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Abstract 

In this article we have studied the controllability of artificial satellite under the effect of zonal harmonic J2 in 

cylindrical polar coordinates systems. Seven different cases of thrusters in various directions have been analyzed 

and it is found that the system is controllable if we apply thrusters in either r, θ and z or θ and z direction. The 

equations governing motion of satellite have been linearized and Kalman controllability test is applied to check 

the controllability of the system. We have also derived controller u for the linearized system. The trajectory of the 

system has been plotted to show the controllability of the system. 
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1. Introduction 

Artificial satellites play very important role in navigation, communication, monitoring environment of the earth etc. [1, 2]. 

Many researchers studied motion of artificial satellite using analytic, semi-analytic and numerical methods. King-Hele[5] 

solved two-body problem of satellite, analytically by considering oblateness of Earth. Raj [3] regularized equation of 

motion by applying KS transformations [4] and solved these equations of motion by considering atmospheric drag. Sehnal 

[6] studied the motion of artificial satellite by considering perturbation due to upper terrestrial atmosphere. Knowles 

et.al. [7] analyze the sample orbit from sensor data as well as orbital elements, during the period 14 July 2000, they found 

that geomagnetic storms driven by solar eruption have significant effect on the total density of the upper atmosphere in 

the altitude range 250 – 1000 k.m., which causes a measurable effect on the orbit of resident space object. Yan and Kapila 

[8] developed the dynamical equations of satellite motion around oblate earth using spherical rotating frame and using 

this dynamics they derived conditions under which osculating plane of motion of satellite remains fixed. Khalil [9] 

developed analytical solution by considering atmospheric drag and oblateness of earth up to 4th order zonal harmonic 

using Hamiltonian mechanics. Bezdvˇek and Vokrouhlicky´ [10] presented a semi-analytic theory for small eccentric orbit 

by considering oblateness of earth up to 9th order zonal harmonic of the earth and atmospheric drag. In this they 

considered empirical model TD88 of the neutral atmosphere density distribution for atmospheric drag. They also 

compared their predictions with the orbital data of several real-world artificial satellites. Hassan et. al. [11] regularized 

equations of perturbed motion due to oblateness of Earth using KS transformations and derived algorithm to solve these 

equations using Picard’s method. Chen and Jing [12] studied relative motion of satellite under the effect of the oblateness 

of earth and atmospheric drag. Using Lie group variational approach Lee et. al. [14] simulated rotational dynamics of 

satellite. Formation flight of artificial satellite under the effect of aerodynamics forces was studied by Reid and Misra [13]. 

Xu and Chen [15] derived analytical solution in terms of Keplerian angular elements of satellite orbit under effect of 

atmospheric drag. Effect on the orbit of satellite Cosmos1484 under the effect of earth oblateness and atmospheric drag 

have been studied by Al-Bermani et. al. [16]. Using Lie transformations, Delhaise [17] derived analytical solution of motion 

of satellite by considering gravity and air drag. 

Sharma et.al. [22, 23] studied the motion of satellite with different initial velocities and computed orbital elements by 

considering oblateness of earth and combined effect of the oblateness of Earth and atmospheric drag. They have also 

computed the time at which satellite will hit the Earth. To have satellite in correct orbit for longer time it is necessary to 

put controller that controls the motion. Hajovsky [24] used atmospheric drag as a controller to control the 
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trajectory of artificial satellite. B. Palancz [2, 26] used pole placement to control trajectory of the artificial satellite. 

Recently Lamba [27], discussed controllability, observability and stability problem concerned with artificial satellite using 

state space method. However he took two dimensional model which leads to sets of four equations in polar form. 

In this work we consider motion of satellite under the effect of J2 zonal harmonic in cylindrical polar coordinate system 

and studied controllability of motion by plugging controllers (in form of thrusters) in various directions. It has been 

observed that the motion of satellite is controllable if controllers are kept in r, θ & z directions and θ & z directions. We 

also studied trajectory controllability of satellite. 

2. Preliminaries 

In real life, most of the systems are nonlinear in nature and this nonlinearity creates difficulty in finding solution of the 

system. Hence it is required to approximate the nonlinear system by the appropriate linear system. 

The motion of artificial satellite under the effect of zonal harmonic J2 is modelled in terms of system of nonlinear 

differential equations. Here, we introduce the concept of linear control theory followed by linearization of nonlinear 

control systems [28]. 

2.1. Linear Control Systems Consider 

linear control system, 

x˙(t) = A(t)x(t) + B(t)u(t), 

 x(t0) = x0, (1) 

where, x0,x(t) ∈ Rn for all t ∈ [t0,t1], u ∈ L2([t0,t1],Rm). The matrices A(t) and B(t) are of order n × n and n × m respectively. 

Let Φ(t,t0) be the transition matrix of the homogeneous system ̇ x(t) = A(t)x(t) with initial condition x(t0) = x0 then solution 

of the system (1) is given by, 

  (2) 

Definition 1. The system (1) is controllable over the interval [t0,t1], if each pair of vectors x0 and x1 in Rn there is a control u ∈ 

L2([t0,t1],Rm) such that the solution of (1) satisfies x(t1) = x1. This means there is a control u satisfying 

 

Theorem 1. The system (1) is controllable if and only if the controllability grammian of the system defined by 

 is invertible and control u of the system (1) is given by 

u(t) = B∗(t)Φ∗(t1,t)W−1(t0,t1)[x1 − Φ(t1,t0)]. 

However if the system is time invariant, conditions reduces to Kalmann condition which is given by, 

Corollary 1. If matrices A and B are two time invariant matrices of the system (1) then the system is controllable if and only 

if the rank of the controllability matrix . 

2.2. Linearization of Differential Systems 

Consider the nonlinear system 

 x˙(t) = f(x(t),u(t)), (3) 

where the state x(t)is an n-dimensional vector, controller u(t) is m-dimensional vector for all t, f : R+×Rn×Rm → Rn is a non-

linear function. 
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Let (x0,u0) be the reference point of the system (3) then Taylor series expansion of the the function at the reference point 

is given by: 

 
and therefore we have: 

 

simplifying, we get 

  (4) 

Define,  and  the system (4) becomes: 

x˙ = Ax + Bu. 

The equation (5) is linear system corresponding to the system (3). 

3. Controllabiliy Analysis of the Motion of Satellite 

The equations of motion of satellite under the effect of oblateness of the earth is given by 

(5) 

 , (6) 

where, µ = GM, G is gravitational constant and M is mass of the earth and ⃗aO is acceleration due to oblatenss of the earth, 

considering zonal harmonic J2. The equations of motion in cylindrical coordinate systems represented by Humi[29], 

, 

(7) 

Under the effect of zonal harmonic J2, the satellite will deviate from its desired orbit, hence its motion becomes 

uncontrollable. Eventually it will hit on Earth. Hence, to control the motion of satellite we need to impose the controllers 

in the form of thrusters. Let u1, u2 and u3 represents thrusters in the r, θ and z directions respectively. We analysed seven 

different cases viz. applying thurster(s) in 

1. only r direction, 

2. only θ direction, 

3. only z direction, 

4. r and θ direction, 

5. r and z direction, 6. θ and z direction, 

7. r, θ and z direction. and check the controllability 

of system in each case. 

Further we assume that the orbit of the satellite is circular with reference radius σ and the angle θ = ωt. Since we have 

well established theory of controllability for first order system, we apply the following transformation to the system (7) 

after adding controllers in various directions to reduce it to a system of first order equations, 
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(8) 

, 

The study of controllability after applying thrusters in the different directions are discussed 

below. 

3.1. Adding the thruster u1(t) only in r direction, the system (7) becomes: 

, 

(9) 

By 

transformation (8), system (9) takes the form: 

(10) 

Now we linearize the system (10) about origin, we take 

, 

therefore system (10) takes the form 

 X AX BU, 
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where, at origin, , 

 at origin and . The values of A and B are 

 , (11) 

and . The controllability matrix Q is given by 

. 

The rank of the matrix Q is 3, which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition, the 

system is not controllable if we add the thruster only in radial direction r. 

3.2. Adding the thruster u1(t) only in θ direction, the system (7) becomes: 

(12) 

. 

By transformation (8), system (12) takes the form: 

, 

(13) 
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We linearize the system (13) about origin by taking 

, 

therefore the system (13) takes the form 

X˙ = AX + BU, 

where, , at origin, , 

at origin, and  . The matrix A is given by (11) and . The 

controllability matrix Q is given by 

 , 

and the rank of Q is 4, which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition, the system is 

not controllable if we add the thruster only in θ direction. 

3.3. Adding the thruster u1(t) only in z direction 

The system (7) is written as 

(14) 

. 

By transformation (8), system (14) takes the form: 
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, 

(15) 

Linearizing the system (15) about origin by taking 

, 

and the system (15) takes the form 

where,  at origin, , 

 at origin and . The values of A as (11) and . The control- 

lability matrix Q is given by 

, 
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Therefore, rank of the matrix Q = 2 which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition, 

the system is not controllable if we add the thruster only in z direction. 

3.4. Adding thrusters u1(t) and u2(t) in r and θ direction: 

The system (7) becomes: 

 r¨− rθ˙2 = , 

(16) 

 z¨ = 

By transformation (8), system (16) takes the form 

, 

(17) 

For linearizing the system (17) about origin, we take 

, 

Therefore the system (17) take the form 

X˙ = AX + BU, 
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where,  at origin, , 

 at origin and . We obtain the values of A as (11)and . 

The controllability matrix Q is given by 

 , 

The rank of the matrix Q = 4 which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition, we 

conclude that the system is not controlllable if we add the thrusters in r and θ direction. 

3.5. Adding thrusters u1(t) and u2(t) in r and z direction: 

The system (7) becomes: 

(18) 

. 

By transformation (8), system (18) takes the form 

, 

(19) 
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For linearizing the system (19) about origin, we take 

, 

Therefore the system (19) takes the 

form 

 X AX BU, 

where, at origin,

, 

 at origin and , The matrix A is given in (11) and . 

The controllability matrix Q is given by 

 , 

The rank of the matrix Q is 5, which is not equal to the dimensions of the state X (= 6). By the Kalman’s condition, we 

conclude that the system is not controllable if we add the thrusters in r and z direction. 

3.6. Adding thrusters u1(t) and u2(t) in θ and z direction: 

The system (7) becomes: 

 r¨− rθ˙2 = 

(20) 

 z¨ = . 

By transformation (8), system (20) takes the form 
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, 

(21) 

For linearizing the system (21) about origin, we take 

, 

Therefore the system (21) takes the form: 

where,  at origin, , 

 at origin and . The matrix A is given in (11) and . 

The controllability matrix Q is given by 

 , 
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The rank of Q is 6, which is equal to the dimensions of the state X (= 6). Hence by the Kalman’s condition, we conclude that 

the system is controllable if we add thrusters u1(t) and u2(t) in θ and z directions. The figure-1 shows, that the system is 

steered from the initial point [1 2 3 4 5 6]′ to the final point [6 5 4 3 2 1]′ during the time interval [0,10], by applying the 

controllers, i.e. thrusters u1(t) and u2(t) in θ and z direction. 

 

Time in Minutes 

Figure 1: State Control of the System under the effect of zonal harmonic J2 

The graph of the controllers i.e. thrusters u1(t) and u2(t) in θ are shown in the figure-2: 

 
Time in Minutes 

Figure 2: Steering Control of the System under the effect of zonal harmonic J2 
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3.7. If we add the thrusters in all the three directions i.e. r, θ and z directions: The 

system (7) is written as 

 r¨− rθ˙2 = 

(22) 

 z¨ = . 

By transformation (8), the system (22) takes the form 

, 

(23) 

Now we linearize the system (23) about origin, we take 

, 

and write the system (23) in the form 

X˙ = AX + BU, 

where , at origin, , 
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, at origin and . The matrix A is given by (11) and . 

The controllability matrix Q is given by 

 . 

The rank of matrix Q is 6, which is equal to the dimensions of the state X (= 6). Hence by the Kalman’s condition the system 

is controllable if we add the thrusters in r, θ and z direction. Figure-3 shows the trajectories of states of the system (22) 

with initial state [1 2 3 4 5 6]′ and desired final state [6 5 4 3 2 1]′ respectively. 

 

Time in Minutes 

Figure 3: State Control of the System under the effect of zonal harmonic J2 

We can see from figure-3 that the initial state is steered to final state during the time interval [0,10]. The graph of the 

controllers i.e. thrusters in all the three directions r, θ and z are shown in figure-4. 
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Time in Minutes 

Figure 4: Steering Control of the System under the effect of zonal harmonic J2 

4. Conclusion 

We have studied controllability analysis for seven different cases by applying controllers in (1) r- direction, (2) θdirection, 

(3) z- direction, (4) r and θ directions, (5) r and z directions, (6) θ and z directions and (7) r, θ and z directions. Applying 

the Kalman’s rank condition we found that, the system (7) is uncontrollable if we apply thrusters i.e controllers in (1) r- 

direction, (2) θ- direction, (3) z- direction, (4) r and θ directions, (5) r and z directions, and it is controllable if thrusters 

are applied in (6) θ and z directions and (7) r, θ and z directions. 

From this study we found that to control the motion of the satellite under the effect of zonal harmonic J2 we need to plug 

the controllers in the form of thrusters in all three directions. If the thruster in r direction fails then also motion of satellite 

is controllable, but if thruster in any other direction(s) fail then the motion of satellite will become uncontrollable and it 

may hit the Earth’s surface. 
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