
Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5526

Empirical Study And Analysis Of Software Bug

Localization Approaches Using Deep Learning

[1]Ginika Mahajan , [2]Neha Chaudhary,
[3]Anita Shrotriya

[1][2][3] Manipal University Jaipur, India

E-mail: [1]ginika.5aug@gmail.com

Abstract: Bugs comes in high volume and documenting them properly in a specific format in the bug reports

is difficult. Locating these bugs in correctly identified buggy files is a challenging task which needs to be

automated. Numerous tools and techniques are proposed by researchers to support developers and testers to

detect buggy files and automate the process of bug localization with greater accuracy. Recent research deal with

the automation of Bug Localization process by using different techniques and tools. In this paper, we presented

a comprehensive review of few papers in the domain of bug localization. This review helps us to know the

benchmark datasets that are used in this process of bug localization, the major techniques that are worked upon,

the findings and evaluation criteria and the architecture of various models and frameworks developed by

researchers to automate the task of bug localization. This paper works on IR and DNN approaches and attempted

to improve the previous results of DNNLOC successfully. The optimized version of the model improved the

accuracy from 0.815 to 0.969 for enhanced rvsm and 0.83 to 0.971 for enhanced dnn. It is apparent that

information retrieval approach and deep learning approach complement together in the domain of bug

localization.

Keywords: Bug Localization, enhanced rVSM, IR DNN.

1. Introduction

The activity of finding and locating bugs correctly is a difficult and time-exhausting task. Great deal of

resources and time is wasted in managing this activity, especially if it is done manually and without using any

tool. Bugs comes in high volume and documenting them properly in a specific format in the bug reports is

difficult. Locating these bugs in correctly identified buggy files is a challenging task which needs to be automated.

Numerous tools and techniques are proposed by researchers to support developers and testers to detect buggy

files. These bug localization tools and techniques evaluates the symptoms of a bug and generates ranked list of

files on the basis of probability of occurrence of bug.

For large and real time projects, developers need to explore and examine a huge amount of source files,

find the buggy files from the symptoms given in bug reports. Automated tools are required to ease the manual

process of finding and understanding the source of bug. There are various instances where users realize that the

data received by them faces glitches due to the minor faults in the source code or files. This is where the bug

problem initiates, which made us research about the issue in depth to see how bug problems are solved in the

corporate world where the developer faces a lot of challenges to localize a bug in hundreds of files.

Several approaches in the analyses and experiments to automate bug localization are proposed. Presently,

advanced information retrieval techniques [4][7][8][11][12], machine learning techniques [6][11], deep learning

techniques [2][3][5][13][14] have been used to ascertain relation of bug in source code files.

2. Related Work

We conducted a detailed survey on various research papers on Bug Localization. Table 1 demonstrates

the detailed survey of each paper based on datasets used, techniques implemented, results in terms of accuracy,

TopK, etc and architecture used by different authors. Also, we have gone through the existing techniques and tried

to improve and enhance them. This paper also presents the implementation and enhancement of DNNLoC with

improved results of automating bug localization process.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5527

Table 1: Detailed survey of research papers on Bug Localization

Paper Dataset Tool &

Technique

Results Architecture

Network-

clustered

multi-

modal bug

localizatio

n [1]

Dataset includes

• Ant

• AspectJ

• Lang

• Lucene

• Math

Rhino

• Time.

Joint

optimization of

BL error and

cluster of bug

reports and

program

components.

network Lasso

Regularization

is applied for

clustering.

The results

show that

NetML exceeds

the best-

performing

baseline by

31.82%,

22.35%,

19.72%,

19.24%, in terms

of the number of

bugs effectively

localized while

inspecting the

top 1, 5, and 10

methods and

Mean Average

Precision

(MAP)

Improving

Bug

Localizatio

n with an

Enhanced

Convolutio

nal Neural

Network

[2]

Dataset includes

• AspectJ

• Eclipse

• JDT

• SWT

• Tomcat

Enhanced CNN

with bug-fixing

experience, new

rTF-IDuF

method and

pretrained

word2vec

technique.

DeepLocator

attains 9.77% to

26.65% greater

measure than the

conventional

CNN and3.8%

higher MAP

than a state-of-

the-art method

HyLoc use up

less computation

time.

Deep

Learning

with

Customize

d Abstract

Syntax

Tree for

Bug

Localizatio

n [3]

Dataset includes

• AspectJ

• SWT

• JDT

• Tomcat

combines tree

based CNN with

customized

ASTs

CAST

attained higher

MAP of 0.044

MRR of 0.033

than most

excellent results

of 4 existing

state-of-art

techniques

(BugLocator,

DNNLOC,

DeepLocator

and NP-CNN).

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5528

On the

Relationshi

p Between

the

Vocabular

y of Bug

Reports

and Source

Code [4]

Dataset includes

• ADempiere

3.10

• Art of Illusion

2.4.1

• JEdit 4.2

• aTunes 1.10

• Eclipse 2.0

• Eclipse 3.5

Text retrieval

technique

The report

confirms that

source code

share various

terms along with

bug reports, the

number of

shared terms is

greater for

patched classes

than for rest of

classes.

On

Usefulness

of the

Deep-

Learning-

Based Bug

Localizatio

n Models

to

Practitione

rs [5]

Dataset includes

• AspectJ

• Tomcat

• SWT

• Eclipse

• JDT.

Convolution

Neural Network

and Simple

Logistic model

to analyze their

efficiency.

Though deep

learning models

perform well

than simple

machine

learning models,

they meet the

acceptance

criteria placed

by the

practitioners

partly.

Bug

Localizatio

n by

Learning to

Rank and

Represent

Bug

Inducing

Changes

[6]

Dataset A

includes

• Zxing

• SWT

• AspectJ

• PDE

• JDT

• Tomcat

Dataset B

includes

• AspectJ

• Birt

• JDT

IR and CNN

based technique

is used.

Dataset A, the

end-to-end

configuration

goes up to a 21%

improved MAP

for the SWT

project, while on

average the

differences are

12% and 15% in

for MAP and

MRR

Dataset B,

results are

consistent, also

showing an

average increase

of more

than10% for

both metrics.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5529

Improving

bug

localizatio

n using

structured

informatio

n retrieval

[7]

Dataset Includes

• SWT

• Eclipse

• AspectJ

• Zxing

IR based on

code constructs,

such as class and

method names.

BLUiR matches

or outperforms a

current state-of-

the-art tool

across

applications

considered, even

when BLUiR

does not use bug

similarity data

used by the other

tool.

Orca:

Differentia

l Bug

Localizatio

n in Large-

Scale

Services

[9]

NA Uses differential

code analysis

and build

provenance

graph

Appropriately

localizes 77% of

bugs Causes 4x

reduction in the

work done by

the OCE.

Leveraging

textual

properties

of bug

reports to

localize

relevant

source files

[12]

Dataset Includes

• AspectJ

• SWT

• Zxing

IR, textual

matching, stack

trace analysis,

and multi-label

classification

Rank

appropriate

source files for

more than 52%

of bugs by

suggesting only

one source file

and 78% by

recommending

ten files.

Also improves

MRR and MAP

values.

Bug

Localizatio

n with

Combinati

on of Deep

Learning

and

Informatio

n Retrieval

[14]

Dataset Includes

• AspectJ

• Birt

• Eclipse

UI

• JDT

• SWT

• Tomcat.

DNNwith rVSM DNNLOC

achieves higher

accuracy than

the state-of-the-

art IR and

machine

learning

techniques

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5530

Start

Stop

3. Model Descriptions

Recent studies deal with the automation of Bug Localization process by using different techniques and

tools. In [4][7][8][10][12], authors proposed advanced information retrieval technique to automate the process of

Bug Localization. The results of studies implementing IR showcase that the power of this approach in finding the

lexical similarity between bug reports and source code. Also, studies shows deep neural networks paired with IR

approach gives good results on bug localization. The study we researched and implemented attains different

features by using IR and other text processing approaches and then by using DNN on same dataset, the results are

improved.

In the study [14] of Lam et al., authors discussed bug localization model DNNLOC that uses dnn and

rvsm to handle the lexical mismatch and text to similarity in the bug reports. We studied several recent research

in the domain of bug localization and focused on the paper ‘Bug localisation with a combination of deep learning

And Information retrieval’ for improvement. We find few research gaps and scope of improvement especially in

terms of accuracy of the given model. We studied the impact and need of various parameters and techniques on

accuracy used in the model of DNNLOC. We have optimized the model by enhancing the techniques used and

attained accuracy from 0.808 to 0.971. We implemented with some enhancements rVSM and this model which

results in increase in accuracy of the bug localization techniques.

4. Dataset

The dataset incorporates bug reports of six distinct project of AspectJ, Birt, Eclipse Platform UI, JDT,

SWT and Tomcat. We used same dataset as used in the paper for comparisons with results of our implementation

and the original work. Fig.1 shows a section of rows from the used dataset

Fig 1: Section of bug report of dataset

5. Experiment

In Bug Localization process, a bug report is paired with each source file. It extracts the features from the

report and uses information retrieval techniques for conversion of feature vectors for each pair. Score for each file

with respect to the bug report is then calculated. The scores for all the source files are ranked and the high-ranking

score indicates that particular file is potentially buggy for the bug report.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5531

Fig 2: Workflow Process

To extract the textual features from Bug Reports, the model parses the report to remove whitespaces,

stopwords, punctuation marks, etc. The workflow process is shown in the fig.2 to allow faster processing.

Multithreading backend to function joblib.parallel() is added. Instead of using Porter stemming algorithm to

convert words to their base stem, we chose to implement Snowball Stemmer which has more aggressive approach.

By replacing porter stemmer with snowball stemmer, we optimized minor increase in accuracy results of rvsm

from 0.808 to 0.8 15 and dnn from 0.825 to 0.830. Then the model extracts code and textual features from source

files.

rVSM is revised Vector Space Model, an Information Retrieval approach based on cosine similarity which is

shown in Equation (1)

 (1)

Equation (2) is used to compute length value of every source file as per number of terms in it.

(2)

Combining the above two equations, rVSM score is calculated as given in equation (3).

 (3)

Textual similarity in the bug report and corresponding source file is considered as a feature in this model.

As rVSM gives better results than VSM, the textual similarity of a bug report and a file is calculated by using

rVSM. By using this, the score of the pair (bug report, file) is calculated. Added activation function to the output

layer using logistic activation. The model considers various metadata parameters such as bug fixing recency, bug

frequency, collaborative filtering, and class name similarity. We find that two of these metadata parameters were

having negligible effect in the process and are adding load to the process. By removing this metadata that has

negligible effect in the process the accuracy is increased from 0.830 to 0.834. We identified the problem of

oversampling in the model which has a significant effect on the accuracy. We used 20+1 files in place of 50+1 files

in oversampling().

6. Results

For evaluation in bug localization processes, Top-k accuracy score is considered as the main evaluation

criteria. This metric calculates the correct occurrence of label among top k labels as ranked by predicted scores.

Consequently, we computed and evaluated accuracies in terms of Top-k score. We implemented the two models,

DNN Based Model and rVSM Based Model and applied modification for improvements in accuracy results. The

top-k accuracy of the enhanced rvsm and enhanced dnn model is shown in the fig.3.

Fig 3: Top-k results of enhanced model (K=1 to 21)

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5532

The line chart graph plotted between accuracy and k-value is shown in fig.4.The plot shows increase in

accuracy of enhanced rvsm and enhanced dnn. The accuracy was improved from 0.815 to 0.969 for rvsm and 0.83

to 0.971 for dnn.

Fig 4: Comparison of accuracy of original and enhanced model

7. Conclusion

In this paper, we presented a comprehensive review of few papers in the domain of bug localization. This

review helps us to know the benchmark datasets that are used in this process of bug localization, the major

techniques that are worked upon, the findings and evaluation criteria and the architecture of various models and

frameworks developed by researchers to automate the task of bug localization.

In this study, we worked on IR techniques and DNN and attempted to improve the results of previous paper

successfully. The accuracy was improved from 0.815 to 0.969 for enhanced rvsm and 0.83 to 0.971 for enhanced

dnn. Hence it is evident that information retrieval approach and deep learning approach complement together in

the domain of bug localization.

References

[1] Hoang, T., Oentaryo, R. J., Le, T. D. B., & Lo, D. (2018). Network-clustered multi-modal bug

localization. IEEE Transactions on Software Engineering, 45(10), 1002-1023.

[2] Xiao, Y., Keung, J., Mi, Q., & Bennin, K. E. (2017, December). Improving bug localization with an

enhanced convolutional neural network. In 2017 24th Asia-Pacific Software Engineering Conference

(APSEC) (pp. 338-347). IEEE.

[3] Liang, H., Sun, L., Wang, M., & Yang, Y. (2019). Deep learning with customized abstract syntax tree

for bug localization. IEEE Access, 7, 116309-116320.

[4] Moreno, L., Bandara, W., Haiduc, S., & Marcus, A. (2013, September). On the relationship between the

vocabulary of bug reports and source code. In 2013 IEEE International Conference on Software

Maintenance (pp. 452-455). IEEE.

[5] Polisetty, S., Miranskyy, A., & Başar, A. (2019, September). On usefulness of the deep-learning-based

bug localization models to practitioners. In Proceedings of the Fifteenth International Conference on

Predictive Models and Data Analytics in Software Engineering (pp. 16-25).

[6] Loyola, P., Gajananan, K., & Satoh, F. (2018, October). Bug localization by learning to rank and

represent bug inducing changes. In Proceedings of the 27th ACM International Conference on

Information and Knowledge Management (pp. 657-665).

[7] Saha, R. K., Lease, M., Khurshid, S., & Perry, D. E. (2013, November). Improving bug localization using

structured information retrieval. In 2013 28th IEEE/ACM International Conference on Automated

Software Engineering (ASE) (pp. 345-355). IEEE.

Tuijin Jishu/Journal of Propulsion Technology
ISSN: 1001-4055
Vol. 44 No. 4 (2023)

5533

[8] Dao, T., Zhang, L., & Meng, N. (2017, May). How does execution information help with information-

retrieval based bug localization?. In 2017 IEEE/ACM 25th International Conference on Program

Comprehension (ICPC) (pp. 241-250). IEEE.

[9] Bhagwan, R., Kumar, R., Maddila, C. S., & Philip, A. A. (2018). Orca: Differential bug localization in

large-scale services. In 13th {USENIX} Symposium on Operating Systems Design and Implementation

({OSDI} 18) (pp. 493-509).

[10] Wen, M., Wu, R., & Cheung, S. C. (2016, September). Locus: Locating bugs from software changes.

In 2016 31st IEEE/ACM International Conference on Automated Software Engineering (ASE) (pp. 262-

273). IEEE.

[11] Singh, A., Bhatia, R., & Singhrova, A. (2018). Taxonomy of machine learning algorithms in software

fault prediction using object oriented metrics. Procedia computer science, 132, 993-1001.

[12] Gharibi, R., Rasekh, A. H., Sadreddini, M. H., & Fakhrahmad, S. M. (2018). Leveraging textual

properties of bug reports to localize relevant source files. Information Processing & Management, 54(6),

1058-1076.

[13] Xiao, Y., Keung, J., Bennin, K. E., & Mi, Q. (2018). Machine translation-based bug localization

technique for bridging lexical gap. Information and Software Technology, 99, 58-61.

[14] Lam, A. N., Nguyen, A. T., Nguyen, H. A., & Nguyen, T. N. (2017, May). Bug localization with

combination of deep learning and information retrieval. In 2017 IEEE/ACM 25th International

Conference on Program Comprehension (ICPC) (pp. 218-229). IEEE.

