file. It extracts the features from the 

report and uses information retrieval techniques for conversion of feature vectors for each pair. Score for each file 

with respect to the bug report is then calculated. The scores for all the source files are ranked and the high-ranking 

score indicates that particular file is potentially buggy for the bug report.  
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Fig 2: Workflow Process 

To extract the textual features from Bug Reports, the model parses the report to remove whitespaces, 

stopwords, punctuation marks, etc. The workflow process is shown in the fig.2 to allow faster processing. 

Multithreading backend to function joblib.parallel() is added. Instead of using Porter stemming algorithm to 

convert words to their base stem, we chose to implement Snowball Stemmer which has more aggressive approach. 

By replacing porter stemmer with snowball stemmer, we optimized minor increase in accuracy results of rvsm 

from 0.808 to 0.8 15 and dnn from 0.825 to 0.830. Then the model extracts code and textual features from source 

files.  

 

rVSM is revised Vector Space Model, an Information Retrieval approach based on cosine similarity which is 

shown in Equation (1)  

 

 (1) 

 

 

Equation (2) is used to compute length value of every source file as per  number of terms in it. 

(2) 

 

 

Combining the above two equations, rVSM score is calculated as given in equation (3).   

        (3) 

  

 

Textual similarity in the bug report and corresponding source file is considered as a feature in this model. 

As rVSM gives better results than VSM, the textual similarity of a bug report and a file is calculated by using 

rVSM. By using this, the score of the pair (bug report, file) is calculated. Added activation function to the output 

layer using logistic activation. The model considers various metadata parameters such as bug fixing recency, bug 

frequency, collaborative filtering, and class name similarity.  We find that two of these metadata parameters were 

having negligible effect in the process and are adding load to the process. By removing this metadata that has 

negligible effect in the process the accuracy is increased from 0.830 to 0.834.   We identified the problem of 

oversampling in the model which has a significant effect on the accuracy. We used 20+1 files in place of 50+1 files 

in oversampling().  

 

6. Results 

For evaluation in bug localization processes, Top-k accuracy score is considered as the main evaluation 

criteria. This metric calculates the correct occurrence of label among top k labels as ranked by predicted scores. 

Consequently, we computed and evaluated accuracies in terms of Top-k score. We implemented the two models, 

DNN Based Model and rVSM Based Model and applied modification for improvements in accuracy results. The 

top-k accuracy of the enhanced rvsm and enhanced dnn model is shown in the fig.3. 

 

 

 

 

 

 

Fig 3: Top-k results of enhanced model (K=1 to 21) 
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The line chart graph plotted between accuracy and k-value is shown in fig.4.The plot shows increase in 

accuracy of enhanced rvsm and enhanced dnn. The accuracy was improved from 0.815 to 0.969 for rvsm and 0.83 

to 0.971 for dnn.  

 

 

 

 

Fig 4: Comparison of accuracy of original and enhanced model 

 

7. Conclusion 

In this paper, we presented a comprehensive review of few papers in the domain of bug localization. This 

review helps us to know the benchmark datasets that are used in this process of bug localization, the major 

techniques that are worked upon, the findings and evaluation criteria and the architecture of various models and 

frameworks developed by researchers to automate the task of bug localization.  

In this study, we worked on IR techniques and DNN and attempted to improve the results of previous paper 

successfully. The accuracy was improved from 0.815 to 0.969 for enhanced rvsm and 0.83 to 0.971 for enhanced 

dnn. Hence it is evident that information retrieval approach and deep learning approach complement together in 

the domain of bug localization. 
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