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Abstract

In this article we have studied the controllability of artificial satellite under the effect of zonal harmonic Jz in
cylindrical polar coordinates systems. Seven different cases of thrusters in various directions have been analyzed
and it is found that the system is controllable if we apply thrusters in either r, 8 and z or 8 and z direction. The
equations governing motion of satellite have been linearized and Kalman controllability test is applied to check
the controllability of the system. We have also derived controller u for the linearized system. The trajectory of the
system has been plotted to show the controllability of the system.
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1. Introduction

Artificial satellites play very important role in navigation, communication, monitoring environment of the earth etc. [1, 2].
Many researchers studied motion of artificial satellite using analytic, semi-analytic and numerical methods. King-Hele[5]
solved two-body problem of satellite, analytically by considering oblateness of Earth. Raj [3] regularized equation of
motion by applying KS transformations [4] and solved these equations of motion by considering atmospheric drag. Sehnal
[6] studied the motion of artificial satellite by considering perturbation due to upper terrestrial atmosphere. Knowles
et.al. [7] analyze the sample orbit from sensor data as well as orbital elements, during the period 14 July 2000, they found
that geomagnetic storms driven by solar eruption have significant effect on the total density of the upper atmosphere in
the altitude range 250 - 1000 k.m., which causes a measurable effect on the orbit of resident space object. Yan and Kapila
[8] developed the dynamical equations of satellite motion around oblate earth using spherical rotating frame and using
this dynamics they derived conditions under which osculating plane of motion of satellite remains fixed. Khalil [9]
developed analytical solution by considering atmospheric drag and oblateness of earth up to 4th order zonal harmonic
using Hamiltonian mechanics. Bezdv'ek and Vokrouhlicky” [10] presented a semi-analytic theory for small eccentric orbit
by considering oblateness of earth up to 9th order zonal harmonic of the earth and atmospheric drag. In this they
considered empirical model TD88 of the neutral atmosphere density distribution for atmospheric drag. They also
compared their predictions with the orbital data of several real-world artificial satellites. Hassan et. al. [11] regularized
equations of perturbed motion due to oblateness of Earth using KS transformations and derived algorithm to solve these
equations using Picard’s method. Chen and Jing [12] studied relative motion of satellite under the effect of the oblateness
of earth and atmospheric drag. Using Lie group variational approach Lee et. al. [14] simulated rotational dynamics of
satellite. Formation flight of artificial satellite under the effect of aerodynamics forces was studied by Reid and Misra [13].
Xu and Chen [15] derived analytical solution in terms of Keplerian angular elements of satellite orbit under effect of
atmospheric drag. Effect on the orbit of satellite Cosmos1484 under the effect of earth oblateness and atmospheric drag
have been studied by Al-Bermani et. al. [16]. Using Lie transformations, Delhaise [17] derived analytical solution of motion
of satellite by considering gravity and air drag.

Sharma et.al. [22, 23] studied the motion of satellite with different initial velocities and computed orbital elements by
considering oblateness of earth and combined effect of the oblateness of Earth and atmospheric drag. They have also
computed the time at which satellite will hit the Earth. To have satellite in correct orbit for longer time it is necessary to
put controller that controls the motion. Hajovsky [24] used atmospheric drag as a controller to control the
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trajectory of artificial satellite. B. Palancz [2, 26] used pole placement to control trajectory of the artificial satellite.
Recently Lamba [27], discussed controllability, observability and stability problem concerned with artificial satellite using
state space method. However he took two dimensional model which leads to sets of four equations in polar form.

In this work we consider motion of satellite under the effect of J2 zonal harmonic in cylindrical polar coordinate system
and studied controllability of motion by plugging controllers (in form of thrusters) in various directions. It has been
observed that the motion of satellite is controllable if controllers are kept in r, 8 & z directions and 8 & z directions. We
also studied trajectory controllability of satellite.

2. Preliminaries
In real life, most of the systems are nonlinear in nature and this nonlinearity creates difficulty in finding solution of the

system. Hence it is required to approximate the nonlinear system by the appropriate linear system.

The motion of artificial satellite under the effect of zonal harmonic J2 is modelled in terms of system of nonlinear
differential equations. Here, we introduce the concept of linear control theory followed by linearization of nonlinear
control systems [28].

2.1. Linear Control Systems Consider

linear control system,

x'(t) = A(t)x(t) + B(t)u(t),
x(to) = xo, (1)

where, xo0,x(t) € R for all t € [to,t1], u € L2([to,t1],R™). The matrices A(t) and B(t) are of order n x n and n x m respectively.
Let @(t,to) be the transition matrix of the homogeneous system "x(t) = A(t)x(t) with initial condition x(to) = xothen solution
of the system (1) is given by,

t
z(t) = D(t, to)zo +[ D(t,s)B(s)u(s)ds. @

Definition 1. The system (1) is controllable over the interval [to,t1], if each pair of vectors xo and x1in R there is a control u €
L2([to,t1],R™) such that the solution of (1) satisfies x(t1) = x1. This means there is a control u satisfying

ty
z1 = ®(t1,t0)xo +f ®(t1.s)B(s)u(s)ds.

to

Theorem 1. The system (1) is controllable if and only if the controllability grammian of the system defined by

7 _ i * *
Wito,t1) = [, ©(t1,5)B(s)B*(s)&" (11, 5)ds is invertible and control u of the system (1) is given by

u(t) = B*(t) P (tr, ) W1 (to,t1) [x1 — P (t1,t0)].

However if the system is time invariant, conditions reduces to Kalmann condition which is given by,

Corollary 1. If matrices A and B are two time invariant matrices of the system (1) then the system is controllable if and only
— / 2 n—1 —
if the rank of the controllability matrix¥ = [B AB A’B .-+ A"'B]=n

2.2. Linearization of Differential Systems
Consider the nonlinear system

x'(t) = flx(®),u(t)), (3)

where the state x(t)is an n-dimensional vector, controller u(t) is m-dimensional vector for all ¢, f: R*xR"xRm — Rris a non-
linear function.
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Let (xo,u0) be the reference point of the system (3) then Taylor series expansion of the the function at the reference point
is given by:

- X ad ad . .
flzo + 6z, ug + du) = f(wo, up) + —f dx + —f du + higher order terms,
8:1: (-T-‘::.H()) du (-’T-r:-“())
and therefore we have:
. .. d d .
&g + 0 &~ f(xg,up) + —f ox + —f du,
oz (x0,u0) du (z0,10)
o, T UG
simplifying, we get
. 0 d
oxr = d—f ox + d—f .
T (wo.up) U (wa.ug) (4)
:r:()':t,u:(swA:g—i B:%
Define, (zo,u0) and (x0,u0) the system (4) becomes:

x =Ax + Bu. (5)

The equation (5) is linear system corresponding to the system (3).
3. Controllabiliy Analysis of the Motion of Satellite

The equations of motion of satellite under the effect of oblateness of the earth is given by

=L
e (6)

where, u = GM, G is gravitational constant and M is mass of the earth and Baois acceleration due to oblatenss of the earth,

considering zonal harmonic J2. The equations of motion in cylindrical coordinate systems represented by Humi[29],

. 3R%2J5(r? — 427
=76 = —pr : 3t 2( oy T )
(r2 +422)z 2(r? 4 22)z ’
rf + 2r8 =0,
(7)
. 1 3R%J3r? — 227)
Z =z . o~ 3 + . 7
(r2 +22)% 2(r2 + 22)3

Under the effect of zonal harmonic J2, the satellite will deviate from its desired orbit, hence its motion becomes
uncontrollable. Eventually it will hit on Earth. Hence, to control the motion of satellite we need to impose the controllers
in the form of thrusters. Let u1, u2 and usz represents thrusters in the r, 8 and z directions respectively. We analysed seven
different cases viz. applying thurster(s) in

1. only r direction,
2. only 6 direction,
3. only z direction,
4. rand @ direction,
5. rand z direction, 6. 0 and z direction,
7.r, 0 and z direction. and check the controllability
of system in each case.
Further we assume that the orbit of the satellite is circular with reference radius ¢ and the angle 6 = wt. Since we have

well established theory of controllability for first order system, we apply the following transformation to the system (7)
after adding controllers in various directions to reduce it to a system of first order equations,
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Xi=r—a (8)
Xy =17,
' Xy =0 (0 —wt),
The study of controllability after applying . thrusters in the different directions are discussed
below. Xi=o (9 N w)
X5 =z,
Xg =2
3.1. Adding the thruster ui(t) only in r direction, the system (7) becomes:
: [ 3R, (12 — 422
P—rf? = —pur 573 2 (r ng) +uy (1)
_(,,.2+z2)t/ 2(r? + 22) / ,
'l‘"é + 2!’9 — O, (9)
. ! 3R2J, (312 — 222)
F= R 3/2 7/2 .
(r? + 22) / 2(r? + 22) /
dX i
a0 By
2 2
1X X - 1 3R2JQ [(Xl + O’) — 4X5:|
{d_fz:(X1+U)(?4+w) — (X1 +o0) 573 T : 72 +uy (1)
[(X1+a)2+X§} 2[(Xl +J)2+X5]
dX;
— =Xy,
dt b
dX,  2Xs50 (32 +w)
dt (Xy +o)
dXs
220 X
0t 6
dXg 1 3R%J [3 (X1 +0)" ~ 2X§}
= HXs +
dt 5 REE ) 7/2
(X1 +0) +X5] 2[()(1 +0) +X5]
transformation (8), system (9) takes the form:
(10)

Now we linearize the system (10) about origin, we take

3R2J, [(X1 o) - 4X§]

2 |:(X1 + 0)2 + Xs] v

therefore system (10) takes the form
X AX BU,

f1:X21
X ? 1
fz—(X1+U)(74+w> —p(X1+o) 372
{(Xl +o)’+ X2]
fa = Xu,
f =72X50'(% +(—U‘)
! (X1 +0)
s = X,
) 3R.J, {3 (X1 +0)° - 2X§]
fﬁ——P«Xﬁ ) 2+ 5 7/2 3
(X1 +0)° + X2 2[(X1+0)” + X
= +
. ~ / a , Ja. fa, fa, [s.
o[l g B g B A= [l

]

9(X1, X2, X3, X4, X5, Xe)
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X - [Xl X2 X3 X4 X5 Xﬁ]f'

where, at origin,
B:[Liﬂﬂim]’ S
Gui duy Oup duy dur Our | gt origin and® = [41], The values of 4 and Bare
[ 0 1 0 0 0 0]
1.000002542612694 0 0 2 0 0
A— 0 0 01 0 0
0 —0.000294117647059 0 0 0 0
0 0 0 0 0 1
i 0 0 0 0 —0.00000127311747 0] (11)
!
and? = [0 1000 0] . The controllability matrix Q is given by
0 1 0 -3 0 9]
1 -3 0 9 0
- 9 3 4 s |00 =2 0 6 0
Qf[BABABABABAB]f 0 -2 0 6 0 —I8
o0 0o 0 0 0 O
o o 0 0 0 0 ]

The rank of the matrix Q is 3, which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition, the
system is not controllable if we add the thruster only in radial direction r.

3.2. Adding the thruster ui(t) only in 0 direction, the system (7) becomes:

P2 = —pur - ! 773+ 3R, (TQ —_ 422)]
_(Tz_f_zz)t/? 2(,@_,_22)7/2
rl + 270 = uy (), (12)
. 1 3R%J, (3r% — 227)
= THE (r2 + 22)3/2 * 2 (r2 +22)7/2 ]

By transformation (8), system (12) takes the form:

dx,
o
2 2
dX. X 2 1 3R% T, (Xl +0’) —4X:
d_;—(X1+J)<?4+w) —p(Xy+0) 573 T [ ‘ 7/2}
(1 +0) + X2 2[(X1 +0) + Xs)

dXs

A8 X,

il 45

dX 2Xq0 (X4 4w
&ae :_#4_“1(5),

dt (X1 +0)

dX_s
20— X,

dt o

d X 1 31T [3 (X1 +0)" - zxg}
T

N REE + 5 7/2
[(X1 o)+ Xs] 2 [(X1 o)+ X5]

(13)
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We linearize the system (13) about origin by taking

f1 =X,
X, ) I 3R, (X1 +0)° — 4]
f?z(X1+U) (—+W) 7”(X1 +U) 5 3/2+ 5 7/2
[(X-1 +o) + Xg} 2 [(X, +a) +X5}
fS = X%
2X50 (%1 +w)
e e t),
Ja X o) Tul
fs = X,
, ) 310y [3(X1 +0)? — 23]
fo = —pXs ) 13/2 2 7/2
[(Xl+0') JFX:ﬂ 2{(X1+0') +X5}
therefore the system (13) takes the form
X =AX+ BU,
_ [dX dX dXs dX dXs dXg]’ _ O(f1, f2, [, Ja. [s, fo)
where, - [Tfl sz Wi dtd Wg Tf‘l] ’A - |:6‘(X1.1X22A Xg, )(?4, Xs,GXE)]' at origin,X = [Xl Xz X3 X,.1 X5 Xﬁ] ”
) ) Y
B— [i Ofs 0fs fs Ofs L] o - '
Ouy duy Ouy duy dui Oy | at origin, and¥ = [u1], The matrix 4 is given by (11) andB = [000100] pe

controllability matrix @ is given by

Q = [BAB A’B A°B A'B A°B] =

and the rank of Q is 4, which is not equal to the dimensions of the
not controllable if we add the thruster only in 6 direction.

3.3. Adding the thruster ui(t) only in z direction

The system (7) is written as

00 2 0 6 0]
02 0 -6 0 18
01 0 4 0 12
10 4 0 12 0
00 0 0 0 0
00 0 0 0 0]

’

state X (= 6). By the Kalman’s condition, the system is

|

(14)

R B 3R2J, (12 — 42?)
L 23/2 2 2)7/2
| (72 + 22) 2 (r? + 22)
70 + 270 = 0,
. [ 1 3R2J, (3r% — 222)
i = —pz
| (r? + 22)%/? 2(r2 + 22)"/?

By transformation (8), system (14) takes the form:
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dX,
— = X,
i 2,
5 2 2
dX. X 2 1 3R2J2 (X1 +O') —4X:
oo (Bee) wn o S L ]
[(Xl +a)2+X§] 2 [(Xl +a) +X5]
dXs
— =Xy,
i 1,
dXy  2Xs50 (52 +w)
dt (X1 + o)
dXs
— = Xg,
dt ¢
X . 8R2J; [3(X1 +0)° - 2X2 t
= hs ; 23/24- ; 773 +uy (t).
(X1 +0)? + x2] 2[(X1 +0) + X;
(15)
Linearizing the system (15) about origin by taking
fl = XQJ
X, ) 1 3R2J; (X1 +0)° — X2
f?:(X1+J) (?+W> _nu(Xl +J) 3/2+ 7/2
[(X1 o)+ Xg} 2 [(X1 +o)?+ XE,}
fa=Xu,
fi= 2X50 (%1 +w)
e (X1 +0)
f5 = X,
) 3R2J, [3 (X1 +0)° - 2X§]
fo = —pXs ; am T ; 77 +uy (1),
[(X1+J) +X§} 2{(X1+a) +X5}
and the system (15) takes the form
X =AX + BU,
- [dX; dXs, dX dX, dXs; dXg]' 4 _ A(f1, f2, f3, fa, f5. f6)
where X = [5G @ @ @t @ Wl A= [a(xl,le. xQ,;?,,.}ska)]at origin, [X = X1 X2 X3 X4 X5 X¢]'
_[os 0r: 8fs 8f4 0fs 0fa)
B= [5‘% 5‘% 51% 5‘% B 5;%] at origin andU = [u1] The values of 4 as (11) andB=1[000001] ’. The control-
lability matrix Q is given by
0 0 0 0 0 0]
00 0 0 0 0
000 O0O0O
_ 2 437 A4 5p] —
Q= [BABA’B A*B A'B A°B| = 00000 0
01 00 00
1 00 0 0 0]
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Therefore, rank of the matrix Q = 2 which is not equal to the dimensions of the state X (= 6). By the Kalman'’s condition,
the system is not controllable if we add the thruster only in z direction.

3.4. Adding thrusters ui(t) and uz(t) in r and 6 direction:

The system (7) becomes:

[ 1 32, (12 —422)] | @
—pur wy (1 .
(24222 2(r2 422 1 Fergz =
rl + 276 = ua(t). (16)
[ | 3R (37 - 227)
— Uz rYT, -
} (T’z + 22),5/2 2 (‘]"2 + 22)7/2 Z.. —
By transformation (8), system (16) takes the form
dX;
a0
, 2 3R2J, [(X1 +o)? - 4X2
%:(X1+a) (%+w) —pu(Xy + o) 1 75 + 5= ¢ +ull)
g (X1 +0)* + X3 2[(X1 +0)° + X5]
dX;
o
dX 2X50 (32 +¢
1= J(‘T uj)+uz(f)
dt (X1 +0)
dXs
@ e
e N { 3R2J, [s (X) +0)* — ng}
ar - M s a2 ) 772
(X1 +0) + x] 2[(X: +0)” + X;
(17)
For linearizing the system (17) about origin, we take
1= X,
X, A\ ) BRI (X1 +0)” — 4X¢]
fo= (o) (X +w) p(Xr t o) L e
{(Xl +a)2+X§] 2 [(Xl +0)2+X5]
Js =Xy,
2X50 (%4 +w)
= — g i t R
1 X, +0) + uz(t)
fS = XU:
\ . 1 3R2.J, [3 (X; +0)% — 2X§}
6 = —HAS

) 13/2 + 5 7/2
(X1 +0) + X3 2[(X1 +0)* + X5]

Therefore the system (17) take the form
X =AX+ BU,
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- [ C i d. dXs ¢ ! _ O f1, f2, f3, fa, f5, J
where, - [% % %1 Iéi/!l irﬁ %] A= [0(;(1 .I.Xzz, X;, );14, Xs.a})(g)] at origin,X = [Xl Xz X'} X,1 X:, XG]I’
of1 f2 Ofs 0fs Bfs 0fa]’ ' )
B = du; (Ju; gffr: Sf){'/i du; ?"fl , B = 010000
Juz Duz Juz Juz Juz Juz | atorigin and¥ = [u1 u2]" We obtain the values of 4 as (11)and 000100f,
The controllability matrix Q is given by
oo 1 0 0 2 =3 0 0 -6 9 0]
10 0 2 -3 0 0 -6 9 0 0 18
. K o 0o 0 1 -2 0 0 —46 0 0 12
_ 2 3 4 5R] —
Q_[BABABABABAB]_ 61 -20 0 -4 6 0 0 12 —-18 0
oo o0 o 0 0 0 0 0 0 0 0
oo 0 0 0 o0 0 0 0 O 0 0

The rank of the matrix Q = 4 which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition, we
conclude that the system is not controlllable if we add the thrusters in r and 6 direction.

3.5. Adding thrusters ui(t) and uz(t) in r and z direction:

The system (7) becomes:

L ! 3R2J, (12 — 422
Pl = | s 2( 2 7/2) +u(t),
[ (72 + 22) 2 (r? + 22)
70 + 270 = 0, (18)
. [ 3R2J, (32 — 22
P= oz | — 23/2+ 2( TP ) + ua(t)
| (r2 + 22) 2(r2 4 22)
By transformation (8), system (18) takes the form
X,
F - XQ:
. 2 2
X, Xi o\ | 3R, (X + 0)* — 4X¢]
%:(X1+a) (?l+w) —pu(Xy + o) 57+ 5 ¢ +ull)
g (X1 +0)* + X2 2[(X1 +0)* + X5]
dXs
55 Xy,
I 4
dXy | 2Xs0 (G +w)
a - (Xito)
dX;
@ e
aXe 1 B2, [3(X1 +0)° - 2X2 f
o RTEN s oz (Tl
[(X1+0') +X5] 2[(X1+cr) +X5]
(19)
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For linearizing the system (19) about origin, we take

1= Xo,
X\ | 3R [(X1 +0) — 4]
fo=Xito)| —+w] —p(Xi+o) 55+ +uy (t)
a 2 3/2 5 7/2
{(X1 +o)?+ Xz] 2 [(X-l o)+ X;,]
f3 = X’la
Ji— 2Xro (%’- +w)
e (X1 +0)
f5 = Xs,
) 3R%J, [‘3 (X, +0)% - 2X§}
fo = —nXs 5 + + ua(t),
R 3/2 5 7/2
[(X1 +o)?+ Xg} 2 [(X1 +o)2+ X5]
) Therefore the system (19) takes the
= + form
X = [d_XL dXy  dXy dXy dXs d_xq]’ A= [ A(f1. fa. fs. fa. f5, fo) ] X AX BU,
- dt dt dt dt dt dt ? - 5‘()(1. Xo, X3, X4, X5, _’(5) L.
where, at origin,

X = [X1 X2 X3 X4 X5 X'

ofp Ofs Ofs 9fs Ofs 8fe

!
oo | B B , pioooey
dfr Of2 9fa a Ofs dfe =
Juz Juz Juz Juz Juz Juz | atorigin and" = (1 ue] , The matrix A4 is given in (11) and 000001},

The controllability matrix Q is given by

00 1 0 0 0 -3000 9 0
10 0 0 -30 0 090 0 0
B o 131 i 5] |00 0 0 =20 0 06 0 0 0
Q=[BABABABABABI=15 0 5 0 g 0 6 000 ~18 0
00 0 1 0 0 0 000 0 0
01 0 0 0 0 0 000 0 0

L 4,

The rank of the matrix Q is 5, which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition
conclude that the system is not controllable if we add the thrusters in r and z direction.

3.6. Adding thrusters ui(t) and uz(t) in 6 and z direction:

The system (7) becomes:

[ 1 3R (P-4
—pr , .
| (r2 + 22)%/2 2(r2 4 2)7/? r-rf? =
1l + 270 = uy (1),
[ 3R, (3r2 — 222)
—pz — + + ua(t) .
| (12 + 22)%/2 2(r2 4 22)7/? z =

By transformation (8), system (20) takes the form

, we

(20)
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dX;
— = Xo,
dt 2'
2 2
X X 2 | BRI, (X1 +0)” — 4X3]
%:(XH'U) (?44'0-’) — (X1 +0) a2 T . 772
[(X1 +o)° +X§] 2 [(X1 +o)’ +X5]
dXs
—= =Xy,
di +
. 2X50 (X1
d-X’l _ U(U +(.u’) +’t.ﬂ1(t),
dt (X1 +0)
dX5
—2 = X,
dt o
e . 8R2J [3(X1 +0)° — 2X2]
— = —puXs RET + ; 773 + ua(t).
[(Xl +0) +X5] 2 [(Xl +0) +X5]
(21)
For linearizing the system (21) about origin, we take
S =Xo,
X\ . 3R, [(X1 +o)? - 4X§}
fQZ(X1+J) (?+W) 71“(X1 +J) 3/2+ 7/2
[(X-l +0)? +X§} 2 [(X1 +0)° +X5}
fS = X41
2X50 (32 +w)
= ————"—= +u(t),
fa X1+ 0) u (1),
f5 = X,
3R Iy |3(X; +0)° — 2X2
1
fG - 7}“'X5 5 3/2 + 5 7/2 + UQ(t)a
[(X1+o) +X}j’} 2{(X1+a) +X5}
Therefore the system (21) takes the form:
X = AX + BU,
c o [dX:  dXs dXs  dXa dXs  dXe]' A — | _0Uf1 f2, fa, fa, S5, fe)
where, " [G dfr 4 G b ARl A= [a(xl,lxzz, Xz,)a.x&ﬁxﬁy]at origin,X = [X1 X2 X3 Xy X5 XG]”

Oh 0f: Ofs O0fa 9fs Ofs
Juy Jduy OJuy duy duy

!
B = |G 0% o5 Of 0n of 000100]

!/
} = ' B = [o 00001
Juz duz Juz Juz Juz Juz ] at origin and™ — [u1 U2]' The matrix A is given in (11) and .
The controllability matrix Q is given by

o000 2 0 0 0 -6 0 0 0
0020 00 60 0 0180
. o010 0 0 —-40 0 0120

_ 2P A3 DR AA DR ADR] —
Q=[BABABABABABI =11 o oo 240 0 012 0 0 0
0001 0 0 0 0 0 00 0
o1 o060 0 0 o0 0 0 0 0 0
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The rank of Q is 6, which is equal to the dimensions of the state X (= 6). Hence by the Kalman’s condition, we conclude that
the system is controllable if we add thrusters ui(t) and uz(t) in 6 and z directions. The figure-1 shows, that the system is
steered from the initial point [1 2 3 4 5 6] to the final point [6 5 4 3 2 1] during the time interval [0,10], by applying the
controllers, i.e. thrusters u1(t) and uz(t) in 6 and z direction.

15

States

-10 I I I I

Time in Minutes

Figure 1: State Control of the System under the effect of zonal harmonic />

The graph of the controllers i.e. thrusters ui(t) and uz(¢t) in 8 are shown in the figure-2:
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w2

o N
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I I
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'
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Ar 1
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0 2 4 6 8 10

Time in Minutes

Figure 2: Steering Control of the System under the effect of zonal harmonic J;
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3.7. If we add the thrusters in all the three directions i.e. r, 6 and z directions: The

system (7) is written as

[ 1 3R2J, (r? — 427)
Bl ireaprori oz | T ®), _ 2 =
[ (72 + 22) 2(r? 4 22) r-r?z =
70 + 210 = us(t), ) e ) (22)
1 3R Jy (3r° — 2z
- | (2 +22)* - 2(r2 +22)"? + ) z =
By transformation (8), the system (22) takes the form
dX,
— =X,
P 25
. 2 2
dX. X 2 1 3R [(Xl ol A%
d—f:(X1+a) (?4 +w) — (X1 +o) 5z T 772 +ua(t)
(X1 +0) + x3] 2[(X: +0)” + X;
dXs
— =Xy,
dt b
dX 2Xro (%2 4w
=4 _(—0) + ug(t),
dt (X] +O')
dXs
— = Xg,
P i
X o 1 3R2J; [3(X1 +0)° — 2]
Tar M 9 3/2 + 5 772 + uz(t).
{(Xl + ) +X§] 2[(X1+cr) +X5]
(23)
Now we linearize the system (23) about origin, we take
1= Xo,
X, 2 1 3R*J, [(Xl +0)’ - 4X2]
Jo=(X1+0) — tw —p (X1 +0) 57z T 7 Twl)
{(X1 +a)2+X§] 2 [(X1 +U)2+X5]
f3 = X4s
2X50 (& + w)
- - g  J + t ,
Ja (X, +0) uz(t)
Js = X,
) 3R, [‘5 (X1 +0)? - zxg]
.fﬁ - 7I'LX5 ) 3/2 + 5 7/2 + 'U,g(t),
[(X1+J) +X§} 2[(X1+0) +X5]
and write the system (23) in the form
X =AX+BU,
c o [dX,  dXe dXs dXy dXs dXg)]' 4 — (S, fa, f3, fa, f5. f6)
whereX - [d_f . at a dt TH A= [a(xl.x;, x;,fd,;g,,sxﬁ)]’ at origin,X = [X1 Xo X3 Xy X5 XG]"
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24 O O Ok O 2L 0100007
du Uy w1 duwy duy dug
_ |25 9fs Ofs Ofs Ofs Ofs
B =50 % 9us 0us 0us dus B=1000100
ofi 0f2 Ofa Ofs 0fs Ofe _ ' 000001
Juy Juz Juz Juz duz dua]  atorigin and = [ur u2 us]" The matrix A is given by (11) and
The controllability matrix Q is given by
0 oo 1 00 0 2 0 -3 0 00 60 9 0 0
1 00 0 20 -3 0 0 0 -6 09 0 0 0 18 0
. ooo0o 0O 10 -2 000 —-490¢6 0 0 0 12 0
2 3 4 5 _
(BABA*BA’BABABI =\, | o 23 00 0 40 6 0 00 12 0 —18 0 0
oo0oo0o o0 01 0 0 0 0 0O 00 0 0 0 0 0
0oo0o1 0000 000 0OO0OO0O0DO0O 0 0 0f

The rank of matrix Q is 6, which is equal to the dimensions of the state X (= 6). Hence by the Kalman’s condition the system
is controllable if we add the thrusters in r, 8 and z direction. Figure-3 shows the trajectories of states of the system (22)
with initial state [1 2 3 4 5 6] and desired final state [6 5 4 3 2 1] respectively.

15

States

-10 I I I I

Time in Minutes

Figure 3: State Control of the System under the effect of zonal harmonic J>

We can see from figure-3 that the initial state is steered to final state during the time interval [0,10]. The graph of the
controllers i.e. thrusters in all the three directions r, 8 and z are shown in figure-4.
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Steering Control

0 2 4 6 8 1
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Figure 4: Steering Control of the System under the effect of zonal harmonic />

4. Conclusion

We have studied controllability analysis for seven different cases by applying controllers in (1) r- direction, (2) fdirection,
(3) z- direction, (4) r and @ directions, (5) r and z directions, (6) 6 and z directions and (7) r, 8 and z directions. Applying
the Kalman’s rank condition we found that, the system (7) is uncontrollable if we apply thrusters i.e controllers in (1) r-
direction, (2) 6- direction, (3) z- direction, (4) r and 8 directions, (5) r and z directions, and it is controllable if thrusters
are applied in (6) 8 and z directions and (7) r, 8 and z directions.

From this study we found that to control the motion of the satellite under the effect of zonal harmonic J> we need to plug
the controllers in the form of thrusters in all three directions. If the thruster in r direction fails then also motion of satellite
is controllable, but if thruster in any other direction(s) fail then the motion of satellite will become uncontrollable and it
may hit the Earth’s surface.
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